--- /dev/null
+=pod
+
+=head1 NAME
+
+DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked,
+DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key,
+DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt,
+DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
+DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt,
+DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt,
+DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
+DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys,
+DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write - DES encryption
+
+=head1 SYNOPSIS
+
+ #include <openssl/des.h>
+
+ void DES_random_key(DES_cblock *ret);
+
+ int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
+ int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
+ int DES_set_key_checked(const_DES_cblock *key,
+ DES_key_schedule *schedule);
+ void DES_set_key_unchecked(const_DES_cblock *key,
+ DES_key_schedule *schedule);
+
+ void DES_set_odd_parity(DES_cblock *key);
+ int DES_is_weak_key(const_DES_cblock *key);
+
+ void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
+ DES_key_schedule *ks, int enc);
+ void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
+ DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
+ void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
+ DES_key_schedule *ks1, DES_key_schedule *ks2,
+ DES_key_schedule *ks3, int enc);
+
+ void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
+ long length, DES_key_schedule *schedule, DES_cblock *ivec,
+ int enc);
+ void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
+ int numbits, long length, DES_key_schedule *schedule,
+ DES_cblock *ivec, int enc);
+ void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
+ int numbits, long length, DES_key_schedule *schedule,
+ DES_cblock *ivec);
+ void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
+ long length, DES_key_schedule *schedule, DES_cblock *ivec,
+ int enc);
+ void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
+ long length, DES_key_schedule *schedule, DES_cblock *ivec,
+ int *num, int enc);
+ void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
+ long length, DES_key_schedule *schedule, DES_cblock *ivec,
+ int *num);
+
+ void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
+ long length, DES_key_schedule *schedule, DES_cblock *ivec,
+ const_DES_cblock *inw, const_DES_cblock *outw, int enc);
+
+ void DES_ede2_cbc_encrypt(const unsigned char *input,
+ unsigned char *output, long length, DES_key_schedule *ks1,
+ DES_key_schedule *ks2, DES_cblock *ivec, int enc);
+ void DES_ede2_cfb64_encrypt(const unsigned char *in,
+ unsigned char *out, long length, DES_key_schedule *ks1,
+ DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);
+ void DES_ede2_ofb64_encrypt(const unsigned char *in,
+ unsigned char *out, long length, DES_key_schedule *ks1,
+ DES_key_schedule *ks2, DES_cblock *ivec, int *num);
+
+ void DES_ede3_cbc_encrypt(const unsigned char *input,
+ unsigned char *output, long length, DES_key_schedule *ks1,
+ DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
+ int enc);
+ void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
+ long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
+ DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2,
+ int enc);
+ void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
+ long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
+ DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);
+ void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
+ long length, DES_key_schedule *ks1,
+ DES_key_schedule *ks2, DES_key_schedule *ks3,
+ DES_cblock *ivec, int *num);
+
+ DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
+ long length, DES_key_schedule *schedule,
+ const_DES_cblock *ivec);
+ DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
+ long length, int out_count, DES_cblock *seed);
+ void DES_string_to_key(const char *str, DES_cblock *key);
+ void DES_string_to_2keys(const char *str, DES_cblock *key1,
+ DES_cblock *key2);
+
+ char *DES_fcrypt(const char *buf, const char *salt, char *ret);
+ char *DES_crypt(const char *buf, const char *salt);
+
+ int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
+ DES_cblock *iv);
+ int DES_enc_write(int fd, const void *buf, int len,
+ DES_key_schedule *sched, DES_cblock *iv);
+
+=head1 DESCRIPTION
+
+This library contains a fast implementation of the DES encryption
+algorithm.
+
+There are two phases to the use of DES encryption. The first is the
+generation of a I<DES_key_schedule> from a key, the second is the
+actual encryption. A DES key is of type I<DES_cblock>. This type is
+consists of 8 bytes with odd parity. The least significant bit in
+each byte is the parity bit. The key schedule is an expanded form of
+the key; it is used to speed the encryption process.
+
+DES_random_key() generates a random key. The PRNG must be seeded
+prior to using this function (see L<rand(3)|rand(3)>). If the PRNG
+could not generate a secure key, 0 is returned.
+
+Before a DES key can be used, it must be converted into the
+architecture dependent I<DES_key_schedule> via the
+DES_set_key_checked() or DES_set_key_unchecked() function.
+
+DES_set_key_checked() will check that the key passed is of odd parity
+and is not a week or semi-weak key. If the parity is wrong, then -1
+is returned. If the key is a weak key, then -2 is returned. If an
+error is returned, the key schedule is not generated.
+
+DES_set_key() works like
+DES_set_key_checked() if the I<DES_check_key> flag is non-zero,
+otherwise like DES_set_key_unchecked(). These functions are available
+for compatibility; it is recommended to use a function that does not
+depend on a global variable.
+
+DES_set_odd_parity() sets the parity of the passed I<key> to odd.
+
+DES_is_weak_key() returns 1 is the passed key is a weak key, 0 if it
+is ok. The probability that a randomly generated key is weak is
+1/2^52, so it is not really worth checking for them.
+
+The following routines mostly operate on an input and output stream of
+I<DES_cblock>s.
+
+DES_ecb_encrypt() is the basic DES encryption routine that encrypts or
+decrypts a single 8-byte I<DES_cblock> in I<electronic code book>
+(ECB) mode. It always transforms the input data, pointed to by
+I<input>, into the output data, pointed to by the I<output> argument.
+If the I<encrypt> argument is non-zero (DES_ENCRYPT), the I<input>
+(cleartext) is encrypted in to the I<output> (ciphertext) using the
+key_schedule specified by the I<schedule> argument, previously set via
+I<DES_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now
+ciphertext) is decrypted into the I<output> (now cleartext). Input
+and output may overlap. DES_ecb_encrypt() does not return a value.
+
+DES_ecb3_encrypt() encrypts/decrypts the I<input> block by using
+three-key Triple-DES encryption in ECB mode. This involves encrypting
+the input with I<ks1>, decrypting with the key schedule I<ks2>, and
+then encrypting with I<ks3>. This routine greatly reduces the chances
+of brute force breaking of DES and has the advantage of if I<ks1>,
+I<ks2> and I<ks3> are the same, it is equivalent to just encryption
+using ECB mode and I<ks1> as the key.
+
+The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES
+encryption by using I<ks1> for the final encryption.
+
+DES_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining>
+(CBC) mode of DES. If the I<encrypt> argument is non-zero, the
+routine cipher-block-chain encrypts the cleartext data pointed to by
+the I<input> argument into the ciphertext pointed to by the I<output>
+argument, using the key schedule provided by the I<schedule> argument,
+and initialization vector provided by the I<ivec> argument. If the
+I<length> argument is not an integral multiple of eight bytes, the
+last block is copied to a temporary area and zero filled. The output
+is always an integral multiple of eight bytes.
+
+DES_xcbc_encrypt() is RSA's DESX mode of DES. It uses I<inw> and
+I<outw> to 'whiten' the encryption. I<inw> and I<outw> are secret
+(unlike the iv) and are as such, part of the key. So the key is sort
+of 24 bytes. This is much better than CBC DES.
+
+DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with
+three keys. This means that each DES operation inside the CBC mode is
+really an C<C=E(ks3,D(ks2,E(ks1,M)))>. This mode is used by SSL.
+
+The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by
+reusing I<ks1> for the final encryption. C<C=E(ks1,D(ks2,E(ks1,M)))>.
+This form of Triple-DES is used by the RSAREF library.
+
+DES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block
+chaining mode used by Kerberos v4. Its parameters are the same as
+DES_ncbc_encrypt().
+
+DES_cfb_encrypt() encrypt/decrypts using cipher feedback mode. This
+method takes an array of characters as input and outputs and array of
+characters. It does not require any padding to 8 character groups.
+Note: the I<ivec> variable is changed and the new changed value needs to
+be passed to the next call to this function. Since this function runs
+a complete DES ECB encryption per I<numbits>, this function is only
+suggested for use when sending small numbers of characters.
+
+DES_cfb64_encrypt()
+implements CFB mode of DES with 64bit feedback. Why is this
+useful you ask? Because this routine will allow you to encrypt an
+arbitrary number of bytes, no 8 byte padding. Each call to this
+routine will encrypt the input bytes to output and then update ivec
+and num. num contains 'how far' we are though ivec. If this does
+not make much sense, read more about cfb mode of DES :-).
+
+DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as
+DES_cfb64_encrypt() except that Triple-DES is used.
+
+DES_ofb_encrypt() encrypts using output feedback mode. This method
+takes an array of characters as input and outputs and array of
+characters. It does not require any padding to 8 character groups.
+Note: the I<ivec> variable is changed and the new changed value needs to
+be passed to the next call to this function. Since this function runs
+a complete DES ECB encryption per numbits, this function is only
+suggested for use when sending small numbers of characters.
+
+DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output
+Feed Back mode.
+
+DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as
+DES_ofb64_encrypt(), using Triple-DES.
+
+The following functions are included in the DES library for
+compatibility with the MIT Kerberos library.
+
+DES_cbc_cksum() produces an 8 byte checksum based on the input stream
+(via CBC encryption). The last 4 bytes of the checksum are returned
+and the complete 8 bytes are placed in I<output>. This function is
+used by Kerberos v4. Other applications should use
+L<EVP_DigestInit(3)|EVP_DigestInit(3)> etc. instead.
+
+DES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte
+checksum from the input bytes. The algorithm can be iterated over the
+input, depending on I<out_count>, 1, 2, 3 or 4 times. If I<output> is
+non-NULL, the 8 bytes generated by each pass are written into
+I<output>.
+
+The following are DES-based transformations:
+
+DES_fcrypt() is a fast version of the Unix crypt(3) function. This
+version takes only a small amount of space relative to other fast
+crypt() implementations. This is different to the normal crypt in
+that the third parameter is the buffer that the return value is
+written into. It needs to be at least 14 bytes long. This function
+is thread safe, unlike the normal crypt.
+
+DES_crypt() is a faster replacement for the normal system crypt().
+This function calls DES_fcrypt() with a static array passed as the
+third parameter. This emulates the normal non-thread safe semantics
+of crypt(3).
+
+DES_enc_write() writes I<len> bytes to file descriptor I<fd> from
+buffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default)
+using I<sched> for the key and I<iv> as a starting vector. The actual
+data send down I<fd> consists of 4 bytes (in network byte order)
+containing the length of the following encrypted data. The encrypted
+data then follows, padded with random data out to a multiple of 8
+bytes.
+
+DES_enc_read() is used to read I<len> bytes from file descriptor
+I<fd> into buffer I<buf>. The data being read from I<fd> is assumed to
+have come from DES_enc_write() and is decrypted using I<sched> for
+the key schedule and I<iv> for the initial vector.
+
+B<Warning:> The data format used by DES_enc_write() and DES_enc_read()
+has a cryptographic weakness: When asked to write more than MAXWRITE
+bytes, DES_enc_write() will split the data into several chunks that
+are all encrypted using the same IV. So don't use these functions
+unless you are sure you know what you do (in which case you might not
+want to use them anyway). They cannot handle non-blocking sockets.
+DES_enc_read() uses an internal state and thus cannot be used on
+multiple files.
+
+I<DES_rw_mode> is used to specify the encryption mode to use with
+DES_enc_read() and DES_end_write(). If set to I<DES_PCBC_MODE> (the
+default), DES_pcbc_encrypt is used. If set to I<DES_CBC_MODE>
+DES_cbc_encrypt is used.
+
+=head1 NOTES
+
+Single-key DES is insecure due to its short key size. ECB mode is
+not suitable for most applications; see L<des_modes(7)|des_modes(7)>.
+
+The L<evp(3)|evp(3)> library provides higher-level encryption functions.
+
+=head1 BUGS
+
+DES_3cbc_encrypt() is flawed and must not be used in applications.
+
+DES_cbc_encrypt() does not modify B<ivec>; use DES_ncbc_encrypt()
+instead.
+
+DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits.
+What this means is that if you set numbits to 12, and length to 2, the
+first 12 bits will come from the 1st input byte and the low half of
+the second input byte. The second 12 bits will have the low 8 bits
+taken from the 3rd input byte and the top 4 bits taken from the 4th
+input byte. The same holds for output. This function has been
+implemented this way because most people will be using a multiple of 8
+and because once you get into pulling bytes input bytes apart things
+get ugly!
+
+DES_string_to_key() is available for backward compatibility with the
+MIT library. New applications should use a cryptographic hash function.
+The same applies for DES_string_to_2key().
+
+=head1 CONFORMING TO
+
+ANSI X3.106
+
+The B<des> library was written to be source code compatible with
+the MIT Kerberos library.
+
+=head1 SEE ALSO
+
+crypt(3), L<des_modes(7)|des_modes(7)>, L<evp(3)|evp(3)>, L<rand(3)|rand(3)>
+
+=head1 HISTORY
+
+In OpenSSL 0.9.7, all des_ functions were renamed to DES_ to avoid
+clashes with older versions of libdes. Compatibility des_ functions
+are provided for a short while, as well as crypt().
+Declarations for these are in <openssl/des_old.h>. There is no DES_
+variant for des_random_seed().
+This will happen to other functions
+as well if they are deemed redundant (des_random_seed() just calls
+RAND_seed() and is present for backward compatibility only), buggy or
+already scheduled for removal.
+
+des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(),
+des_is_weak_key(), des_key_sched(), des_pcbc_encrypt(),
+des_quad_cksum(), des_random_key() and des_string_to_key()
+are available in the MIT Kerberos library;
+des_check_key_parity(), des_fixup_key_parity() and des_is_weak_key()
+are available in newer versions of that library.
+
+des_set_key_checked() and des_set_key_unchecked() were added in
+OpenSSL 0.9.5.
+
+des_generate_random_block(), des_init_random_number_generator(),
+des_new_random_key(), des_set_random_generator_seed() and
+des_set_sequence_number() and des_rand_data() are used in newer
+versions of Kerberos but are not implemented here.
+
+des_random_key() generated cryptographically weak random data in
+SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
+MIT library.
+
+=head1 AUTHOR
+
+Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
+(http://www.openssl.org).
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+err - error codes
+
+=head1 SYNOPSIS
+
+ #include <openssl/err.h>
+
+ unsigned long ERR_get_error(void);
+ unsigned long ERR_peek_error(void);
+ unsigned long ERR_get_error_line(const char **file, int *line);
+ unsigned long ERR_peek_error_line(const char **file, int *line);
+ unsigned long ERR_get_error_line_data(const char **file, int *line,
+ const char **data, int *flags);
+ unsigned long ERR_peek_error_line_data(const char **file, int *line,
+ const char **data, int *flags);
+
+ int ERR_GET_LIB(unsigned long e);
+ int ERR_GET_FUNC(unsigned long e);
+ int ERR_GET_REASON(unsigned long e);
+
+ void ERR_clear_error(void);
+
+ char *ERR_error_string(unsigned long e, char *buf);
+ const char *ERR_lib_error_string(unsigned long e);
+ const char *ERR_func_error_string(unsigned long e);
+ const char *ERR_reason_error_string(unsigned long e);
+
+ void ERR_print_errors(BIO *bp);
+ void ERR_print_errors_fp(FILE *fp);
+
+ void ERR_load_crypto_strings(void);
+ void ERR_free_strings(void);
+
+ void ERR_remove_state(unsigned long pid);
+
+ void ERR_put_error(int lib, int func, int reason, const char *file,
+ int line);
+ void ERR_add_error_data(int num, ...);
+
+ void ERR_load_strings(int lib,ERR_STRING_DATA str[]);
+ unsigned long ERR_PACK(int lib, int func, int reason);
+ int ERR_get_next_error_library(void);
+
+=head1 DESCRIPTION
+
+When a call to the OpenSSL library fails, this is usually signalled
+by the return value, and an error code is stored in an error queue
+associated with the current thread. The B<err> library provides
+functions to obtain these error codes and textual error messages.
