-/* $OpenBSD: bn_mul.c,v 1.26 2023/01/20 10:00:51 jsing Exp $ */
+/* $OpenBSD: bn_mul.c,v 1.27 2023/01/20 12:16:46 jsing Exp $ */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
#include "bn_local.h"
-/* Here follows specialised variants of bn_add_words() and
- bn_sub_words(). They have the property performing operations on
- arrays of different sizes. The sizes of those arrays is expressed through
- cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
- which is the delta between the two lengths, calculated as len(a)-len(b).
- All lengths are the number of BN_ULONGs... For the operations that require
- a result array as parameter, it must have the length cl+abs(dl).
- These functions should probably end up in bn_asm.c as soon as there are
- assembler counterparts for the systems that use assembler files. */
-
-BN_ULONG
-bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl,
- int dl)
-{
- BN_ULONG c, l, t;
-
- assert(cl >= 0);
- c = bn_add_words(r, a, b, cl);
-
- if (dl == 0)
- return c;
-
- r += cl;
- a += cl;
- b += cl;
-
- if (dl < 0) {
- int save_dl = dl;
- while (c) {
- l = (c + b[0]) & BN_MASK2;
- c = (l < c);
- r[0] = l;
- if (++dl >= 0)
- break;
-
- l = (c + b[1]) & BN_MASK2;
- c = (l < c);
- r[1] = l;
- if (++dl >= 0)
- break;
-
- l = (c + b[2]) & BN_MASK2;
- c = (l < c);
- r[2] = l;
- if (++dl >= 0)
- break;
-
- l = (c + b[3]) & BN_MASK2;
- c = (l < c);
- r[3] = l;
- if (++dl >= 0)
- break;
-
- save_dl = dl;
- b += 4;
- r += 4;
- }
- if (dl < 0) {
- if (save_dl < dl) {
- switch (dl - save_dl) {
- case 1:
- r[1] = b[1];
- if (++dl >= 0)
- break;
- case 2:
- r[2] = b[2];
- if (++dl >= 0)
- break;
- case 3:
- r[3] = b[3];
- if (++dl >= 0)
- break;
- }
- b += 4;
- r += 4;
- }
- }
- if (dl < 0) {
- for (;;) {
- r[0] = b[0];
- if (++dl >= 0)
- break;
- r[1] = b[1];
- if (++dl >= 0)
- break;
- r[2] = b[2];
- if (++dl >= 0)
- break;
- r[3] = b[3];
- if (++dl >= 0)
- break;
-
- b += 4;
- r += 4;
- }
- }
- } else {
- int save_dl = dl;
- while (c) {
- t = (a[0] + c) & BN_MASK2;
- c = (t < c);
- r[0] = t;
- if (--dl <= 0)
- break;
-
- t = (a[1] + c) & BN_MASK2;
- c = (t < c);
- r[1] = t;
- if (--dl <= 0)
- break;
-
- t = (a[2] + c) & BN_MASK2;
- c = (t < c);
- r[2] = t;
- if (--dl <= 0)
- break;
-
- t = (a[3] + c) & BN_MASK2;
- c = (t < c);
- r[3] = t;
- if (--dl <= 0)
- break;
-
- save_dl = dl;
- a += 4;
- r += 4;
- }
- if (dl > 0) {
- if (save_dl > dl) {
- switch (save_dl - dl) {
- case 1:
- r[1] = a[1];
- if (--dl <= 0)
- break;
- case 2:
- r[2] = a[2];
- if (--dl <= 0)
- break;
- case 3:
- r[3] = a[3];
- if (--dl <= 0)
- break;
- }
- a += 4;
- r += 4;
- }
- }
- if (dl > 0) {
- for (;;) {
- r[0] = a[0];
- if (--dl <= 0)
- break;
- r[1] = a[1];
- if (--dl <= 0)
- break;
- r[2] = a[2];
- if (--dl <= 0)
- break;
- r[3] = a[3];
- if (--dl <= 0)
- break;
-
- a += 4;
- r += 4;
- }
- }
- }
- return c;
-}
-
#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
+/*
+ * Here follows a specialised variant of bn_sub_words(), which has the property
+ * performing operations on arrays of different sizes. The sizes of those arrays
+ * is expressed through cl, which is the common length (basically,
+ * min(len(a),len(b))), and dl, which is the delta between the two lengths,
+ * calculated as len(a)-len(b). All lengths are the number of BN_ULONGs. For the
+ * operations that require a result array as parameter, it must have the length
+ * cl+abs(dl).
