-/* $OpenBSD: ec_cvt.c,v 1.8 2022/11/26 16:08:52 tb Exp $ */
+/* $OpenBSD: ec_cvt.c,v 1.9 2023/03/08 05:35:51 jsing Exp $ */
/*
* Originally written by Bodo Moeller for the OpenSSL project.
*/
#include <openssl/err.h>
#include "ec_local.h"
-EC_GROUP *
-EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b,
- BN_CTX *ctx)
+static EC_GROUP *
+ec_group_new_curve(const EC_METHOD *method, const BIGNUM *p, const BIGNUM *a,
+ const BIGNUM *b, BN_CTX *ctx)
{
- const EC_METHOD *meth;
- EC_GROUP *ret;
-
-#if defined(OPENSSL_BN_ASM_MONT)
- /*
- * This might appear controversial, but the fact is that generic
- * prime method was observed to deliver better performance even
- * for NIST primes on a range of platforms, e.g.: 60%-15%
- * improvement on IA-64, ~25% on ARM, 30%-90% on P4, 20%-25%
- * in 32-bit build and 35%--12% in 64-bit build on Core2...
- * Coefficients are relative to optimized bn_nist.c for most
- * intensive ECDSA verify and ECDH operations for 192- and 521-
- * bit keys respectively. Choice of these boundary values is
- * arguable, because the dependency of improvement coefficient
- * from key length is not a "monotone" curve. For example while
- * 571-bit result is 23% on ARM, 384-bit one is -1%. But it's
- * generally faster, sometimes "respectfully" faster, sometimes
- * "tolerably" slower... What effectively happens is that loop
- * with bn_mul_add_words is put against bn_mul_mont, and the
- * latter "wins" on short vectors. Correct solution should be
- * implementing dedicated NxN multiplication subroutines for
- * small N. But till it materializes, let's stick to generic
- * prime method...
- * <appro>
- */
- meth = EC_GFp_mont_method();
-#else
- meth = EC_GFp_nist_method();
-#endif
-
- ret = EC_GROUP_new(meth);
- if (ret == NULL)
- return NULL;
-
- if (!EC_GROUP_set_curve(ret, p, a, b, ctx)) {
- unsigned long err;
-
- err = ERR_peek_last_error();
+ EC_GROUP *group;
- if (!(ERR_GET_LIB(err) == ERR_LIB_EC &&
- ((ERR_GET_REASON(err) == EC_R_NOT_A_NIST_PRIME) ||
- (ERR_GET_REASON(err) == EC_R_NOT_A_SUPPORTED_NIST_PRIME)))) {
- /* real error */
+ if ((group = EC_GROUP_new(method)) == NULL)
+ goto err;
- EC_GROUP_clear_free(ret);
- return NULL;
- }
- /* not an actual error, we just cannot use EC_GFp_nist_method */
+ if (!EC_GROUP_set_curve(group, p, a, b, ctx))
+ goto err;
- ERR_clear_error();
+ return group;
- EC_GROUP_clear_free(ret);
- meth = EC_GFp_mont_method();
+ err:
+ EC_GROUP_clear_free(group);
- ret = EC_GROUP_new(meth);
- if (ret == NULL)
- return NULL;
+ return NULL;
+}
- if (!EC_GROUP_set_curve(ret, p, a, b, ctx)) {
- EC_GROUP_clear_free(ret);
- return NULL;
- }
- }
- return ret;
+EC_GROUP *
+EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b,
+ BN_CTX *ctx)
+{
+ return ec_group_new_curve(EC_GFp_mont_method(), p, a, b, ctx);
}
#ifndef OPENSSL_NO_EC2M
EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b,
BN_CTX *ctx)
{
- const EC_METHOD *meth;
- EC_GROUP *ret;
-
- meth = EC_GF2m_simple_method();
-
- ret = EC_GROUP_new(meth);
- if (ret == NULL)
- return NULL;
-
- if (!EC_GROUP_set_curve(ret, p, a, b, ctx)) {
- EC_GROUP_clear_free(ret);
- return NULL;
- }
- return ret;
+ return ec_group_new_curve(EC_GF2m_simple_method(), p, a, b, ctx);
}
#endif