+
+The L<ERR_get_error(3)|ERR_get_error(3)> manpage describes how to
+access error codes.
+
+Error codes contain information about where the error occurred, and
+what went wrong. L<ERR_GET_LIB(3)|ERR_GET_LIB(3)> describes how to
+extract this information. A method to obtain human-readable error
+messages is described in L<ERR_error_string(3)|ERR_error_string(3)>.
+
+L<ERR_clear_error(3)|ERR_clear_error(3)> can be used to clear the
+error queue.
+
+Note that L<ERR_remove_state(3)|ERR_remove_state(3)> should be used to
+avoid memory leaks when threads are terminated.
+
+=head1 ADDING NEW ERROR CODES TO OPENSSL
+
+See L<ERR_put_error(3)> if you want to record error codes in the
+OpenSSL error system from within your application.
+
+The remainder of this section is of interest only if you want to add
+new error codes to OpenSSL or add error codes from external libraries.
+
+=head2 Reporting errors
+
+Each sub-library has a specific macro XXXerr() that is used to report
+errors. Its first argument is a function code B<XXX_F_...>, the second
+argument is a reason code B<XXX_R_...>. Function codes are derived
+from the function names; reason codes consist of textual error
+descriptions. For example, the function ssl23_read() reports a
+"handshake failure" as follows:
+
+ SSLerr(SSL_F_SSL23_READ, SSL_R_SSL_HANDSHAKE_FAILURE);
+
+Function and reason codes should consist of upper case characters,
+numbers and underscores only. The error file generation script translates
+function codes into function names by looking in the header files
+for an appropriate function name, if none is found it just uses
+the capitalized form such as "SSL23_READ" in the above example.
+
+The trailing section of a reason code (after the "_R_") is translated
+into lower case and underscores changed to spaces.
+
+When you are using new function or reason codes, run B<make errors>.
+The necessary B<#define>s will then automatically be added to the
+sub-library's header file.
+
+Although a library will normally report errors using its own specific
+XXXerr macro, another library's macro can be used. This is normally
+only done when a library wants to include ASN1 code which must use
+the ASN1err() macro.
+
+=head2 Adding new libraries
+
+When adding a new sub-library to OpenSSL, assign it a library number
+B<ERR_LIB_XXX>, define a macro XXXerr() (both in B<err.h>), add its
+name to B<ERR_str_libraries[]> (in B<crypto/err/err.c>), and add
+C<ERR_load_XXX_strings()> to the ERR_load_crypto_strings() function
+(in B<crypto/err/err_all.c>). Finally, add an entry
+
+ L XXX xxx.h xxx_err.c
+
+to B<crypto/err/openssl.ec>, and add B<xxx_err.c> to the Makefile.
+Running B<make errors> will then generate a file B<xxx_err.c>, and
+add all error codes used in the library to B<xxx.h>.
+
+Additionally the library include file must have a certain form.
+Typically it will initially look like this:
+
+ #ifndef HEADER_XXX_H
+ #define HEADER_XXX_H
+
+ #ifdef __cplusplus
+ extern "C" {
+ #endif
+
+ /* Include files */
+
+ #include <openssl/bio.h>
+ #include <openssl/x509.h>
+
+ /* Macros, structures and function prototypes */
+
+
+ /* BEGIN ERROR CODES */
+
+The B<BEGIN ERROR CODES> sequence is used by the error code
+generation script as the point to place new error codes, any text
+after this point will be overwritten when B<make errors> is run.
+The closing #endif etc will be automatically added by the script.
+
+The generated C error code file B<xxx_err.c> will load the header
+files B<stdio.h>, B<openssl/err.h> and B<openssl/xxx.h> so the
+header file must load any additional header files containing any
+definitions it uses.
+
+=head1 USING ERROR CODES IN EXTERNAL LIBRARIES
+
+It is also possible to use OpenSSL's error code scheme in external
+libraries. The library needs to load its own codes and call the OpenSSL
+error code insertion script B<mkerr.pl> explicitly to add codes to
+the header file and generate the C error code file. This will normally
+be done if the external library needs to generate new ASN1 structures
+but it can also be used to add more general purpose error code handling.
+
+TBA more details
+
+=head1 INTERNALS
+
+The error queues are stored in a hash table with one B<ERR_STATE>
+entry for each pid. ERR_get_state() returns the current thread's
+B<ERR_STATE>. An B<ERR_STATE> can hold up to B<ERR_NUM_ERRORS> error
+codes. When more error codes are added, the old ones are overwritten,
+on the assumption that the most recent errors are most important.
+
+Error strings are also stored in hash table. The hash tables can
+be obtained by calling ERR_get_err_state_table(void) and
+ERR_get_string_table(void) respectively.
+
+=head1 SEE ALSO
+
+L<CRYPTO_set_id_callback(3)|CRYPTO_set_id_callback(3)>,
+L<CRYPTO_set_locking_callback(3)|CRYPTO_set_locking_callback(3)>,
+L<ERR_get_error(3)|ERR_get_error(3)>,
+L<ERR_GET_LIB(3)|ERR_GET_LIB(3)>,
+L<ERR_clear_error(3)|ERR_clear_error(3)>,
+L<ERR_error_string(3)|ERR_error_string(3)>,
+L<ERR_print_errors(3)|ERR_print_errors(3)>,
+L<ERR_load_crypto_strings(3)|ERR_load_crypto_strings(3)>,
+L<ERR_remove_state(3)|ERR_remove_state(3)>,
+L<ERR_put_error(3)|ERR_put_error(3)>,
+L<ERR_load_strings(3)|ERR_load_strings(3)>,
+L<SSL_get_error(3)|SSL_get_error(3)>
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+HMAC, HMAC_Init, HMAC_Update, HMAC_Final, HMAC_cleanup - HMAC message
+authentication code
+
+=head1 SYNOPSIS
+
+ #include <openssl/hmac.h>
+
+ unsigned char *HMAC(const EVP_MD *evp_md, const void *key,
+ int key_len, const unsigned char *d, int n,
+ unsigned char *md, unsigned int *md_len);
+
+ void HMAC_CTX_init(HMAC_CTX *ctx);
+
+ int HMAC_Init(HMAC_CTX *ctx, const void *key, int key_len,
+ const EVP_MD *md);
+ int HMAC_Init_ex(HMAC_CTX *ctx, const void *key, int key_len,
+ const EVP_MD *md, ENGINE *impl);
+ int HMAC_Update(HMAC_CTX *ctx, const unsigned char *data, int len);
+ int HMAC_Final(HMAC_CTX *ctx, unsigned char *md, unsigned int *len);
+
+ void HMAC_CTX_cleanup(HMAC_CTX *ctx);
+ void HMAC_cleanup(HMAC_CTX *ctx);
+
+=head1 DESCRIPTION
+
+HMAC is a MAC (message authentication code), i.e. a keyed hash
+function used for message authentication, which is based on a hash
+function.
+
+HMAC() computes the message authentication code of the B<n> bytes at
+B<d> using the hash function B<evp_md> and the key B<key> which is
+B<key_len> bytes long.
+
+It places the result in B<md> (which must have space for the output of
+the hash function, which is no more than B<EVP_MAX_MD_SIZE> bytes).
+If B<md> is NULL, the digest is placed in a static array. The size of
+the output is placed in B<md_len>, unless it is B<NULL>.
+
+B<evp_md> can be EVP_sha1(), EVP_ripemd160() etc.
+
+HMAC_CTX_init() initialises a B<HMAC_CTX> before first use. It must be
+called.
+
+HMAC_CTX_cleanup() erases the key and other data from the B<HMAC_CTX>
+and releases any associated resources. It must be called when an
+B<HMAC_CTX> is no longer required.
+
+HMAC_cleanup() is an alias for HMAC_CTX_cleanup() included for back
+compatibility with 0.9.6b, it is deprecated.
+
+The following functions may be used if the message is not completely
+stored in memory:
+
+HMAC_Init() initializes a B<HMAC_CTX> structure to use the hash
+function B<evp_md> and the key B<key> which is B<key_len> bytes
+long. It is deprecated and only included for backward compatibility
+with OpenSSL 0.9.6b.
+
+HMAC_Init_ex() initializes or reuses a B<HMAC_CTX> structure to use
+the function B<evp_md> and key B<key>. Either can be NULL, in which
+case the existing one will be reused. HMAC_CTX_init() must have been
+called before the first use of an B<HMAC_CTX> in this
+function. B<N.B. HMAC_Init() had this undocumented behaviour in
+previous versions of OpenSSL - failure to switch to HMAC_Init_ex() in
+programs that expect it will cause them to stop working>.
+
+HMAC_Update() can be called repeatedly with chunks of the message to
+be authenticated (B<len> bytes at B<data>).
+
+HMAC_Final() places the message authentication code in B<md>, which
+must have space for the hash function output.
+
+=head1 RETURN VALUES
+
+HMAC() returns a pointer to the message authentication code or NULL if
+an error occurred.
+
+HMAC_Init_ex(), HMAC_Update() and HMAC_Final() return 1 for success or 0 if
+an error occurred.
+
+HMAC_CTX_init() and HMAC_CTX_cleanup() do not return values.
+
+=head1 CONFORMING TO
+
+RFC 2104
+
+=head1 SEE ALSO
+
+L<sha(3)|sha(3)>, L<evp(3)|evp(3)>
+
+=head1 HISTORY
+
+HMAC(), HMAC_Init(), HMAC_Update(), HMAC_Final() and HMAC_cleanup()
+are available since SSLeay 0.9.0.
+
+HMAC_CTX_init(), HMAC_Init_ex() and HMAC_CTX_cleanup() are available
+since OpenSSL 0.9.7.
+
+HMAC_Init_ex(), HMAC_Update() and HMAC_Final() did not return values in
+versions of OpenSSL before 1.0.0.
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+MD2, MD4, MD5, MD2_Init, MD2_Update, MD2_Final, MD4_Init, MD4_Update,
+MD4_Final, MD5_Init, MD5_Update, MD5_Final - MD2, MD4, and MD5 hash functions
+
+=head1 SYNOPSIS
+
+ #include <openssl/md2.h>
+
+ unsigned char *MD2(const unsigned char *d, unsigned long n,
+ unsigned char *md);
+
+ int MD2_Init(MD2_CTX *c);
+ int MD2_Update(MD2_CTX *c, const unsigned char *data,
+ unsigned long len);
+ int MD2_Final(unsigned char *md, MD2_CTX *c);
+
+
+ #include <openssl/md4.h>
+
+ unsigned char *MD4(const unsigned char *d, unsigned long n,
+ unsigned char *md);
+
+ int MD4_Init(MD4_CTX *c);
+ int MD4_Update(MD4_CTX *c, const void *data,
+ unsigned long len);
+ int MD4_Final(unsigned char *md, MD4_CTX *c);
+
+
+ #include <openssl/md5.h>
+
+ unsigned char *MD5(const unsigned char *d, unsigned long n,
+ unsigned char *md);
+
+ int MD5_Init(MD5_CTX *c);
+ int MD5_Update(MD5_CTX *c, const void *data,
+ unsigned long len);
+ int MD5_Final(unsigned char *md, MD5_CTX *c);
+
+=head1 DESCRIPTION
+
+MD2, MD4, and MD5 are cryptographic hash functions with a 128 bit output.
+
+MD2(), MD4(), and MD5() compute the MD2, MD4, and MD5 message digest
+of the B<n> bytes at B<d> and place it in B<md> (which must have space
+for MD2_DIGEST_LENGTH == MD4_DIGEST_LENGTH == MD5_DIGEST_LENGTH == 16
+bytes of output). If B<md> is NULL, the digest is placed in a static
+array.
+
+The following functions may be used if the message is not completely
+stored in memory:
+
+MD2_Init() initializes a B<MD2_CTX> structure.
+
+MD2_Update() can be called repeatedly with chunks of the message to
+be hashed (B<len> bytes at B<data>).
+
+MD2_Final() places the message digest in B<md>, which must have space
+for MD2_DIGEST_LENGTH == 16 bytes of output, and erases the B<MD2_CTX>.
+
+MD4_Init(), MD4_Update(), MD4_Final(), MD5_Init(), MD5_Update(), and
+MD5_Final() are analogous using an B<MD4_CTX> and B<MD5_CTX> structure.
+
+Applications should use the higher level functions
+L<EVP_DigestInit(3)|EVP_DigestInit(3)>
+etc. instead of calling the hash functions directly.
+
+=head1 NOTE
+
+MD2, MD4, and MD5 are recommended only for compatibility with existing
+applications. In new applications, SHA-1 or RIPEMD-160 should be
+preferred.
+
+=head1 RETURN VALUES
+
+MD2(), MD4(), and MD5() return pointers to the hash value.
+
+MD2_Init(), MD2_Update(), MD2_Final(), MD4_Init(), MD4_Update(),
+MD4_Final(), MD5_Init(), MD5_Update(), and MD5_Final() return 1 for
+success, 0 otherwise.
+
+=head1 CONFORMING TO
+
+RFC 1319, RFC 1320, RFC 1321
+
+=head1 SEE ALSO
+
+L<sha(3)|sha(3)>, L<ripemd(3)|ripemd(3)>, L<EVP_DigestInit(3)|EVP_DigestInit(3)>
+
+=head1 HISTORY
+
+MD2(), MD2_Init(), MD2_Update() MD2_Final(), MD5(), MD5_Init(),
+MD5_Update() and MD5_Final() are available in all versions of SSLeay
+and OpenSSL.
+
+MD4(), MD4_Init(), and MD4_Update() are available in OpenSSL 0.9.6 and
+above.
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+PEM, PEM_read_bio_PrivateKey, PEM_read_PrivateKey, PEM_write_bio_PrivateKey, PEM_write_PrivateKey, PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey, PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid, PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY, PEM_write_PUBKEY, PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey, PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey, PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey, PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY, PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey, PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey, PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY, PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams, PEM_read_DSAparams, PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams, PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams, PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509, PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX, PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ, PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW, PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL, PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7, PEM_write_bio_PKCS7, PEM_write_PKCS7, PEM_read_bio_NETSCAPE_CERT_SEQUENCE, PEM_read_NETSCAPE_CERT_SEQUENCE, PEM_write_bio_NETSCAPE_CERT_SEQUENCE, PEM_write_NETSCAPE_CERT_SEQUENCE - PEM routines
+
+=head1 SYNOPSIS
+
+ #include <openssl/pem.h>
+
+ EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
+ pem_password_cb *cb, void *u);
+
+ EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
+ unsigned char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
+ unsigned char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
+ char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
+ char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
+ char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
+ char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
+ pem_password_cb *cb, void *u);
+
+ EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
+ int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
+
+ RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
+ pem_password_cb *cb, void *u);
+
+ RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
+ unsigned char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
+ unsigned char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
+ pem_password_cb *cb, void *u);
+
+ RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
+
+ int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
+
+ RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
+ pem_password_cb *cb, void *u);
+
+ RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
+
+ int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
+
+ DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
+ pem_password_cb *cb, void *u);
+
+ DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
+ unsigned char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
+ unsigned char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
+ pem_password_cb *cb, void *u);
+
+ DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
+
+ int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
+
+ DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
+
+ DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
+
+ int PEM_write_DSAparams(FILE *fp, DSA *x);
+
+ DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
+
+ DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_DHparams(BIO *bp, DH *x);
+
+ int PEM_write_DHparams(FILE *fp, DH *x);
+
+ X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
+
+ X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_X509(BIO *bp, X509 *x);
+
+ int PEM_write_X509(FILE *fp, X509 *x);
+
+ X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
+
+ X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
+
+ int PEM_write_X509_AUX(FILE *fp, X509 *x);
+
+ X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
+ pem_password_cb *cb, void *u);
+
+ X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
+
+ int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
+
+ int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
+
+ int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
+
+ X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
+ pem_password_cb *cb, void *u);
+ X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
+ pem_password_cb *cb, void *u);
+ int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
+ int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
+
+ PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
+
+ PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
+
+ int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
+
+ NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp,
+ NETSCAPE_CERT_SEQUENCE **x,
+ pem_password_cb *cb, void *u);
+
+ NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp,
+ NETSCAPE_CERT_SEQUENCE **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);
+
+ int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);
+
+=head1 DESCRIPTION
+
+The PEM functions read or write structures in PEM format. In
+this sense PEM format is simply base64 encoded data surrounded
+by header lines.