+ */
BN_ULONG
bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl,
int dl)
}
}
-void
-bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
-{
- bn_mul_words(r, a, n, b[0]);
-
- for (;;) {
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[1]), a, n, b[1]);
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[2]), a, n, b[2]);
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[3]), a, n, b[3]);
- if (--n <= 0)
- return;
- bn_mul_add_words(&(r[4]), a, n, b[4]);
- r += 4;
- b += 4;
- }
-}
-
#ifdef BN_RECURSION
-/* a and b must be the same size, which is n2.
- * r needs to be n2 words and t needs to be n2*2
- * l is the low words of the output.
- * t needs to be n2*3
- */
-void
-bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
- BN_ULONG *t)
-{
- int i, n;
- int c1, c2;
- int neg, oneg, zero;
- BN_ULONG ll, lc, *lp, *mp;
-
- n = n2 / 2;
-
- /* Calculate (al-ah)*(bh-bl) */
- neg = zero = 0;
- c1 = bn_cmp_words(&(a[0]), &(a[n]), n);
- c2 = bn_cmp_words(&(b[n]), &(b[0]), n);
- switch (c1 * 3 + c2) {
- case -4:
- bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n);
- bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n);
- break;
- case -3:
- zero = 1;
- break;
- case -2:
- bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n);
- bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n);
- neg = 1;
- break;
- case -1:
- case 0:
- case 1:
- zero = 1;
- break;
- case 2:
- bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n);
- bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n);
- neg = 1;
- break;
- case 3:
- zero = 1;
- break;
- case 4:
- bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n);
- bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n);
- break;
- }
-
- oneg = neg;
- /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
- /* r[10] = (a[1]*b[1]) */
-# ifdef BN_MUL_COMBA
- if (n == 8) {
- bn_mul_comba8(&(t[0]), &(r[0]), &(r[n]));
- bn_mul_comba8(r, &(a[n]), &(b[n]));
- } else
-# endif
- {
- bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2]));
- bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2]));
- }
-
- /* s0 == low(al*bl)
- * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
- * We know s0 and s1 so the only unknown is high(al*bl)
- * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
- * high(al*bl) == s1 - (r[0]+l[0]+t[0])
- */
- if (l != NULL) {
- lp = &(t[n2 + n]);
- c1 = (int)(bn_add_words(lp, &(r[0]), &(l[0]), n));
- } else {
- c1 = 0;
- lp = &(r[0]);
- }
-
- if (neg)
- neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n));
- else {
- bn_add_words(&(t[n2]), lp, &(t[0]), n);
- neg = 0;
- }
-
- if (l != NULL) {
- bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n);
- } else {
- lp = &(t[n2 + n]);
- mp = &(t[n2]);
- for (i = 0; i < n; i++)
- lp[i] = ((~mp[i]) + 1) & BN_MASK2;
- }
-
- /* s[0] = low(al*bl)
- * t[3] = high(al*bl)
- * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
- * r[10] = (a[1]*b[1])
- */
- /* R[10] = al*bl
- * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
- * R[32] = ah*bh
- */
- /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
- * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
- * R[3]=r[1]+(carry/borrow)
- */
- if (l != NULL) {
- lp = &(t[n2]);
- c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n));
- } else {
- lp = &(t[n2 + n]);
- c1 = 0;
- }
- c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n));
- if (oneg)
- c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n));
- else
- c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n));
-
- c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n));
- c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n));
- if (oneg)
- c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n));
- else
- c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n));
-
- if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
- {
- i = 0;
- if (c1 > 0) {
- lc = c1;
- do {
- ll = (r[i] + lc) & BN_MASK2;
- r[i++] = ll;
- lc = (lc > ll);
- } while (lc);
- } else {
- lc = -c1;
- do {
- ll = r[i];
- r[i++] = (ll - lc) & BN_MASK2;
- lc = (lc > ll);
- } while (lc);
- }
- }
- if (c2 != 0) /* Add starting at r[1] */
- {
- i = n;
- if (c2 > 0) {
- lc = c2;
- do {
- ll = (r[i] + lc) & BN_MASK2;
- r[i++] = ll;
- lc = (lc > ll);
- } while (lc);
- } else {
- lc = -c2;
- do {
- ll = r[i];
- r[i++] = (ll - lc) & BN_MASK2;
- lc = (lc > ll);
- } while (lc);
- }
- }
-}
-
/* Karatsuba recursive multiplication algorithm
* (cf. Knuth, The Art of Computer Programming, Vol. 2) */
}
}
}
-
-/* a and b must be the same size, which is n2.
- * r needs to be n2 words and t needs to be n2*2
- */
-void
-bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *t)
-{
- int n = n2 / 2;
-
-
- bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
- if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
- bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
- bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
- bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
- bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
- } else {
- bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
- bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
- bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
- bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
- }
-}
#endif /* BN_RECURSION */
int