-/* $OpenBSD: crypto_internal.h,v 1.3 2023/04/14 10:42:51 jsing Exp $ */
+/* $OpenBSD: crypto_internal.h,v 1.4 2023/05/17 06:37:14 jsing Exp $ */
/*
* Copyright (c) 2023 Joel Sing <jsing@openbsd.org>
*
#ifndef HEADER_CRYPTO_INTERNAL_H
#define HEADER_CRYPTO_INTERNAL_H
+#define CTASSERT(x) \
+ extern char _ctassert[(x) ? 1 : -1] __attribute__((__unused__))
+
+/*
+ * crypto_load_be32toh() loads a 32 bit unsigned big endian value as a 32 bit
+ * unsigned host endian value, from the specified address in memory. The memory
+ * address may have any alignment.
+ */
+#ifndef HAVE_CRYPTO_LOAD_BE32TOH
+static inline uint32_t
+crypto_load_be32toh(const void *src)
+{
+ uint32_t v;
+
+ memcpy(&v, src, sizeof(v));
+
+ return be32toh(v);
+}
+#endif
+
/*
- * crypto_store_htobe32() stores a 32 bit unsigned host endian value
- * as a 32 bit unsigned big endian value, at the specified location in
- * memory. The memory location may have any alignment.
+ * crypto_store_htobe32() stores a 32 bit unsigned host endian value as a 32 bit
+ * unsigned big endian value, at the specified address in memory. The memory
+ * address may have any alignment.
*/
#ifndef HAVE_CRYPTO_STORE_HTOBE32
static inline void
-crypto_store_htobe32(uint8_t *dst, uint32_t v)
+crypto_store_htobe32(void *dst, uint32_t v)
{
v = htobe32(v);
memcpy(dst, &v, sizeof(v));
#endif
/*
- * crypto_store_htobe64() stores a 64 bit unsigned host endian value
- * as a 64 bit unsigned big endian value, at the specified location in
- * memory. The memory location may have any alignment.
+ * crypto_load_be64toh() loads a 64 bit unsigned big endian value as a 64 bit
+ * unsigned host endian value, from the specified address in memory. The memory
+ * address may have any alignment.
+ */
+#ifndef HAVE_CRYPTO_LOAD_BE64TOH
+static inline uint64_t
+crypto_load_be64toh(const void *src)
+{
+ uint64_t v;
+
+ memcpy(&v, src, sizeof(v));
+
+ return be64toh(v);
+}
+#endif
+
+/*
+ * crypto_store_htobe64() stores a 64 bit unsigned host endian value as a 64 bit
+ * unsigned big endian value, at the specified address in memory. The memory
+ * address may have any alignment.
*/
#ifndef HAVE_CRYPTO_STORE_HTOBE64
static inline void
-crypto_store_htobe64(uint8_t *dst, uint64_t v)
+crypto_store_htobe64(void *dst, uint64_t v)
{
v = htobe64(v);
memcpy(dst, &v, sizeof(v));
-/* $OpenBSD: sha512.c,v 1.36 2023/05/16 07:04:57 jsing Exp $ */
+/* $OpenBSD: sha512.c,v 1.37 2023/05/17 06:37:14 jsing Exp $ */
/* ====================================================================
* Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
*
#if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
-#if !defined(__STRICT_ALIGNMENT) || defined(SHA512_ASM)
-#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
-#endif
+/* Ensure that SHA_LONG64 and uint64_t are equivalent. */
+CTASSERT(sizeof(SHA_LONG64) == sizeof(uint64_t));
#ifdef SHA512_ASM
void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817),
};
-#if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
-# if defined(__x86_64) || defined(__x86_64__)
-# define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
- asm ("bswapq %0" \
- : "=r"(ret) \
- : "0"(ret)); ret; })
-# elif (defined(__i386) || defined(__i386__))
-# define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
- unsigned int hi=p[0],lo=p[1]; \
- asm ("bswapl %0; bswapl %1;" \
- : "=r"(lo),"=r"(hi) \
- : "0"(lo),"1"(hi)); \
- ((SHA_LONG64)hi)<<32|lo; })
-# endif
-#endif
-
-#ifndef PULL64
-#if BYTE_ORDER == BIG_ENDIAN
-#define PULL64(x) (x)
-#else
-#define B(x, j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
-#define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
-#endif