+
+For more details about the meaning of arguments see the
+B<PEM FUNCTION ARGUMENTS> section.
+
+Each operation has four functions associated with it. For
+clarity the term "B<foobar> functions" will be used to collectively
+refer to the PEM_read_bio_foobar(), PEM_read_foobar(),
+PEM_write_bio_foobar() and PEM_write_foobar() functions.
+
+The B<PrivateKey> functions read or write a private key in
+PEM format using an EVP_PKEY structure. The write routines use
+"traditional" private key format and can handle both RSA and DSA
+private keys. The read functions can additionally transparently
+handle PKCS#8 format encrypted and unencrypted keys too.
+
+PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey()
+write a private key in an EVP_PKEY structure in PKCS#8
+EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based encryption
+algorithms. The B<cipher> argument specifies the encryption algorithm to
+use: unlike all other PEM routines the encryption is applied at the
+PKCS#8 level and not in the PEM headers. If B<cipher> is NULL then no
+encryption is used and a PKCS#8 PrivateKeyInfo structure is used instead.
+
+PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
+also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however
+it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm
+to use is specified in the B<nid> parameter and should be the NID of the
+corresponding OBJECT IDENTIFIER (see NOTES section).
+
+The B<PUBKEY> functions process a public key using an EVP_PKEY
+structure. The public key is encoded as a SubjectPublicKeyInfo
+structure.
+
+The B<RSAPrivateKey> functions process an RSA private key using an
+RSA structure. It handles the same formats as the B<PrivateKey>
+functions but an error occurs if the private key is not RSA.
+
+The B<RSAPublicKey> functions process an RSA public key using an
+RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey
+structure.
+
+The B<RSA_PUBKEY> functions also process an RSA public key using
+an RSA structure. However the public key is encoded using a
+SubjectPublicKeyInfo structure and an error occurs if the public
+key is not RSA.
+
+The B<DSAPrivateKey> functions process a DSA private key using a
+DSA structure. It handles the same formats as the B<PrivateKey>
+functions but an error occurs if the private key is not DSA.
+
+The B<DSA_PUBKEY> functions process a DSA public key using
+a DSA structure. The public key is encoded using a
+SubjectPublicKeyInfo structure and an error occurs if the public
+key is not DSA.
+
+The B<DSAparams> functions process DSA parameters using a DSA
+structure. The parameters are encoded using a foobar structure.
+
+The B<DHparams> functions process DH parameters using a DH
+structure. The parameters are encoded using a PKCS#3 DHparameter
+structure.
+
+The B<X509> functions process an X509 certificate using an X509
+structure. They will also process a trusted X509 certificate but
+any trust settings are discarded.
+
+The B<X509_AUX> functions process a trusted X509 certificate using
+an X509 structure.
+
+The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10
+certificate request using an X509_REQ structure. The B<X509_REQ>
+write functions use B<CERTIFICATE REQUEST> in the header whereas
+the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST>
+(as required by some CAs). The B<X509_REQ> read functions will
+handle either form so there are no B<X509_REQ_NEW> read functions.
+
+The B<X509_CRL> functions process an X509 CRL using an X509_CRL
+structure.
+
+The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7
+structure.
+
+The B<NETSCAPE_CERT_SEQUENCE> functions process a Netscape Certificate
+Sequence using a NETSCAPE_CERT_SEQUENCE structure.
+
+=head1 PEM FUNCTION ARGUMENTS
+
+The PEM functions have many common arguments.
+
+The B<bp> BIO parameter (if present) specifies the BIO to read from
+or write to.
+
+The B<fp> FILE parameter (if present) specifies the FILE pointer to
+read from or write to.
+
+The PEM read functions all take an argument B<TYPE **x> and return
+a B<TYPE *> pointer. Where B<TYPE> is whatever structure the function
+uses. If B<x> is NULL then the parameter is ignored. If B<x> is not
+NULL but B<*x> is NULL then the structure returned will be written
+to B<*x>. If neither B<x> nor B<*x> is NULL then an attempt is made
+to reuse the structure at B<*x> (but see BUGS and EXAMPLES sections).
+Irrespective of the value of B<x> a pointer to the structure is always
+returned (or NULL if an error occurred).
+
+The PEM functions which write private keys take an B<enc> parameter
+which specifies the encryption algorithm to use, encryption is done
+at the PEM level. If this parameter is set to NULL then the private
+key is written in unencrypted form.
+
+The B<cb> argument is the callback to use when querying for the pass
+phrase used for encrypted PEM structures (normally only private keys).
+
+For the PEM write routines if the B<kstr> parameter is not NULL then
+B<klen> bytes at B<kstr> are used as the passphrase and B<cb> is
+ignored.
+
+If the B<cb> parameters is set to NULL and the B<u> parameter is not
+NULL then the B<u> parameter is interpreted as a null terminated string
+to use as the passphrase. If both B<cb> and B<u> are NULL then the
+default callback routine is used which will typically prompt for the
+passphrase on the current terminal with echoing turned off.
+
+The default passphrase callback is sometimes inappropriate (for example
+in a GUI application) so an alternative can be supplied. The callback
+routine has the following form:
+
+ int cb(char *buf, int size, int rwflag, void *u);
+
+B<buf> is the buffer to write the passphrase to. B<size> is the maximum
+length of the passphrase (i.e. the size of buf). B<rwflag> is a flag
+which is set to 0 when reading and 1 when writing. A typical routine
+will ask the user to verify the passphrase (for example by prompting
+for it twice) if B<rwflag> is 1. The B<u> parameter has the same
+value as the B<u> parameter passed to the PEM routine. It allows
+arbitrary data to be passed to the callback by the application
+(for example a window handle in a GUI application). The callback
+B<must> return the number of characters in the passphrase or 0 if
+an error occurred.
+
+=head1 EXAMPLES
+
+Although the PEM routines take several arguments in almost all applications
+most of them are set to 0 or NULL.
+
+Read a certificate in PEM format from a BIO:
+
+ X509 *x;
+ x = PEM_read_bio_X509(bp, NULL, 0, NULL);
+ if (x == NULL)
+ {
+ /* Error */
+ }
+
+Alternative method:
+
+ X509 *x = NULL;
+ if (!PEM_read_bio_X509(bp, &x, 0, NULL))
+ {
+ /* Error */
+ }
+
+Write a certificate to a BIO:
+
+ if (!PEM_write_bio_X509(bp, x))
+ {
+ /* Error */
+ }
+
+Write an unencrypted private key to a FILE pointer:
+
+ if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
+ {
+ /* Error */
+ }
+
+Write a private key (using traditional format) to a BIO using
+triple DES encryption, the pass phrase is prompted for:
+
+ if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
+ {
+ /* Error */
+ }
+
+Write a private key (using PKCS#8 format) to a BIO using triple
+DES encryption, using the pass phrase "hello":
+
+ if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello"))
+ {
+ /* Error */
+ }
+
+Read a private key from a BIO using the pass phrase "hello":
+
+ key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello");
+ if (key == NULL)
+ {
+ /* Error */
+ }
+
+Read a private key from a BIO using a pass phrase callback:
+
+ key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
+ if (key == NULL)
+ {
+ /* Error */
+ }
+
+Skeleton pass phrase callback:
+
+ int pass_cb(char *buf, int size, int rwflag, void *u);
+ {
+ int len;
+ char *tmp;
+ /* We'd probably do something else if 'rwflag' is 1 */
+ printf("Enter pass phrase for \"%s\"\n", u);
+
+ /* get pass phrase, length 'len' into 'tmp' */
+ tmp = "hello";
+ len = strlen(tmp);
+
+ if (len <= 0) return 0;
+ /* if too long, truncate */
+ if (len > size) len = size;
+ memcpy(buf, tmp, len);
+ return len;
+ }
+
+=head1 NOTES
+
+The old B<PrivateKey> write routines are retained for compatibility.
+New applications should write private keys using the
+PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
+because they are more secure (they use an iteration count of 2048 whereas
+the traditional routines use a count of 1) unless compatibility with older
+versions of OpenSSL is important.
+
+The B<PrivateKey> read routines can be used in all applications because
+they handle all formats transparently.
+
+A frequent cause of problems is attempting to use the PEM routines like
+this:
+
+ X509 *x;
+ PEM_read_bio_X509(bp, &x, 0, NULL);
+
+this is a bug because an attempt will be made to reuse the data at B<x>
+which is an uninitialised pointer.
+
+=head1 PEM ENCRYPTION FORMAT
+
+This old B<PrivateKey> routines use a non standard technique for encryption.
+
+The private key (or other data) takes the following form:
+
+ -----BEGIN RSA PRIVATE KEY-----
+ Proc-Type: 4,ENCRYPTED
+ DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
+
+ ...base64 encoded data...
+ -----END RSA PRIVATE KEY-----
+
+The line beginning DEK-Info contains two comma separated pieces of information:
+the encryption algorithm name as used by EVP_get_cipherbyname() and an 8
+byte B<salt> encoded as a set of hexadecimal digits.
+
+After this is the base64 encoded encrypted data.
+
+The encryption key is determined using EVP_bytestokey(), using B<salt> and an
+iteration count of 1. The IV used is the value of B<salt> and *not* the IV
+returned by EVP_bytestokey().
+
+=head1 BUGS
+
+The PEM read routines in some versions of OpenSSL will not correctly reuse
+an existing structure. Therefore the following:
+
+ PEM_read_bio_X509(bp, &x, 0, NULL);
+
+where B<x> already contains a valid certificate, may not work, whereas:
+
+ X509_free(x);
+ x = PEM_read_bio_X509(bp, NULL, 0, NULL);
+
+is guaranteed to work.
+
+=head1 RETURN CODES
+
+The read routines return either a pointer to the structure read or NULL
+if an error occurred.
+
+The write routines return 1 for success or 0 for failure.
--- /dev/null
+=pod
+
+=head1 NAME
+
+rand - pseudo-random number generator
+
+=head1 SYNOPSIS
+
+ #include <openssl/rand.h>
+
+ int RAND_set_rand_engine(ENGINE *engine);
+
+ int RAND_bytes(unsigned char *buf, int num);
+ int RAND_pseudo_bytes(unsigned char *buf, int num);
+
+ void RAND_seed(const void *buf, int num);
+ void RAND_add(const void *buf, int num, int entropy);
+ int RAND_status(void);
+
+ int RAND_load_file(const char *file, long max_bytes);
+ int RAND_write_file(const char *file);
+ const char *RAND_file_name(char *file, size_t num);
+
+ int RAND_egd(const char *path);
+
+ void RAND_set_rand_method(const RAND_METHOD *meth);
+ const RAND_METHOD *RAND_get_rand_method(void);
+ RAND_METHOD *RAND_SSLeay(void);
+
+ void RAND_cleanup(void);
+
+=head1 DESCRIPTION
+
+Since the introduction of the ENGINE API, the recommended way of controlling
+default implementations is by using the ENGINE API functions. The default
+B<RAND_METHOD>, as set by RAND_set_rand_method() and returned by
+RAND_get_rand_method(), is only used if no ENGINE has been set as the default
+"rand" implementation. Hence, these two functions are no longer the recommened
+way to control defaults.
+
+If an alternative B<RAND_METHOD> implementation is being used (either set
+directly or as provided by an ENGINE module), then it is entirely responsible
+for the generation and management of a cryptographically secure PRNG stream. The
+mechanisms described below relate solely to the software PRNG implementation
+built in to OpenSSL and used by default.
+
+These functions implement a cryptographically secure pseudo-random
+number generator (PRNG). It is used by other library functions for
+example to generate random keys, and applications can use it when they
+need randomness.
+
+A cryptographic PRNG must be seeded with unpredictable data such as
+mouse movements or keys pressed at random by the user. This is
+described in L<RAND_add(3)|RAND_add(3)>. Its state can be saved in a seed file
+(see L<RAND_load_file(3)|RAND_load_file(3)>) to avoid having to go through the
+seeding process whenever the application is started.
+
+L<RAND_bytes(3)|RAND_bytes(3)> describes how to obtain random data from the
+PRNG.
+
+=head1 INTERNALS
+
+The RAND_SSLeay() method implements a PRNG based on the systems'
+L<arc4random_buf(3)> random number generator.
+
+=head1 SEE ALSO
+
+L<BN_rand(3)|BN_rand(3)>, L<RAND_add(3)|RAND_add(3)>,
+L<RAND_load_file(3)|RAND_load_file(3)>, L<RAND_egd(3)|RAND_egd(3)>,
+L<RAND_bytes(3)|RAND_bytes(3)>,
+L<RAND_set_rand_method(3)|RAND_set_rand_method(3)>,
+L<RAND_cleanup(3)|RAND_cleanup(3)>
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+RC4_set_key, RC4 - RC4 encryption
+
+=head1 SYNOPSIS
+
+ #include <openssl/rc4.h>
+
+ void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);
+
+ void RC4(RC4_KEY *key, unsigned long len, const unsigned char *indata,
+ unsigned char *outdata);
+
+=head1 DESCRIPTION
+
+This library implements the Alleged RC4 cipher, which is described for
+example in I<Applied Cryptography>. It is believed to be compatible
+with RC4[TM], a proprietary cipher of RSA Security Inc.
+
+RC4 is a stream cipher with variable key length. Typically, 128 bit
+(16 byte) keys are used for strong encryption, but shorter insecure
+key sizes have been widely used due to export restrictions.
+
+RC4 consists of a key setup phase and the actual encryption or
+decryption phase.
+
+RC4_set_key() sets up the B<RC4_KEY> B<key> using the B<len> bytes long
+key at B<data>.
+
+RC4() encrypts or decrypts the B<len> bytes of data at B<indata> using
+B<key> and places the result at B<outdata>. Repeated RC4() calls with
+the same B<key> yield a continuous key stream.
+
+Since RC4 is a stream cipher (the input is XORed with a pseudo-random
+key stream to produce the output), decryption uses the same function
+calls as encryption.
+
+Applications should use the higher level functions
+L<EVP_EncryptInit(3)|EVP_EncryptInit(3)>
+etc. instead of calling the RC4 functions directly.
+
+=head1 RETURN VALUES
+
+RC4_set_key() and RC4() do not return values.
+
+=head1 NOTE
+
+Certain conditions have to be observed to securely use stream ciphers.
+It is not permissible to perform multiple encryptions using the same
+key stream.
+
+=head1 SEE ALSO
+
+L<blowfish(3)|blowfish(3)>, L<des(3)|des(3)>, L<rc2(3)|rc2(3)>
+
+=head1 HISTORY
+
+RC4_set_key() and RC4() are available in all versions of SSLeay and OpenSSL.
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+RIPEMD160, RIPEMD160_Init, RIPEMD160_Update, RIPEMD160_Final -
+RIPEMD-160 hash function
+
+=head1 SYNOPSIS
+
+ #include <openssl/ripemd.h>
+
+ unsigned char *RIPEMD160(const unsigned char *d, unsigned long n,
+ unsigned char *md);
+
+ int RIPEMD160_Init(RIPEMD160_CTX *c);
+ int RIPEMD160_Update(RIPEMD_CTX *c, const void *data,
+ unsigned long len);
+ int RIPEMD160_Final(unsigned char *md, RIPEMD160_CTX *c);
+
+=head1 DESCRIPTION
+
+RIPEMD-160 is a cryptographic hash function with a
+160 bit output.
+
+RIPEMD160() computes the RIPEMD-160 message digest of the B<n>
+bytes at B<d> and places it in B<md> (which must have space for
+RIPEMD160_DIGEST_LENGTH == 20 bytes of output). If B<md> is NULL, the digest
+is placed in a static array.
+
+The following functions may be used if the message is not completely
+stored in memory:
+
+RIPEMD160_Init() initializes a B<RIPEMD160_CTX> structure.
+
+RIPEMD160_Update() can be called repeatedly with chunks of the message to
+be hashed (B<len> bytes at B<data>).
+
+RIPEMD160_Final() places the message digest in B<md>, which must have
+space for RIPEMD160_DIGEST_LENGTH == 20 bytes of output, and erases
+the B<RIPEMD160_CTX>.
+
+Applications should use the higher level functions
+L<EVP_DigestInit(3)|EVP_DigestInit(3)> etc. instead of calling the
+hash functions directly.
+
+=head1 RETURN VALUES
+
+RIPEMD160() returns a pointer to the hash value.
+
+RIPEMD160_Init(), RIPEMD160_Update() and RIPEMD160_Final() return 1 for
+success, 0 otherwise.
+
+=head1 CONFORMING TO
+
+ISO/IEC 10118-3 (draft) (??)
+
+=head1 SEE ALSO
+
+L<sha(3)|sha(3)>, L<hmac(3)|hmac(3)>, L<EVP_DigestInit(3)|EVP_DigestInit(3)>
+
+=head1 HISTORY
+
+RIPEMD160(), RIPEMD160_Init(), RIPEMD160_Update() and
+RIPEMD160_Final() are available since SSLeay 0.9.0.
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+SHA1, SHA1_Init, SHA1_Update, SHA1_Final - Secure Hash Algorithm
+
+=head1 SYNOPSIS
+
+ #include <openssl/sha.h>
+
+ unsigned char *SHA1(const unsigned char *d, unsigned long n,
+ unsigned char *md);
+
+ int SHA1_Init(SHA_CTX *c);
+ int SHA1_Update(SHA_CTX *c, const void *data,
+ unsigned long len);
+ int SHA1_Final(unsigned char *md, SHA_CTX *c);
+
+=head1 DESCRIPTION
+
+SHA-1 (Secure Hash Algorithm) is a cryptographic hash function with a
+160 bit output.
+
+SHA1() computes the SHA-1 message digest of the B<n>
+bytes at B<d> and places it in B<md> (which must have space for
+SHA_DIGEST_LENGTH == 20 bytes of output). If B<md> is NULL, the digest
+is placed in a static array.
+
+The following functions may be used if the message is not completely
+stored in memory:
+
+SHA1_Init() initializes a B<SHA_CTX> structure.
+
+SHA1_Update() can be called repeatedly with chunks of the message to
+be hashed (B<len> bytes at B<data>).
+
+SHA1_Final() places the message digest in B<md>, which must have space
+for SHA_DIGEST_LENGTH == 20 bytes of output, and erases the B<SHA_CTX>.
+
+Applications should use the higher level functions
+L<EVP_DigestInit(3)|EVP_DigestInit(3)>
+etc. instead of calling the hash functions directly.
+
+The predecessor of SHA-1, SHA, is also implemented, but it should be
+used only when backward compatibility is required.
+
+=head1 RETURN VALUES
+
+SHA1() returns a pointer to the hash value.
+
+SHA1_Init(), SHA1_Update() and SHA1_Final() return 1 for success, 0 otherwise.
+
+=head1 CONFORMING TO
+
+SHA: US Federal Information Processing Standard FIPS PUB 180 (Secure Hash
+Standard),
+SHA-1: US Federal Information Processing Standard FIPS PUB 180-1 (Secure Hash
+Standard),
+ANSI X9.30
+
+=head1 SEE ALSO
+
+L<ripemd(3)|ripemd(3)>, L<hmac(3)|hmac(3)>, L<EVP_DigestInit(3)|EVP_DigestInit(3)>
+
+=head1 HISTORY
+
+SHA1(), SHA1_Init(), SHA1_Update() and SHA1_Final() are available in all
+versions of SSLeay and OpenSSL.
+
+=cut
-# $OpenBSD: Makefile,v 1.1 2014/04/11 22:51:53 miod Exp $
+# $OpenBSD: Makefile,v 1.2 2014/04/16 09:50:10 mpi Exp $
.include <bsd.own.mk> # for NOMAN
ASN1_STRING_new.3 \
ASN1_STRING_print_ex.3 \
ASN1_generate_nconf.3 \
+ BF_set_key.3 \
+ BIO.3 \
BIO_ctrl.3 \
BIO_f_base64.3 \
BIO_f_buffer.3 \
BN_set_bit.3 \
BN_swap.3 \
BN_zero.3 \
+ BUF_MEM_new.3 \
CONF_modules_free.3 \
CONF_modules_load_file.3 \
CRYPTO_set_ex_data.3 \
+ CRYPTO_set_locking_callback.3 \
+ DES_set_key.3 \
DH_generate_key.3 \
DH_generate_parameters.3 \
DH_get_ex_new_index.3 \
DSA_set_method.3 \
DSA_sign.3 \
DSA_size.3 \
+ ERR.3 \
ERR_GET_LIB.3 \
ERR_clear_error.3 \
ERR_error_string.3 \
EVP_DigestVerifyInit.3 \
EVP_EncryptInit.3 \
EVP_OpenInit.3 \
+ EVP_PKEY_CTX_ctrl.3 \
+ EVP_PKEY_CTX_new.3 \
+ EVP_PKEY_cmp.3 \
+ EVP_PKEY_decrypt.3 \
+ EVP_PKEY_derive.3 \
+ EVP_PKEY_encrypt.3 \
+ EVP_PKEY_get_default_digest.3 \
+ EVP_PKEY_keygen.3 \
EVP_PKEY_new.3 \
+ EVP_PKEY_print_private.3 \
EVP_PKEY_set1_RSA.3 \
+ EVP_PKEY_sign.3 \
+ EVP_PKEY_verify.3 \
+ EVP_PKEY_verify_recover.3 \
EVP_SealInit.3 \
EVP_SignInit.3 \
EVP_VerifyInit.3 \
+ HMAC.3 \
+ MD5.3 \
OBJ_nid2obj.3 \
OPENSSL_VERSION_NUMBER.3 \
OPENSSL_config.3 \
OPENSSL_load_builtin_modules.3 \
OpenSSL_add_all_algorithms.3 \
+ PEM_read_bio_PrivateKey.3 \
+ PEM_write_bio_PKCS7_stream.3 \
PKCS12_create.3 \
PKCS12_parse.3 \
PKCS7_decrypt.3 \
PKCS7_encrypt.3 \
PKCS7_sign.3 \
+ PKCS7_sign_add_signer.3 \
PKCS7_verify.3 \
+ RAND.3 \
RAND_add.3 \
RAND_bytes.3 \
RAND_cleanup.3 \
RAND_egd.3 \
RAND_load_file.3 \
RAND_set_rand_method.3 \
+ RC4.3 \
+ RIPEMD160.3 \
RSA_blinding_on.3 \
RSA_check_key.3 \
RSA_generate_key.3 \
RSA_sign.3 \
RSA_sign_ASN1_OCTET_STRING.3 \
RSA_size.3 \
+ SHA1.3 \
SMIME_read_PKCS7.3 \
SMIME_write_PKCS7.3 \
X509_NAME_ENTRY_get_object.3 \
X509_NAME_add_entry_by_txt.3 \
X509_NAME_get_index_by_NID.3 \
X509_NAME_print_ex.3 \
- X509_new.3 \
X509_STORE_CTX_get_error.3 \
X509_STORE_CTX_get_ex_new_index.3 \
X509_STORE_CTX_new.3 \
X509_STORE_CTX_set_verify_cb.3 \
X509_STORE_set_verify_cb_func.3 \
X509_VERIFY_PARAM_set_flags.3 \
+ X509_new.3 \
X509_verify_cert.3 \
bn.3 \
bn_internal.3 \
ecdsa.3 \
engine.3 \
evp.3 \
+ i2d_PKCS7_bio_stream.3 \
lh_stats.3 \
lhash.3 \
- pem.3 \
rsa.3 \
ui.3 \
ui_compat.3 \
x509.3 \
- BF_set_key.3 \
- BIO.3 \
- BUF_MEM_new.3 \
- CRYPTO_set_locking_callback.3 \
- DES_set_key.3 \
- ERR.3 \
- HMAC.3 \
- MD5.3 \
- PEM_read_bio_PrivateKey.3 \
- RAND.3 \
- RC4.3 \
- RIPEMD160.3 \
- SHA1.3
-
-# These pages removed/renamed
-# OPENSSL_ia32cap.cat3 \ # i386-only, internal API
-# OPENSSL_Applink.cat3 \ # Win32 only
-# bio.cat3 \ # conflict; see below
-# blowfish.cat3 \ # conflict; see below
-# buffer.cat3 \ # conflict; see below
-# des.cat3 \ # conflict; see below
-# des_modes.cat3 \ # fairly pointless
-# hmac.cat3 \ # conflict; see below
-# md5.cat3 \ # conflict; see below
-# mdc2.cat3 \ # patents; removed
-# rand.cat3 \ # conflict; see below
-# rc4.cat3 \ # conflict; see below
-# ripemd.cat3 \ # conflict; see below
-# sha.cat3 \ # conflict; see below
-
-# these are a real problem, since they re-document functions described in
-# other pages.
-
-.for page src in \
- BF_set_key blowfish \
- BIO bio \
- BUF_MEM_new buffer \
- CRYPTO_set_locking_callback threads \
- DES_set_key des \
- ERR err \
- HMAC hmac \
- MD5 md5 \
- PEM_read_bio_PrivateKey pem \
- RAND rand \
- RC4 rc4 \
- RIPEMD160 ripemd \
- SHA1 sha
-
-${page}.3: ${src}.pod
- @echo '${POD2MAN} --section=3 --name=${page:U} $? > $@'
- @${POD2MAN} --section=3 --name=${page:U} $? > $@.tmp && mv $@.tmp $@
-.endfor
+#MAN+= BIO_new_CMS.3 \
+# CMS_add0_cert.3 \
+# CMS_add1_recipient_cert.3 \
+# CMS_compress.3 \
+# CMS_decrypt.3 \
+# CMS_encrypt.3 \
+# CMS_final.3 \
+# CMS_get0_RecipientInfos.3 \
+# CMS_get0_SignerInfos.3 \
+# CMS_get0_type.3 \
+# CMS_get1_ReceiptRequest.3 \
+# CMS_sign.3 \
+# CMS_sign_add1_signer.3 \
+# CMS_sign_receipt.3 \
+# CMS_uncompress.3 \
+# CMS_verify.3 \
+# CMS_verify_receipt.3 \
+# PEM_write_bio_CMS_stream.3 \
+# SMIME_read_CMS.3 \
+# SMIME_write_CMS.3 \
+# i2d_CMS_bio_stream.3 \
MLINKS+=\
ASN1_OBJECT_new.3 ASN1_OBJECT_free.3 \
EVP_EncryptInit.3 OBJ_obj2nid.3 \
EVP_OpenInit.3 EVP_OpenFinal.3 \
EVP_OpenInit.3 EVP_OpenUpdate.3 \
+ EVP_PKEY_CTX_ctrl.3 EVP_PKEY_ctrl_str.3 \
+ EVP_PKEY_CTX_new.3 EVP_PKEY_CTX_new_id.3 \
+ EVP_PKEY_CTX_new.3 EVP_PKEY_CTX_dup.3 \
+ EVP_PKEY_CTX_new.3 EVP_PKEY_CTX_free.3 \
+ EVP_PKEY_cmp.3 EVP_PKEY_copy_parameters.3 \
+ EVP_PKEY_cmp.3 EVP_PKEY_missing_parameters.3 \
+ EVP_PKEY_cmp.3 EVP_PKEY_cmp_parameters.3 \
EVP_PKEY_new.3 EVP_PKEY_free.3 \
+ EVP_PKEY_decrypt.3 EVP_PKEY_decrypt_init.3 \
+ EVP_PKEY_derive.3 EVP_PKEY_derive_init.3 \
+ EVP_PKEY_derive.3 EVP_PKEY_derive_set_peer.3 \
+ EVP_PKEY_get_default_digest.3 EVP_PKEY_get_default_digest_nid.3 \
+ EVP_PKEY_encrypt.3 EVP_PKEY_encrypt_init.3 \
+ EVP_PKEY_keygen.3 EVP_PKEY_keygen_init.3 \
+ EVP_PKEY_keygen.3 EVP_PKEY_paramgen_init.3 \
+ EVP_PKEY_keygen.3 EVP_PKEY_paramgen.3 \
+ EVP_PKEY_keygen.3 EVP_PKEY_CTX_set_cb.3 \
+ EVP_PKEY_keygen.3 EVP_PKEY_CTX_get_cb.3 \
+ EVP_PKEY_keygen.3 EVP_PKEY_CTX_get_keygen_info.3 \
+ EVP_PKEY_keygen.3 EVP_PKEY_CTX_set_app_data.3 \
+ EVP_PKEY_keygen.3 EVP_PKEY_CTX_get_app_data.3 \
+ EVP_PKEY_print_private.3 EVP_PKEY_print_private.3 \
+ EVP_PKEY_print_private.3 EVP_PKEY_print_params.3 \
+ EVP_PKEY_sign.3 EVP_PKEY_sign_init.3 \
+ EVP_PKEY_verify.3 EVP_PKEY_verify_init.3 \
+ EVP_PKEY_verify_recover.3 EVP_PKEY_verify_recover_init.3 \
EVP_PKEY_set1_RSA.3 EVP_PKEY_assign_DH.3 \
EVP_PKEY_set1_RSA.3 EVP_PKEY_assign_DSA.3 \
EVP_PKEY_set1_RSA.3 EVP_PKEY_assign_EC_KEY.3 \
.endif
-# XXX .PATH order is critical because of non-unique filenames
.PATH: ${.CURDIR}/../../libssl/src/doc/crypto
.SUFFIXES: .pod .1 .3 .7
.for sect in 1 3 7
-# $OpenBSD: Makefile,v 1.24 2014/04/14 08:18:40 mpi Exp $
+# $OpenBSD: Makefile,v 1.25 2014/04/16 09:50:10 mpi Exp $
.include <bsd.own.mk> # for NOMAN
POD2MAN=pod2man --official --release="OpenBSD ${OSREV}" --center=OpenSSL
.ifndef NOMAN
-
-# libcrypto
-MAN= ASN1_OBJECT_new.3 ASN1_STRING_length.3 ASN1_STRING_new.3 \