-#endif
-
#define ROTR(x, s) crypto_ror_u64(x, s)
#define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
g = ctx->h[6];
h = ctx->h[7];
- X[0] = PULL64(in[0]);
+ if ((uintptr_t)in % sizeof(SHA_LONG64) == 0) {
+ /* Input is 64 bit aligned. */
+ X[0] = be64toh(in[0]);
+ X[1] = be64toh(in[1]);
+ X[2] = be64toh(in[2]);
+ X[3] = be64toh(in[3]);
+ X[4] = be64toh(in[4]);
+ X[5] = be64toh(in[5]);
+ X[6] = be64toh(in[6]);
+ X[7] = be64toh(in[7]);
+ X[8] = be64toh(in[8]);
+ X[9] = be64toh(in[9]);
+ X[10] = be64toh(in[10]);
+ X[11] = be64toh(in[11]);
+ X[12] = be64toh(in[12]);
+ X[13] = be64toh(in[13]);
+ X[14] = be64toh(in[14]);
+ X[15] = be64toh(in[15]);
+ } else {
+ /* Input is not 64 bit aligned. */
+ X[0] = crypto_load_be64toh(&in[0]);
+ X[1] = crypto_load_be64toh(&in[1]);
+ X[2] = crypto_load_be64toh(&in[2]);
+ X[3] = crypto_load_be64toh(&in[3]);
+ X[4] = crypto_load_be64toh(&in[4]);
+ X[5] = crypto_load_be64toh(&in[5]);
+ X[6] = crypto_load_be64toh(&in[6]);
+ X[7] = crypto_load_be64toh(&in[7]);
+ X[8] = crypto_load_be64toh(&in[8]);
+ X[9] = crypto_load_be64toh(&in[9]);
+ X[10] = crypto_load_be64toh(&in[10]);
+ X[11] = crypto_load_be64toh(&in[11]);
+ X[12] = crypto_load_be64toh(&in[12]);
+ X[13] = crypto_load_be64toh(&in[13]);
+ X[14] = crypto_load_be64toh(&in[14]);
+ X[15] = crypto_load_be64toh(&in[15]);
+ }
+ in += SHA_LBLOCK;
+
ROUND_00_15(0, a, b, c, d, e, f, g, h, X[0]);
- X[1] = PULL64(in[1]);
ROUND_00_15(1, h, a, b, c, d, e, f, g, X[1]);
- X[2] = PULL64(in[2]);
ROUND_00_15(2, g, h, a, b, c, d, e, f, X[2]);
- X[3] = PULL64(in[3]);
ROUND_00_15(3, f, g, h, a, b, c, d, e, X[3]);
- X[4] = PULL64(in[4]);
ROUND_00_15(4, e, f, g, h, a, b, c, d, X[4]);
- X[5] = PULL64(in[5]);
ROUND_00_15(5, d, e, f, g, h, a, b, c, X[5]);
- X[6] = PULL64(in[6]);
ROUND_00_15(6, c, d, e, f, g, h, a, b, X[6]);
- X[7] = PULL64(in[7]);
ROUND_00_15(7, b, c, d, e, f, g, h, a, X[7]);
- X[8] = PULL64(in[8]);
ROUND_00_15(8, a, b, c, d, e, f, g, h, X[8]);
- X[9] = PULL64(in[9]);
ROUND_00_15(9, h, a, b, c, d, e, f, g, X[9]);
- X[10] = PULL64(in[10]);
ROUND_00_15(10, g, h, a, b, c, d, e, f, X[10]);
- X[11] = PULL64(in[11]);
ROUND_00_15(11, f, g, h, a, b, c, d, e, X[11]);
- X[12] = PULL64(in[12]);
ROUND_00_15(12, e, f, g, h, a, b, c, d, X[12]);
- X[13] = PULL64(in[13]);
ROUND_00_15(13, d, e, f, g, h, a, b, c, X[13]);
- X[14] = PULL64(in[14]);
ROUND_00_15(14, c, d, e, f, g, h, a, b, X[14]);
- X[15] = PULL64(in[15]);
ROUND_00_15(15, b, c, d, e, f, g, h, a, X[15]);
for (i = 16; i < 80; i += 16) {
ctx->h[5] += f;
ctx->h[6] += g;
ctx->h[7] += h;
-
- in += SHA_LBLOCK;
}
}
void
SHA512_Transform(SHA512_CTX *c, const unsigned char *data)
{
-#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
- if ((size_t)data % sizeof(c->u.d[0]) != 0) {
- memcpy(c->u.p, data, sizeof(c->u.p));
- data = c->u.p;
- }
-#endif
sha512_block_data_order(c, data, 1);
}
int
SHA512_Update(SHA512_CTX *c, const void *_data, size_t len)
{
- SHA_LONG64 l;
- unsigned char *p = c->u.p;
- const unsigned char *data = (const unsigned char *)_data;
+ const unsigned char *data = _data;
+ unsigned char *p = c->u.p;
+ SHA_LONG64 l;
if (len == 0)
return 1;
}
if (len >= sizeof(c->u)) {
-#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
- if ((size_t)data % sizeof(c->u.d[0]) != 0) {
- while (len >= sizeof(c->u)) {
- memcpy(p, data, sizeof(c->u));
- sha512_block_data_order(c, p, 1);
- len -= sizeof(c->u);
- data += sizeof(c->u);
- }
- } else
-#endif
- {
- sha512_block_data_order(c, data, len/sizeof(c->u));
- data += len;
- len %= sizeof(c->u);
- data -= len;
- }
+ sha512_block_data_order(c, data, len/sizeof(c->u));
+ data += len;
+ len %= sizeof(c->u);
+ data -= len;
}
if (len != 0) {