- ASN1_STRING_print_ex.3 ASN1_generate_nconf.3
-
-MAN+= BIO_ctrl.3 BIO_f_base64.3 BIO_f_buffer.3 BIO_f_cipher.3 BIO_f_md.3 \
- BIO_f_null.3 BIO_f_ssl.3 BIO_find_type.3 BIO_new.3 BIO_new_CMS.3 \
- BIO_push.3 BIO_read.3 BIO_s_accept.3 BIO_s_bio.3 BIO_s_connect.3 \
- BIO_s_fd.3 BIO_s_file.3 BIO_s_mem.3 BIO_s_null.3 BIO_s_socket.3 \
- BIO_set_callback.3 BIO_should_retry.3
-
-MAN+= BN_BLINDING_new.3 BN_CTX_new.3 BN_CTX_start.3 BN_add.3 BN_add_word.3 \
- BN_bn2bin.3 BN_cmp.3 BN_copy.3 BN_generate_prime.3 BN_mod_inverse.3 \
- BN_mod_mul_montgomery.3 BN_mod_mul_reciprocal.3 BN_new.3 \
- BN_num_bytes.3 BN_rand.3 BN_set_bit.3 BN_swap.3 BN_zero.3
-
-MAN+= CMS_add0_cert.3 CMS_add1_recipient_cert.3 CMS_compress.3 CMS_decrypt.3 \
- CMS_encrypt.3 CMS_final.3 CMS_get0_RecipientInfos.3 \
- CMS_get0_SignerInfos.3 CMS_get0_type.3 CMS_get1_ReceiptRequest.3 \
- CMS_sign.3 CMS_sign_add1_signer.3 CMS_sign_receipt.3 CMS_uncompress.3 \
- CMS_verify.3 CMS_verify_receipt.3
-
-MAN+= CONF_modules_free.3 CONF_modules_load_file.3
-
-MAN+= CRYPTO_set_ex_data.3
-
-MAN+= DH_generate_key.3 DH_generate_parameters.3 DH_get_ex_new_index.3 \
- DH_new.3 DH_set_method.3 DH_size.3
-
-MAN+= DSA_SIG_new.3 DSA_do_sign.3 DSA_dup_DH.3 DSA_generate_key.3 \
- DSA_generate_parameters.3 DSA_get_ex_new_index.3 DSA_new.3 \
- DSA_set_method.3 DSA_sign.3 DSA_size.3
-
-MAN+= ERR_GET_LIB.3 ERR_clear_error.3 ERR_error_string.3 ERR_get_error.3 \
- ERR_load_crypto_strings.3 ERR_load_strings.3 ERR_print_errors.3 \
- ERR_put_error.3 ERR_remove_state.3 ERR_set_mark.3
-
-MAN+= EVP_BytesToKey.3 EVP_DigestInit.3 EVP_DigestSignInit.3 \
- EVP_DigestVerifyInit.3 EVP_EncryptInit.3 EVP_OpenInit.3 \
- EVP_PKEY_CTX_ctrl.3 EVP_PKEY_CTX_new.3 EVP_PKEY_cmp.3 \
- EVP_PKEY_decrypt.3 EVP_PKEY_derive.3 EVP_PKEY_encrypt.3 \
- EVP_PKEY_get_default_digest.3 EVP_PKEY_keygen.3 EVP_PKEY_new.3 \
- EVP_PKEY_print_private.3 EVP_PKEY_set1_RSA.3 EVP_PKEY_sign.3 \
- EVP_PKEY_verify.3 EVP_PKEY_verify_recover.3 EVP_SealInit.3 \
- EVP_SignInit.3 EVP_VerifyInit.3
-
-MAN+= OBJ_nid2obj.3
-
-MAN+= OPENSSL_Applink.3 OPENSSL_VERSION_NUMBER.3 OPENSSL_config.3 \
- OPENSSL_ia32cap.3 OPENSSL_load_builtin_modules.3 \
- OpenSSL_add_all_algorithms.3
-
-MAN+= PEM_write_bio_CMS_stream.3 PEM_write_bio_PKCS7_stream.3
-
-MAN+= PKCS12_create.3 PKCS12_parse.3 PKCS7_decrypt.3 PKCS7_encrypt.3 \
- PKCS7_sign.3 PKCS7_sign_add_signer.3 PKCS7_verify.3
-
-MAN+= RAND_add.3 RAND_bytes.3 RAND_cleanup.3 RAND_egd.3 RAND_load_file.3 \
- RAND_set_rand_method.3
-
-MAN+= RSA_blinding_on.3 RSA_check_key.3 RSA_generate_key.3 \
- RSA_get_ex_new_index.3 RSA_new.3 RSA_padding_add_PKCS1_type_1.3 \
- RSA_print.3 RSA_private_encrypt.3 RSA_public_encrypt.3 \
- RSA_set_method.3 RSA_sign.3 RSA_sign_ASN1_OCTET_STRING.3 RSA_size.3
-
-MAN+= SMIME_read_CMS.3 SMIME_read_PKCS7.3 SMIME_write_CMS.3 \
- SMIME_write_PKCS7.3
-
-MAN+= X509_NAME_ENTRY_get_object.3 X509_NAME_add_entry_by_txt.3 \
- X509_NAME_get_index_by_NID.3 X509_NAME_print_ex.3 \
- X509_STORE_CTX_get_error.3 X509_STORE_CTX_get_ex_new_index.3 \
- X509_STORE_CTX_new.3 X509_STORE_CTX_set_verify_cb.3 \
- X509_STORE_set_verify_cb_func.3 X509_VERIFY_PARAM_set_flags.3 \
- X509_new.3 X509_verify_cert.3
-
-MAN+= d2i_ASN1_OBJECT.3 d2i_DHparams.3 d2i_DSAPublicKey.3 \
- d2i_PKCS8PrivateKey.3 d2i_RSAPublicKey.3 d2i_X509.3 d2i_X509_ALGOR.3 \
- d2i_X509_CRL.3 d2i_X509_NAME.3 d2i_X509_REQ.3 d2i_X509_SIG.3
-
-MAN+= i2d_CMS_bio_stream.3 i2d_PKCS7_bio_stream.3
-
-MAN+= bio.3 blowfish.3 bn.3 bn_internal.3 buffer.3 crypto.3 des.3 \
- des_modes.3 dh.3 dsa.3 ecdsa.3 engine.3 err.3 evp.3 hmac.3 lh_stats.3 \
- lhash.3 md5.3 mdc2.3 pem.3 rand.3 rc4.3 ripemd.3 rsa.3 sha.3 threads.3 \
- ui.3 ui_compat.3 x509.3
-
-# libssl
-MAN+= SSL_CIPHER_get_name.3 SSL_COMP_add_compression_method.3 \
- SSL_CTX_add_extra_chain_cert.3 SSL_CTX_add_session.3 SSL_CTX_ctrl.3 \
- SSL_CTX_flush_sessions.3 SSL_CTX_free.3 SSL_CTX_get_ex_new_index.3 \
- SSL_CTX_get_verify_mode.3 SSL_CTX_load_verify_locations.3 \
- SSL_CTX_new.3 SSL_CTX_sess_number.3 SSL_CTX_sess_set_cache_size.3 \
- SSL_CTX_sess_set_get_cb.3 SSL_CTX_sessions.3 SSL_CTX_set_cert_store.3 \
- SSL_CTX_set_cert_verify_callback.3 SSL_CTX_set_cipher_list.3 \
- SSL_CTX_set_client_CA_list.3 SSL_CTX_set_client_cert_cb.3 \
- SSL_CTX_set_default_passwd_cb.3 SSL_CTX_set_generate_session_id.3 \
- SSL_CTX_set_info_callback.3 SSL_CTX_set_max_cert_list.3 \
- SSL_CTX_set_mode.3 SSL_CTX_set_msg_callback.3 SSL_CTX_set_options.3 \
- SSL_CTX_set_psk_client_callback.3 SSL_CTX_set_quiet_shutdown.3 \
- SSL_CTX_set_session_cache_mode.3 SSL_CTX_set_session_id_context.3 \
- SSL_CTX_set_ssl_version.3 SSL_CTX_set_timeout.3 \
- SSL_CTX_set_tmp_dh_callback.3 SSL_CTX_set_tmp_rsa_callback.3 \
- SSL_CTX_set_verify.3 SSL_CTX_use_certificate.3 \
- SSL_CTX_use_psk_identity_hint.3 SSL_SESSION_free.3 \
- SSL_SESSION_get_ex_new_index.3 SSL_SESSION_get_time.3 SSL_accept.3 \
- SSL_alert_type_string.3 SSL_clear.3 SSL_connect.3 SSL_do_handshake.3 \
- SSL_free.3 SSL_get_SSL_CTX.3 SSL_get_ciphers.3 \
- SSL_get_client_CA_list.3 SSL_get_current_cipher.3 \
- SSL_get_default_timeout.3 SSL_get_error.3 \
- SSL_get_ex_data_X509_STORE_CTX_idx.3 SSL_get_ex_new_index.3 \
- SSL_get_fd.3 SSL_get_peer_cert_chain.3 SSL_get_peer_certificate.3 \
- SSL_get_psk_identity.3 SSL_get_rbio.3 SSL_get_session.3 \
- SSL_get_verify_result.3 SSL_get_version.3 SSL_library_init.3 \
- SSL_load_client_CA_file.3 SSL_new.3 SSL_pending.3 SSL_read.3 \
- SSL_rstate_string.3 SSL_session_reused.3 SSL_set_bio.3 \
- SSL_set_connect_state.3 SSL_set_fd.3 SSL_set_session.3 \
- SSL_set_shutdown.3 SSL_set_verify_result.3 SSL_shutdown.3 \
- SSL_state_string.3 SSL_want.3 SSL_write.3 \
- d2i_SSL_SESSION.3 ssl.3
+MAN= \
+ BIO_f_ssl.3 \
+ SSL_CIPHER_get_name.3 \
+ SSL_COMP_add_compression_method.3 \
+ SSL_CTX_add_extra_chain_cert.3 \
+ SSL_CTX_add_session.3 \
+ SSL_CTX_ctrl.3 \
+ SSL_CTX_flush_sessions.3 \
+ SSL_CTX_free.3 \
+ SSL_CTX_get_ex_new_index.3 \
+ SSL_CTX_get_verify_mode.3 \
+ SSL_CTX_load_verify_locations.3 \
+ SSL_CTX_new.3 \
+ SSL_CTX_sess_number.3 \
+ SSL_CTX_sess_set_cache_size.3 \
+ SSL_CTX_sess_set_get_cb.3 \
+ SSL_CTX_sessions.3 \
+ SSL_CTX_set_cert_store.3 \
+ SSL_CTX_set_cert_verify_callback.3 \
+ SSL_CTX_set_cipher_list.3 \
+ SSL_CTX_set_client_CA_list.3 \
+ SSL_CTX_set_client_cert_cb.3 \
+ SSL_CTX_set_default_passwd_cb.3 \
+ SSL_CTX_set_generate_session_id.3 \
+ SSL_CTX_set_info_callback.3 \
+ SSL_CTX_set_max_cert_list.3 \
+ SSL_CTX_set_mode.3 \
+ SSL_CTX_set_msg_callback.3 \
+ SSL_CTX_set_options.3 \
+ SSL_CTX_set_psk_client_callback.3 \
+ SSL_CTX_set_quiet_shutdown.3 \
+ SSL_CTX_set_session_cache_mode.3 \
+ SSL_CTX_set_session_id_context.3 \
+ SSL_CTX_set_ssl_version.3 \
+ SSL_CTX_set_timeout.3 \
+ SSL_CTX_set_tmp_dh_callback.3 \
+ SSL_CTX_set_tmp_rsa_callback.3 \
+ SSL_CTX_set_verify.3 \
+ SSL_CTX_use_certificate.3 \
+ SSL_CTX_use_psk_identity_hint.3 \
+ SSL_SESSION_free.3 \
+ SSL_SESSION_get_ex_new_index.3 \
+ SSL_SESSION_get_time.3 \
+ SSL_accept.3 \
+ SSL_alert_type_string.3 \
+ SSL_clear.3 \
+ SSL_connect.3 \
+ SSL_do_handshake.3 \
+ SSL_free.3 \
+ SSL_get_SSL_CTX.3 \
+ SSL_get_ciphers.3 \
+ SSL_get_client_CA_list.3 \
+ SSL_get_current_cipher.3 \
+ SSL_get_default_timeout.3 \
+ SSL_get_error.3 \
+ SSL_get_ex_data_X509_STORE_CTX_idx.3 \
+ SSL_get_ex_new_index.3 \
+ SSL_get_fd.3 \
+ SSL_get_peer_cert_chain.3 \
+ SSL_get_peer_certificate.3 \
+ SSL_get_psk_identity.3 \
+ SSL_get_rbio.3 \
+ SSL_get_session.3 \
+ SSL_get_verify_result.3 \
+ SSL_get_version.3 \
+ SSL_library_init.3 \
+ SSL_load_client_CA_file.3 \
+ SSL_new.3 \
+ SSL_pending.3 \
+ SSL_read.3 \
+ SSL_rstate_string.3 \
+ SSL_session_reused.3 \
+ SSL_set_bio.3 \
+ SSL_set_connect_state.3 \
+ SSL_set_fd.3 \
+ SSL_set_session.3 \
+ SSL_set_shutdown.3 \
+ SSL_set_verify_result.3 \
+ SSL_shutdown.3 \
+ SSL_state_string.3 \
+ SSL_want.3 \
+ SSL_write.3 \
+ d2i_SSL_SESSION.3 \
+ ssl.3 \
# XXX ERR_load_crypto_strings.3 built by libcrypto
MLINKS+=\
.endif
-# XXX .PATH order is critical because of non-unique filenames
-# XXX doc/crypto because of BIO_f_ssl()
-.PATH: ${.CURDIR}/../src/doc/crypto ${.CURDIR}/../src/doc/ssl
+.PATH: ${.CURDIR}/../src/doc/ssl
.SUFFIXES: .pod .1 .3 .7
.for sect in 1 3 7
.pod.${sect}:
--- /dev/null
+=pod
+
+=head1 NAME
+
+blowfish, BF_set_key, BF_encrypt, BF_decrypt, BF_ecb_encrypt, BF_cbc_encrypt,
+BF_cfb64_encrypt, BF_ofb64_encrypt, BF_options - Blowfish encryption
+
+=head1 SYNOPSIS
+
+ #include <openssl/blowfish.h>
+
+ void BF_set_key(BF_KEY *key, int len, const unsigned char *data);
+
+ void BF_ecb_encrypt(const unsigned char *in, unsigned char *out,
+ BF_KEY *key, int enc);
+ void BF_cbc_encrypt(const unsigned char *in, unsigned char *out,
+ long length, BF_KEY *schedule, unsigned char *ivec, int enc);
+ void BF_cfb64_encrypt(const unsigned char *in, unsigned char *out,
+ long length, BF_KEY *schedule, unsigned char *ivec, int *num,
+ int enc);
+ void BF_ofb64_encrypt(const unsigned char *in, unsigned char *out,
+ long length, BF_KEY *schedule, unsigned char *ivec, int *num);
+ const char *BF_options(void);
+
+ void BF_encrypt(BF_LONG *data,const BF_KEY *key);
+ void BF_decrypt(BF_LONG *data,const BF_KEY *key);
+
+=head1 DESCRIPTION
+
+This library implements the Blowfish cipher, which was invented and described
+by Counterpane (see http://www.counterpane.com/blowfish.html ).
+
+Blowfish is a block cipher that operates on 64 bit (8 byte) blocks of data.
+It uses a variable size key, but typically, 128 bit (16 byte) keys are
+considered good for strong encryption. Blowfish can be used in the same
+modes as DES (see L<des_modes(7)|des_modes(7)>). Blowfish is currently one
+of the faster block ciphers. It is quite a bit faster than DES, and much
+faster than IDEA or RC2.
+
+Blowfish consists of a key setup phase and the actual encryption or decryption
+phase.
+
+BF_set_key() sets up the B<BF_KEY> B<key> using the B<len> bytes long key
+at B<data>.
+
+BF_ecb_encrypt() is the basic Blowfish encryption and decryption function.
+It encrypts or decrypts the first 64 bits of B<in> using the key B<key>,
+putting the result in B<out>. B<enc> decides if encryption (B<BF_ENCRYPT>)
+or decryption (B<BF_DECRYPT>) shall be performed. The vector pointed at by
+B<in> and B<out> must be 64 bits in length, no less. If they are larger,
+everything after the first 64 bits is ignored.
+
+The mode functions BF_cbc_encrypt(), BF_cfb64_encrypt() and BF_ofb64_encrypt()
+all operate on variable length data. They all take an initialization vector
+B<ivec> which needs to be passed along into the next call of the same function
+for the same message. B<ivec> may be initialized with anything, but the
+recipient needs to know what it was initialized with, or it won't be able
+to decrypt. Some programs and protocols simplify this, like SSH, where
+B<ivec> is simply initialized to zero.
+BF_cbc_encrypt() operates on data that is a multiple of 8 bytes long, while
+BF_cfb64_encrypt() and BF_ofb64_encrypt() are used to encrypt an variable
+number of bytes (the amount does not have to be an exact multiple of 8). The
+purpose of the latter two is to simulate stream ciphers, and therefore, they
+need the parameter B<num>, which is a pointer to an integer where the current
+offset in B<ivec> is stored between calls. This integer must be initialized
+to zero when B<ivec> is initialized.
+
+BF_cbc_encrypt() is the Cipher Block Chaining function for Blowfish. It
+encrypts or decrypts the 64 bits chunks of B<in> using the key B<schedule>,
+putting the result in B<out>. B<enc> decides if encryption (BF_ENCRYPT) or
+decryption (BF_DECRYPT) shall be performed. B<ivec> must point at an 8 byte
+long initialization vector.
+
+BF_cfb64_encrypt() is the CFB mode for Blowfish with 64 bit feedback.
+It encrypts or decrypts the bytes in B<in> using the key B<schedule>,
+putting the result in B<out>. B<enc> decides if encryption (B<BF_ENCRYPT>)
+or decryption (B<BF_DECRYPT>) shall be performed. B<ivec> must point at an
+8 byte long initialization vector. B<num> must point at an integer which must
+be initially zero.
+
+BF_ofb64_encrypt() is the OFB mode for Blowfish with 64 bit feedback.
+It uses the same parameters as BF_cfb64_encrypt(), which must be initialized
+the same way.
+
+BF_encrypt() and BF_decrypt() are the lowest level functions for Blowfish
+encryption. They encrypt/decrypt the first 64 bits of the vector pointed by
+B<data>, using the key B<key>. These functions should not be used unless you
+implement 'modes' of Blowfish. The alternative is to use BF_ecb_encrypt().
+If you still want to use these functions, you should be aware that they take
+each 32-bit chunk in host-byte order, which is little-endian on little-endian
+platforms and big-endian on big-endian ones.
+
+=head1 RETURN VALUES
+
+None of the functions presented here return any value.
+
+=head1 NOTE
+
+Applications should use the higher level functions
+L<EVP_EncryptInit(3)|EVP_EncryptInit(3)> etc. instead of calling the
+blowfish functions directly.
+
+=head1 SEE ALSO
+
+L<des_modes(7)|des_modes(7)>
+
+=head1 HISTORY
+
+The Blowfish functions are available in all versions of SSLeay and OpenSSL.
+
+=cut
+
--- /dev/null
+=pod
+
+=head1 NAME
+
+bio - I/O abstraction
+
+=head1 SYNOPSIS
+
+ #include <openssl/bio.h>
+
+TBA
+
+
+=head1 DESCRIPTION
+
+A BIO is an I/O abstraction, it hides many of the underlying I/O
+details from an application. If an application uses a BIO for its
+I/O it can transparently handle SSL connections, unencrypted network
+connections and file I/O.
+
+There are two type of BIO, a source/sink BIO and a filter BIO.
+
+As its name implies a source/sink BIO is a source and/or sink of data,
+examples include a socket BIO and a file BIO.
+
+A filter BIO takes data from one BIO and passes it through to
+another, or the application. The data may be left unmodified (for
+example a message digest BIO) or translated (for example an
+encryption BIO). The effect of a filter BIO may change according
+to the I/O operation it is performing: for example an encryption
+BIO will encrypt data if it is being written to and decrypt data
+if it is being read from.
+
+BIOs can be joined together to form a chain (a single BIO is a chain
+with one component). A chain normally consist of one source/sink
+BIO and one or more filter BIOs. Data read from or written to the
+first BIO then traverses the chain to the end (normally a source/sink
+BIO).
+
+=head1 SEE ALSO
+
+L<BIO_ctrl(3)|BIO_ctrl(3)>,
+L<BIO_f_base64(3)|BIO_f_base64(3)>, L<BIO_f_buffer(3)|BIO_f_buffer(3)>,
+L<BIO_f_cipher(3)|BIO_f_cipher(3)>, L<BIO_f_md(3)|BIO_f_md(3)>,
+L<BIO_f_null(3)|BIO_f_null(3)>, L<BIO_f_ssl(3)|BIO_f_ssl(3)>,
+L<BIO_find_type(3)|BIO_find_type(3)>, L<BIO_new(3)|BIO_new(3)>,
+L<BIO_new_bio_pair(3)|BIO_new_bio_pair(3)>,
+L<BIO_push(3)|BIO_push(3)>, L<BIO_read(3)|BIO_read(3)>,
+L<BIO_s_accept(3)|BIO_s_accept(3)>, L<BIO_s_bio(3)|BIO_s_bio(3)>,
+L<BIO_s_connect(3)|BIO_s_connect(3)>, L<BIO_s_fd(3)|BIO_s_fd(3)>,
+L<BIO_s_file(3)|BIO_s_file(3)>, L<BIO_s_mem(3)|BIO_s_mem(3)>,
+L<BIO_s_null(3)|BIO_s_null(3)>, L<BIO_s_socket(3)|BIO_s_socket(3)>,
+L<BIO_set_callback(3)|BIO_set_callback(3)>,
+L<BIO_should_retry(3)|BIO_should_retry(3)>
+++ /dev/null
-=pod
-
-=head1 NAME
-
-BIO_f_ssl, BIO_set_ssl, BIO_get_ssl, BIO_set_ssl_mode, BIO_set_ssl_renegotiate_bytes,
-BIO_get_num_renegotiates, BIO_set_ssl_renegotiate_timeout, BIO_new_ssl,
-BIO_new_ssl_connect, BIO_new_buffer_ssl_connect, BIO_ssl_copy_session_id,
-BIO_ssl_shutdown - SSL BIO
-
-=head1 SYNOPSIS
-
- #include <openssl/bio.h>
- #include <openssl/ssl.h>
-
- BIO_METHOD *BIO_f_ssl(void);
-
- #define BIO_set_ssl(b,ssl,c) BIO_ctrl(b,BIO_C_SET_SSL,c,(char *)ssl)
- #define BIO_get_ssl(b,sslp) BIO_ctrl(b,BIO_C_GET_SSL,0,(char *)sslp)
- #define BIO_set_ssl_mode(b,client) BIO_ctrl(b,BIO_C_SSL_MODE,client,NULL)
- #define BIO_set_ssl_renegotiate_bytes(b,num) \
- BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_BYTES,num,NULL);
- #define BIO_set_ssl_renegotiate_timeout(b,seconds) \
- BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_TIMEOUT,seconds,NULL);
- #define BIO_get_num_renegotiates(b) \
- BIO_ctrl(b,BIO_C_SET_SSL_NUM_RENEGOTIATES,0,NULL);
-
- BIO *BIO_new_ssl(SSL_CTX *ctx,int client);
- BIO *BIO_new_ssl_connect(SSL_CTX *ctx);
- BIO *BIO_new_buffer_ssl_connect(SSL_CTX *ctx);
- int BIO_ssl_copy_session_id(BIO *to,BIO *from);
- void BIO_ssl_shutdown(BIO *bio);
-
- #define BIO_do_handshake(b) BIO_ctrl(b,BIO_C_DO_STATE_MACHINE,0,NULL)
-
-=head1 DESCRIPTION
-
-BIO_f_ssl() returns the SSL BIO method. This is a filter BIO which
-is a wrapper round the OpenSSL SSL routines adding a BIO "flavour" to
-SSL I/O.
-
-I/O performed on an SSL BIO communicates using the SSL protocol with
-the SSLs read and write BIOs. If an SSL connection is not established
-then an attempt is made to establish one on the first I/O call.
-
-If a BIO is appended to an SSL BIO using BIO_push() it is automatically
-used as the SSL BIOs read and write BIOs.
-
-Calling BIO_reset() on an SSL BIO closes down any current SSL connection
-by calling SSL_shutdown(). BIO_reset() is then sent to the next BIO in
-the chain: this will typically disconnect the underlying transport.
-The SSL BIO is then reset to the initial accept or connect state.
-
-If the close flag is set when an SSL BIO is freed then the internal
-SSL structure is also freed using SSL_free().
-
-BIO_set_ssl() sets the internal SSL pointer of BIO B<b> to B<ssl> using
-the close flag B<c>.
-
-BIO_get_ssl() retrieves the SSL pointer of BIO B<b>, it can then be
-manipulated using the standard SSL library functions.
-
-BIO_set_ssl_mode() sets the SSL BIO mode to B<client>. If B<client>
-is 1 client mode is set. If B<client> is 0 server mode is set.
-
-BIO_set_ssl_renegotiate_bytes() sets the renegotiate byte count
-to B<num>. When set after every B<num> bytes of I/O (read and write)
-the SSL session is automatically renegotiated. B<num> must be at
-least 512 bytes.
-
-BIO_set_ssl_renegotiate_timeout() sets the renegotiate timeout to
-B<seconds>. When the renegotiate timeout elapses the session is
-automatically renegotiated.
-
-BIO_get_num_renegotiates() returns the total number of session
-renegotiations due to I/O or timeout.
-
-BIO_new_ssl() allocates an SSL BIO using SSL_CTX B<ctx> and using
-client mode if B<client> is non zero.
-
-BIO_new_ssl_connect() creates a new BIO chain consisting of an
-SSL BIO (using B<ctx>) followed by a connect BIO.
-
-BIO_new_buffer_ssl_connect() creates a new BIO chain consisting
-of a buffering BIO, an SSL BIO (using B<ctx>) and a connect
-BIO.
-
-BIO_ssl_copy_session_id() copies an SSL session id between
-BIO chains B<from> and B<to>. It does this by locating the
-SSL BIOs in each chain and calling SSL_copy_session_id() on
-the internal SSL pointer.
-
-BIO_ssl_shutdown() closes down an SSL connection on BIO
-chain B<bio>. It does this by locating the SSL BIO in the
-chain and calling SSL_shutdown() on its internal SSL
-pointer.
-
-BIO_do_handshake() attempts to complete an SSL handshake on the
-supplied BIO and establish the SSL connection. It returns 1
-if the connection was established successfully. A zero or negative
-value is returned if the connection could not be established, the
-call BIO_should_retry() should be used for non blocking connect BIOs
-to determine if the call should be retried. If an SSL connection has
-already been established this call has no effect.
-
-=head1 NOTES
-
-SSL BIOs are exceptional in that if the underlying transport
-is non blocking they can still request a retry in exceptional
-circumstances. Specifically this will happen if a session
-renegotiation takes place during a BIO_read() operation, one
-case where this happens is when SGC or step up occurs.
-
-In OpenSSL 0.9.6 and later the SSL flag SSL_AUTO_RETRY can be
-set to disable this behaviour. That is when this flag is set
-an SSL BIO using a blocking transport will never request a
-retry.
-
-Since unknown BIO_ctrl() operations are sent through filter
-BIOs the servers name and port can be set using BIO_set_host()
-on the BIO returned by BIO_new_ssl_connect() without having
-to locate the connect BIO first.
-
-Applications do not have to call BIO_do_handshake() but may wish
-to do so to separate the handshake process from other I/O
-processing.
-
-=head1 RETURN VALUES
-
-TBA
-
-=head1 EXAMPLE
-
-This SSL/TLS client example, attempts to retrieve a page from an
-SSL/TLS web server. The I/O routines are identical to those of the
-unencrypted example in L<BIO_s_connect(3)|BIO_s_connect(3)>.
-
- BIO *sbio, *out;
- int len;
- char tmpbuf[1024];
- SSL_CTX *ctx;
- SSL *ssl;
-
- ERR_load_crypto_strings();
- ERR_load_SSL_strings();
- OpenSSL_add_all_algorithms();
-
- /* We would seed the PRNG here if the platform didn't
- * do it automatically
- */
-
- ctx = SSL_CTX_new(SSLv23_client_method());
-
- /* We'd normally set some stuff like the verify paths and
- * mode here because as things stand this will connect to
- * any server whose certificate is signed by any CA.
- */
-
- sbio = BIO_new_ssl_connect(ctx);
-
- BIO_get_ssl(sbio, &ssl);
-
- if(!ssl) {
- fprintf(stderr, "Can't locate SSL pointer\n");
- /* whatever ... */
- }
-
- /* Don't want any retries */
- SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY);
-
- /* We might want to do other things with ssl here */
-
- BIO_set_conn_hostname(sbio, "localhost:https");
-
- out = BIO_new_fp(stdout, BIO_NOCLOSE);
- if(BIO_do_connect(sbio) <= 0) {
- fprintf(stderr, "Error connecting to server\n");
- ERR_print_errors_fp(stderr);
- /* whatever ... */
- }
-
- if(BIO_do_handshake(sbio) <= 0) {
- fprintf(stderr, "Error establishing SSL connection\n");
- ERR_print_errors_fp(stderr);
- /* whatever ... */
- }
-
- /* Could examine ssl here to get connection info */
-
- BIO_puts(sbio, "GET / HTTP/1.0\n\n");
- for(;;) {
- len = BIO_read(sbio, tmpbuf, 1024);
- if(len <= 0) break;
- BIO_write(out, tmpbuf, len);
- }
- BIO_free_all(sbio);
- BIO_free(out);
-
-Here is a simple server example. It makes use of a buffering
-BIO to allow lines to be read from the SSL BIO using BIO_gets.
-It creates a pseudo web page containing the actual request from
-a client and also echoes the request to standard output.
-
- BIO *sbio, *bbio, *acpt, *out;
- int len;
- char tmpbuf[1024];
- SSL_CTX *ctx;
- SSL *ssl;
-
- ERR_load_crypto_strings();
- ERR_load_SSL_strings();
- OpenSSL_add_all_algorithms();
-
- /* Might seed PRNG here */
-
- ctx = SSL_CTX_new(SSLv23_server_method());
-
- if (!SSL_CTX_use_certificate_file(ctx,"server.pem",SSL_FILETYPE_PEM)
- || !SSL_CTX_use_PrivateKey_file(ctx,"server.pem",SSL_FILETYPE_PEM)
- || !SSL_CTX_check_private_key(ctx)) {
-
- fprintf(stderr, "Error setting up SSL_CTX\n");
- ERR_print_errors_fp(stderr);
- return 0;
- }
-
- /* Might do other things here like setting verify locations and
- * DH and/or RSA temporary key callbacks
- */
-
- /* New SSL BIO setup as server */
- sbio=BIO_new_ssl(ctx,0);
-
- BIO_get_ssl(sbio, &ssl);
-
- if(!ssl) {
- fprintf(stderr, "Can't locate SSL pointer\n");
- /* whatever ... */
- }
-
- /* Don't want any retries */
- SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY);
-
- /* Create the buffering BIO */
-
- bbio = BIO_new(BIO_f_buffer());
-
- /* Add to chain */
- sbio = BIO_push(bbio, sbio);
-
- acpt=BIO_new_accept("4433");
-
- /* By doing this when a new connection is established
- * we automatically have sbio inserted into it. The
- * BIO chain is now 'swallowed' by the accept BIO and
- * will be freed when the accept BIO is freed.
- */
-
- BIO_set_accept_bios(acpt,sbio);
-
- out = BIO_new_fp(stdout, BIO_NOCLOSE);
-
- /* Setup accept BIO */
- if(BIO_do_accept(acpt) <= 0) {
- fprintf(stderr, "Error setting up accept BIO\n");
- ERR_print_errors_fp(stderr);
- return 0;
- }
-
- /* Now wait for incoming connection */
- if(BIO_do_accept(acpt) <= 0) {
- fprintf(stderr, "Error in connection\n");
- ERR_print_errors_fp(stderr);
- return 0;
- }
-
- /* We only want one connection so remove and free
- * accept BIO
- */
-
- sbio = BIO_pop(acpt);
-
- BIO_free_all(acpt);
-
- if(BIO_do_handshake(sbio) <= 0) {
- fprintf(stderr, "Error in SSL handshake\n");
- ERR_print_errors_fp(stderr);
- return 0;
- }
-
- BIO_puts(sbio, "HTTP/1.0 200 OK\r\nContent-type: text/plain\r\n\r\n");
- BIO_puts(sbio, "\r\nConnection Established\r\nRequest headers:\r\n");
- BIO_puts(sbio, "--------------------------------------------------\r\n");
-
- for(;;) {
- len = BIO_gets(sbio, tmpbuf, 1024);
- if(len <= 0) break;
- BIO_write(sbio, tmpbuf, len);
- BIO_write(out, tmpbuf, len);
- /* Look for blank line signifying end of headers*/
- if((tmpbuf[0] == '\r') || (tmpbuf[0] == '\n')) break;
- }
-
- BIO_puts(sbio, "--------------------------------------------------\r\n");
- BIO_puts(sbio, "\r\n");
-
- /* Since there is a buffering BIO present we had better flush it */
- BIO_flush(sbio);
-
- BIO_free_all(sbio);
-
-=head1 BUGS
-
-In OpenSSL versions before 1.0.0 the BIO_pop() call was handled incorrectly,
-the I/O BIO reference count was incorrectly incremented (instead of
-decremented) and dissociated with the SSL BIO even if the SSL BIO was not
-explicitly being popped (e.g. a pop higher up the chain). Applications which
-included workarounds for this bug (e.g. freeing BIOs more than once) should
-be modified to handle this fix or they may free up an already freed BIO.
-
-=head1 SEE ALSO
-
-TBA
--- /dev/null
+=pod
+
+=head1 NAME
+
+BUF_MEM_new, BUF_MEM_free, BUF_MEM_grow, BUF_strdup - simple
+character arrays structure
+
+=head1 SYNOPSIS
+
+ #include <openssl/buffer.h>
+
+ BUF_MEM *BUF_MEM_new(void);
+
+ void BUF_MEM_free(BUF_MEM *a);
+
+ int BUF_MEM_grow(BUF_MEM *str, int len);
+
+ char * BUF_strdup(const char *str);
+
+=head1 DESCRIPTION
+
+The buffer library handles simple character arrays. Buffers are used for
+various purposes in the library, most notably memory BIOs.
+
+The library uses the BUF_MEM structure defined in buffer.h:
+
+ typedef struct buf_mem_st
+ {
+ int length; /* current number of bytes */
+ char *data;
+ int max; /* size of buffer */
+ } BUF_MEM;
+
+B<length> is the current size of the buffer in bytes, B<max> is the amount of
+memory allocated to the buffer. There are three functions which handle these
+and one "miscellaneous" function.
+
+BUF_MEM_new() allocates a new buffer of zero size.
+
+BUF_MEM_free() frees up an already existing buffer. The data is zeroed
+before freeing up in case the buffer contains sensitive data.
+
+BUF_MEM_grow() changes the size of an already existing buffer to
+B<len>. Any data already in the buffer is preserved if it increases in
+size.
+
+BUF_strdup() copies a null terminated string into a block of allocated
+memory and returns a pointer to the allocated block.
+Unlike the standard C library strdup() this function uses OPENSSL_malloc() and so
+should be used in preference to the standard library strdup() because it can
+be used for memory leak checking or replacing the malloc() function.
+
+The memory allocated from BUF_strdup() should be freed up using the OPENSSL_free()
+function.
+
+=head1 RETURN VALUES
+
+BUF_MEM_new() returns the buffer or NULL on error.
+
+BUF_MEM_free() has no return value.
+
+BUF_MEM_grow() returns zero on error or the new size (i.e. B<len>).
+
+=head1 SEE ALSO
+
+L<bio(3)|bio(3)>
+
+=head1 HISTORY
+
+BUF_MEM_new(), BUF_MEM_free() and BUF_MEM_grow() are available in all
+versions of SSLeay and OpenSSL. BUF_strdup() was added in SSLeay 0.8.
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+CRYPTO_THREADID_set_callback, CRYPTO_THREADID_get_callback,
+CRYPTO_THREADID_current, CRYPTO_THREADID_cmp, CRYPTO_THREADID_cpy,
+CRYPTO_THREADID_hash, CRYPTO_set_locking_callback, CRYPTO_num_locks,
+CRYPTO_set_dynlock_create_callback, CRYPTO_set_dynlock_lock_callback,
+CRYPTO_set_dynlock_destroy_callback, CRYPTO_get_new_dynlockid,
+CRYPTO_destroy_dynlockid, CRYPTO_lock - OpenSSL thread support
+
+=head1 SYNOPSIS
+
+ #include <openssl/crypto.h>
+
+ /* Don't use this structure directly. */
+ typedef struct crypto_threadid_st
+ {
+ void *ptr;
+ unsigned long val;
+ } CRYPTO_THREADID;
+ /* Only use CRYPTO_THREADID_set_[numeric|pointer]() within callbacks */
+ void CRYPTO_THREADID_set_numeric(CRYPTO_THREADID *id, unsigned long val);
+ void CRYPTO_THREADID_set_pointer(CRYPTO_THREADID *id, void *ptr);
+ int CRYPTO_THREADID_set_callback(void (*threadid_func)(CRYPTO_THREADID *));
+ void (*CRYPTO_THREADID_get_callback(void))(CRYPTO_THREADID *);
+ void CRYPTO_THREADID_current(CRYPTO_THREADID *id);
+ int CRYPTO_THREADID_cmp(const CRYPTO_THREADID *a,
+ const CRYPTO_THREADID *b);
+ void CRYPTO_THREADID_cpy(CRYPTO_THREADID *dest,
+ const CRYPTO_THREADID *src);
+ unsigned long CRYPTO_THREADID_hash(const CRYPTO_THREADID *id);
+
+ int CRYPTO_num_locks(void);
+
+ /* struct CRYPTO_dynlock_value needs to be defined by the user */
+ struct CRYPTO_dynlock_value;
+
+ void CRYPTO_set_dynlock_create_callback(struct CRYPTO_dynlock_value *
+ (*dyn_create_function)(char *file, int line));
+ void CRYPTO_set_dynlock_lock_callback(void (*dyn_lock_function)
+ (int mode, struct CRYPTO_dynlock_value *l,
+ const char *file, int line));
+ void CRYPTO_set_dynlock_destroy_callback(void (*dyn_destroy_function)
+ (struct CRYPTO_dynlock_value *l, const char *file, int line));
+
+ int CRYPTO_get_new_dynlockid(void);
+
+ void CRYPTO_destroy_dynlockid(int i);
+
+ void CRYPTO_lock(int mode, int n, const char *file, int line);
+
+ #define CRYPTO_w_lock(type) \
+ CRYPTO_lock(CRYPTO_LOCK|CRYPTO_WRITE,type,__FILE__,__LINE__)
+ #define CRYPTO_w_unlock(type) \
+ CRYPTO_lock(CRYPTO_UNLOCK|CRYPTO_WRITE,type,__FILE__,__LINE__)
+ #define CRYPTO_r_lock(type) \
+ CRYPTO_lock(CRYPTO_LOCK|CRYPTO_READ,type,__FILE__,__LINE__)
+ #define CRYPTO_r_unlock(type) \
+ CRYPTO_lock(CRYPTO_UNLOCK|CRYPTO_READ,type,__FILE__,__LINE__)
+ #define CRYPTO_add(addr,amount,type) \
+ CRYPTO_add_lock(addr,amount,type,__FILE__,__LINE__)
+
+=head1 DESCRIPTION
+
+OpenSSL can safely be used in multi-threaded applications provided
+that at least two callback functions are set, locking_function and
+threadid_func.
+
+locking_function(int mode, int n, const char *file, int line) is
+needed to perform locking on shared data structures.
+(Note that OpenSSL uses a number of global data structures that
+will be implicitly shared whenever multiple threads use OpenSSL.)
+Multi-threaded applications will crash at random if it is not set.
+
+locking_function() must be able to handle up to CRYPTO_num_locks()
+different mutex locks. It sets the B<n>-th lock if B<mode> &
+B<CRYPTO_LOCK>, and releases it otherwise.
+
+B<file> and B<line> are the file number of the function setting the
+lock. They can be useful for debugging.
+
+threadid_func(CRYPTO_THREADID *id) is needed to record the currently-executing
+thread's identifier into B<id>. The implementation of this callback should not
+fill in B<id> directly, but should use CRYPTO_THREADID_set_numeric() if thread
+IDs are numeric, or CRYPTO_THREADID_set_pointer() if they are pointer-based.
+If the application does not register such a callback using
+CRYPTO_THREADID_set_callback(), then a default implementation is used - on
+Windows and BeOS this uses the system's default thread identifying APIs, and on
+all other platforms it uses the address of B<errno>. The latter is satisfactory
+for thread-safety if and only if the platform has a thread-local error number
+facility.
+
+Once threadid_func() is registered, or if the built-in default implementation is
+to be used;
+
+=over 4
+
+=item *
+CRYPTO_THREADID_current() records the currently-executing thread ID into the
+given B<id> object.
+
+=item *
+CRYPTO_THREADID_cmp() compares two thread IDs (returning zero for equality, ie.
+the same semantics as memcmp()).
+
+=item *
+CRYPTO_THREADID_cpy() duplicates a thread ID value,
+
+=item *
+CRYPTO_THREADID_hash() returns a numeric value usable as a hash-table key. This
+is usually the exact numeric or pointer-based thread ID used internally, however
+this also handles the unusual case where pointers are larger than 'long'
+variables and the platform's thread IDs are pointer-based - in this case, mixing
+is done to attempt to produce a unique numeric value even though it is not as
+wide as the platform's true thread IDs.
+
+=back
+
+Additionally, OpenSSL supports dynamic locks, and sometimes, some parts
+of OpenSSL need it for better performance. To enable this, the following
+is required:
+
+=over 4
+
+=item *
+Three additional callback function, dyn_create_function, dyn_lock_function
+and dyn_destroy_function.
+
+=item *
+A structure defined with the data that each lock needs to handle.
+
+=back
+
+struct CRYPTO_dynlock_value has to be defined to contain whatever structure
+is needed to handle locks.
+
+dyn_create_function(const char *file, int line) is needed to create a
+lock. Multi-threaded applications might crash at random if it is not set.
+
+dyn_lock_function(int mode, CRYPTO_dynlock *l, const char *file, int line)
+is needed to perform locking off dynamic lock numbered n. Multi-threaded
+applications might crash at random if it is not set.
+
+dyn_destroy_function(CRYPTO_dynlock *l, const char *file, int line) is
+needed to destroy the lock l. Multi-threaded applications might crash at
+random if it is not set.
+
+CRYPTO_get_new_dynlockid() is used to create locks. It will call
+dyn_create_function for the actual creation.
+
+CRYPTO_destroy_dynlockid() is used to destroy locks. It will call
+dyn_destroy_function for the actual destruction.
+
+CRYPTO_lock() is used to lock and unlock the locks. mode is a bitfield
+describing what should be done with the lock. n is the number of the
+lock as returned from CRYPTO_get_new_dynlockid(). mode can be combined
+from the following values. These values are pairwise exclusive, with
+undefined behaviour if misused (for example, CRYPTO_READ and CRYPTO_WRITE
+should not be used together):
+
+ CRYPTO_LOCK 0x01
+ CRYPTO_UNLOCK 0x02
+ CRYPTO_READ 0x04
+ CRYPTO_WRITE 0x08
+
+=head1 RETURN VALUES
+
+CRYPTO_num_locks() returns the required number of locks.
+
+CRYPTO_get_new_dynlockid() returns the index to the newly created lock.
+
+The other functions return no values.
+
+=head1 NOTES
+
+You can find out if OpenSSL was configured with thread support:
+
+ #define OPENSSL_THREAD_DEFINES
+ #include <openssl/opensslconf.h>
+ #if defined(OPENSSL_THREADS)
+ // thread support enabled
+ #else
+ // no thread support
+ #endif
+
+Also, dynamic locks are currently not used internally by OpenSSL, but
+may do so in the future.
+
+=head1 EXAMPLES
+
+B<crypto/threads/mttest.c> shows examples of the callback functions on
+Solaris, Irix and Win32.
+
+=head1 HISTORY
+
+CRYPTO_set_locking_callback() is
+available in all versions of SSLeay and OpenSSL.
+CRYPTO_num_locks() was added in OpenSSL 0.9.4.
+All functions dealing with dynamic locks were added in OpenSSL 0.9.5b-dev.
+B<CRYPTO_THREADID> and associated functions were introduced in OpenSSL 1.0.0
+to replace (actually, deprecate) the previous CRYPTO_set_id_callback(),
+CRYPTO_get_id_callback(), and CRYPTO_thread_id() functions which assumed
+thread IDs to always be represented by 'unsigned long'.
+
+=head1 SEE ALSO
+
+L<crypto(3)|crypto(3)>
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked,
+DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key,
+DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt,
+DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
+DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt,
+DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt,
+DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
+DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys,
+DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write - DES encryption
+
+=head1 SYNOPSIS
+
+ #include <openssl/des.h>
+
+ void DES_random_key(DES_cblock *ret);
+
+ int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
+ int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
+ int DES_set_key_checked(const_DES_cblock *key,
+ DES_key_schedule *schedule);
+ void DES_set_key_unchecked(const_DES_cblock *key,
+ DES_key_schedule *schedule);
+
+ void DES_set_odd_parity(DES_cblock *key);
+ int DES_is_weak_key(const_DES_cblock *key);
+
+ void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
+ DES_key_schedule *ks, int enc);
+ void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
+ DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
+ void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
+ DES_key_schedule *ks1, DES_key_schedule *ks2,
+ DES_key_schedule *ks3, int enc);
+
+ void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
+ long length, DES_key_schedule *schedule, DES_cblock *ivec,
+ int enc);
+ void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
+ int numbits, long length, DES_key_schedule *schedule,
+ DES_cblock *ivec, int enc);
+ void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
+ int numbits, long length, DES_key_schedule *schedule,
+ DES_cblock *ivec);
+ void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
+ long length, DES_key_schedule *schedule, DES_cblock *ivec,
+ int enc);
+ void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
+ long length, DES_key_schedule *schedule, DES_cblock *ivec,
+ int *num, int enc);
+ void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
+ long length, DES_key_schedule *schedule, DES_cblock *ivec,
+ int *num);
+
+ void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
+ long length, DES_key_schedule *schedule, DES_cblock *ivec,
+ const_DES_cblock *inw, const_DES_cblock *outw, int enc);
+
+ void DES_ede2_cbc_encrypt(const unsigned char *input,
+ unsigned char *output, long length, DES_key_schedule *ks1,
+ DES_key_schedule *ks2, DES_cblock *ivec, int enc);
+ void DES_ede2_cfb64_encrypt(const unsigned char *in,
+ unsigned char *out, long length, DES_key_schedule *ks1,
+ DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);
+ void DES_ede2_ofb64_encrypt(const unsigned char *in,
+ unsigned char *out, long length, DES_key_schedule *ks1,
+ DES_key_schedule *ks2, DES_cblock *ivec, int *num);
+
+ void DES_ede3_cbc_encrypt(const unsigned char *input,
+ unsigned char *output, long length, DES_key_schedule *ks1,
+ DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
+ int enc);
+ void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
+ long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
+ DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2,
+ int enc);
+ void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
+ long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
+ DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);
+ void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
+ long length, DES_key_schedule *ks1,
+ DES_key_schedule *ks2, DES_key_schedule *ks3,
+ DES_cblock *ivec, int *num);
+
+ DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
+ long length, DES_key_schedule *schedule,
+ const_DES_cblock *ivec);
+ DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
+ long length, int out_count, DES_cblock *seed);
+ void DES_string_to_key(const char *str, DES_cblock *key);
+ void DES_string_to_2keys(const char *str, DES_cblock *key1,
+ DES_cblock *key2);
+
+ char *DES_fcrypt(const char *buf, const char *salt, char *ret);
+ char *DES_crypt(const char *buf, const char *salt);
+
+ int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
+ DES_cblock *iv);
+ int DES_enc_write(int fd, const void *buf, int len,
+ DES_key_schedule *sched, DES_cblock *iv);
+
+=head1 DESCRIPTION
+
+This library contains a fast implementation of the DES encryption
+algorithm.
+
+There are two phases to the use of DES encryption. The first is the
+generation of a I<DES_key_schedule> from a key, the second is the
+actual encryption. A DES key is of type I<DES_cblock>. This type is
+consists of 8 bytes with odd parity. The least significant bit in
+each byte is the parity bit. The key schedule is an expanded form of
+the key; it is used to speed the encryption process.
+
+DES_random_key() generates a random key. The PRNG must be seeded
+prior to using this function (see L<rand(3)|rand(3)>). If the PRNG
+could not generate a secure key, 0 is returned.
+
+Before a DES key can be used, it must be converted into the
+architecture dependent I<DES_key_schedule> via the
+DES_set_key_checked() or DES_set_key_unchecked() function.
+
+DES_set_key_checked() will check that the key passed is of odd parity
+and is not a week or semi-weak key. If the parity is wrong, then -1
+is returned. If the key is a weak key, then -2 is returned. If an
+error is returned, the key schedule is not generated.
+
+DES_set_key() works like
+DES_set_key_checked() if the I<DES_check_key> flag is non-zero,
+otherwise like DES_set_key_unchecked(). These functions are available
+for compatibility; it is recommended to use a function that does not
+depend on a global variable.
+
+DES_set_odd_parity() sets the parity of the passed I<key> to odd.
+
+DES_is_weak_key() returns 1 is the passed key is a weak key, 0 if it
+is ok. The probability that a randomly generated key is weak is
+1/2^52, so it is not really worth checking for them.
+
+The following routines mostly operate on an input and output stream of
+I<DES_cblock>s.
+
+DES_ecb_encrypt() is the basic DES encryption routine that encrypts or
+decrypts a single 8-byte I<DES_cblock> in I<electronic code book>
+(ECB) mode. It always transforms the input data, pointed to by
+I<input>, into the output data, pointed to by the I<output> argument.
+If the I<encrypt> argument is non-zero (DES_ENCRYPT), the I<input>
+(cleartext) is encrypted in to the I<output> (ciphertext) using the
+key_schedule specified by the I<schedule> argument, previously set via
+I<DES_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now
+ciphertext) is decrypted into the I<output> (now cleartext). Input
+and output may overlap. DES_ecb_encrypt() does not return a value.
+
+DES_ecb3_encrypt() encrypts/decrypts the I<input> block by using
+three-key Triple-DES encryption in ECB mode. This involves encrypting
+the input with I<ks1>, decrypting with the key schedule I<ks2>, and
+then encrypting with I<ks3>. This routine greatly reduces the chances
+of brute force breaking of DES and has the advantage of if I<ks1>,
+I<ks2> and I<ks3> are the same, it is equivalent to just encryption
+using ECB mode and I<ks1> as the key.
+
+The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES
+encryption by using I<ks1> for the final encryption.
+
+DES_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining>
+(CBC) mode of DES. If the I<encrypt> argument is non-zero, the
+routine cipher-block-chain encrypts the cleartext data pointed to by
+the I<input> argument into the ciphertext pointed to by the I<output>
+argument, using the key schedule provided by the I<schedule> argument,
+and initialization vector provided by the I<ivec> argument. If the
+I<length> argument is not an integral multiple of eight bytes, the
+last block is copied to a temporary area and zero filled. The output
+is always an integral multiple of eight bytes.
+
+DES_xcbc_encrypt() is RSA's DESX mode of DES. It uses I<inw> and
+I<outw> to 'whiten' the encryption. I<inw> and I<outw> are secret
+(unlike the iv) and are as such, part of the key. So the key is sort
+of 24 bytes. This is much better than CBC DES.
+
+DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with
+three keys. This means that each DES operation inside the CBC mode is
+really an C<C=E(ks3,D(ks2,E(ks1,M)))>. This mode is used by SSL.
+
+The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by
+reusing I<ks1> for the final encryption. C<C=E(ks1,D(ks2,E(ks1,M)))>.
+This form of Triple-DES is used by the RSAREF library.
+
+DES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block
+chaining mode used by Kerberos v4. Its parameters are the same as
+DES_ncbc_encrypt().
+
+DES_cfb_encrypt() encrypt/decrypts using cipher feedback mode. This
+method takes an array of characters as input and outputs and array of
+characters. It does not require any padding to 8 character groups.
+Note: the I<ivec> variable is changed and the new changed value needs to
+be passed to the next call to this function. Since this function runs
+a complete DES ECB encryption per I<numbits>, this function is only
+suggested for use when sending small numbers of characters.
+
+DES_cfb64_encrypt()
+implements CFB mode of DES with 64bit feedback. Why is this
+useful you ask? Because this routine will allow you to encrypt an
+arbitrary number of bytes, no 8 byte padding. Each call to this
+routine will encrypt the input bytes to output and then update ivec
+and num. num contains 'how far' we are though ivec. If this does
+not make much sense, read more about cfb mode of DES :-).
+
+DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as
+DES_cfb64_encrypt() except that Triple-DES is used.
+
+DES_ofb_encrypt() encrypts using output feedback mode. This method
+takes an array of characters as input and outputs and array of
+characters. It does not require any padding to 8 character groups.
+Note: the I<ivec> variable is changed and the new changed value needs to
+be passed to the next call to this function. Since this function runs
+a complete DES ECB encryption per numbits, this function is only
+suggested for use when sending small numbers of characters.
+
+DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output
+Feed Back mode.
+
+DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as
+DES_ofb64_encrypt(), using Triple-DES.
+
+The following functions are included in the DES library for
+compatibility with the MIT Kerberos library.
+
+DES_cbc_cksum() produces an 8 byte checksum based on the input stream
+(via CBC encryption). The last 4 bytes of the checksum are returned
+and the complete 8 bytes are placed in I<output>. This function is
+used by Kerberos v4. Other applications should use
+L<EVP_DigestInit(3)|EVP_DigestInit(3)> etc. instead.
+
+DES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte
+checksum from the input bytes. The algorithm can be iterated over the
+input, depending on I<out_count>, 1, 2, 3 or 4 times. If I<output> is
+non-NULL, the 8 bytes generated by each pass are written into
+I<output>.
+
+The following are DES-based transformations:
+
+DES_fcrypt() is a fast version of the Unix crypt(3) function. This
+version takes only a small amount of space relative to other fast
+crypt() implementations. This is different to the normal crypt in
+that the third parameter is the buffer that the return value is
+written into. It needs to be at least 14 bytes long. This function
+is thread safe, unlike the normal crypt.
+
+DES_crypt() is a faster replacement for the normal system crypt().
+This function calls DES_fcrypt() with a static array passed as the
+third parameter. This emulates the normal non-thread safe semantics
+of crypt(3).
+
+DES_enc_write() writes I<len> bytes to file descriptor I<fd> from
+buffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default)
+using I<sched> for the key and I<iv> as a starting vector. The actual
+data send down I<fd> consists of 4 bytes (in network byte order)
+containing the length of the following encrypted data. The encrypted
+data then follows, padded with random data out to a multiple of 8
+bytes.
+
+DES_enc_read() is used to read I<len> bytes from file descriptor
+I<fd> into buffer I<buf>. The data being read from I<fd> is assumed to
+have come from DES_enc_write() and is decrypted using I<sched> for
+the key schedule and I<iv> for the initial vector.
+
+B<Warning:> The data format used by DES_enc_write() and DES_enc_read()
+has a cryptographic weakness: When asked to write more than MAXWRITE
+bytes, DES_enc_write() will split the data into several chunks that
+are all encrypted using the same IV. So don't use these functions
+unless you are sure you know what you do (in which case you might not
+want to use them anyway). They cannot handle non-blocking sockets.
+DES_enc_read() uses an internal state and thus cannot be used on
+multiple files.
+
+I<DES_rw_mode> is used to specify the encryption mode to use with
+DES_enc_read() and DES_end_write(). If set to I<DES_PCBC_MODE> (the
+default), DES_pcbc_encrypt is used. If set to I<DES_CBC_MODE>
+DES_cbc_encrypt is used.
+
+=head1 NOTES
+
+Single-key DES is insecure due to its short key size. ECB mode is
+not suitable for most applications; see L<des_modes(7)|des_modes(7)>.
+
+The L<evp(3)|evp(3)> library provides higher-level encryption functions.
+
+=head1 BUGS
+
+DES_3cbc_encrypt() is flawed and must not be used in applications.
+
+DES_cbc_encrypt() does not modify B<ivec>; use DES_ncbc_encrypt()
+instead.
+
+DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits.
+What this means is that if you set numbits to 12, and length to 2, the
+first 12 bits will come from the 1st input byte and the low half of
+the second input byte. The second 12 bits will have the low 8 bits
+taken from the 3rd input byte and the top 4 bits taken from the 4th
+input byte. The same holds for output. This function has been
+implemented this way because most people will be using a multiple of 8
+and because once you get into pulling bytes input bytes apart things
+get ugly!
+
+DES_string_to_key() is available for backward compatibility with the
+MIT library. New applications should use a cryptographic hash function.
+The same applies for DES_string_to_2key().
+
+=head1 CONFORMING TO
+
+ANSI X3.106
+
+The B<des> library was written to be source code compatible with
+the MIT Kerberos library.
+
+=head1 SEE ALSO
+
+crypt(3), L<des_modes(7)|des_modes(7)>, L<evp(3)|evp(3)>, L<rand(3)|rand(3)>
+
+=head1 HISTORY
+
+In OpenSSL 0.9.7, all des_ functions were renamed to DES_ to avoid
+clashes with older versions of libdes. Compatibility des_ functions
+are provided for a short while, as well as crypt().
+Declarations for these are in <openssl/des_old.h>. There is no DES_
+variant for des_random_seed().
+This will happen to other functions
+as well if they are deemed redundant (des_random_seed() just calls
+RAND_seed() and is present for backward compatibility only), buggy or
+already scheduled for removal.
+
+des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(),
+des_is_weak_key(), des_key_sched(), des_pcbc_encrypt(),
+des_quad_cksum(), des_random_key() and des_string_to_key()
+are available in the MIT Kerberos library;
+des_check_key_parity(), des_fixup_key_parity() and des_is_weak_key()
+are available in newer versions of that library.
+
+des_set_key_checked() and des_set_key_unchecked() were added in
+OpenSSL 0.9.5.
+
+des_generate_random_block(), des_init_random_number_generator(),
+des_new_random_key(), des_set_random_generator_seed() and
+des_set_sequence_number() and des_rand_data() are used in newer
+versions of Kerberos but are not implemented here.
+
+des_random_key() generated cryptographically weak random data in
+SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
+MIT library.
+
+=head1 AUTHOR
+
+Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
+(http://www.openssl.org).
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+err - error codes
+
+=head1 SYNOPSIS
+
+ #include <openssl/err.h>
+
+ unsigned long ERR_get_error(void);
+ unsigned long ERR_peek_error(void);
+ unsigned long ERR_get_error_line(const char **file, int *line);
+ unsigned long ERR_peek_error_line(const char **file, int *line);
+ unsigned long ERR_get_error_line_data(const char **file, int *line,
+ const char **data, int *flags);
+ unsigned long ERR_peek_error_line_data(const char **file, int *line,
+ const char **data, int *flags);
+
+ int ERR_GET_LIB(unsigned long e);
+ int ERR_GET_FUNC(unsigned long e);
+ int ERR_GET_REASON(unsigned long e);
+
+ void ERR_clear_error(void);
+
+ char *ERR_error_string(unsigned long e, char *buf);
+ const char *ERR_lib_error_string(unsigned long e);
+ const char *ERR_func_error_string(unsigned long e);
+ const char *ERR_reason_error_string(unsigned long e);
+
+ void ERR_print_errors(BIO *bp);
+ void ERR_print_errors_fp(FILE *fp);
+
+ void ERR_load_crypto_strings(void);
+ void ERR_free_strings(void);
+
+ void ERR_remove_state(unsigned long pid);
+
+ void ERR_put_error(int lib, int func, int reason, const char *file,
+ int line);
+ void ERR_add_error_data(int num, ...);
+
+ void ERR_load_strings(int lib,ERR_STRING_DATA str[]);
+ unsigned long ERR_PACK(int lib, int func, int reason);
+ int ERR_get_next_error_library(void);
+
+=head1 DESCRIPTION
+
+When a call to the OpenSSL library fails, this is usually signalled
+by the return value, and an error code is stored in an error queue
+associated with the current thread. The B<err> library provides
+functions to obtain these error codes and textual error messages.
+
+The L<ERR_get_error(3)|ERR_get_error(3)> manpage describes how to
+access error codes.
+
+Error codes contain information about where the error occurred, and
+what went wrong. L<ERR_GET_LIB(3)|ERR_GET_LIB(3)> describes how to
+extract this information. A method to obtain human-readable error
+messages is described in L<ERR_error_string(3)|ERR_error_string(3)>.
+
+L<ERR_clear_error(3)|ERR_clear_error(3)> can be used to clear the
+error queue.
+
+Note that L<ERR_remove_state(3)|ERR_remove_state(3)> should be used to
+avoid memory leaks when threads are terminated.
+
+=head1 ADDING NEW ERROR CODES TO OPENSSL
+
+See L<ERR_put_error(3)> if you want to record error codes in the
+OpenSSL error system from within your application.
+
+The remainder of this section is of interest only if you want to add
+new error codes to OpenSSL or add error codes from external libraries.
+
+=head2 Reporting errors
+
+Each sub-library has a specific macro XXXerr() that is used to report
+errors. Its first argument is a function code B<XXX_F_...>, the second
+argument is a reason code B<XXX_R_...>. Function codes are derived
+from the function names; reason codes consist of textual error
+descriptions. For example, the function ssl23_read() reports a
+"handshake failure" as follows:
+
+ SSLerr(SSL_F_SSL23_READ, SSL_R_SSL_HANDSHAKE_FAILURE);
+
+Function and reason codes should consist of upper case characters,
+numbers and underscores only. The error file generation script translates
+function codes into function names by looking in the header files
+for an appropriate function name, if none is found it just uses
+the capitalized form such as "SSL23_READ" in the above example.
+
+The trailing section of a reason code (after the "_R_") is translated
+into lower case and underscores changed to spaces.
+
+When you are using new function or reason codes, run B<make errors>.
+The necessary B<#define>s will then automatically be added to the
+sub-library's header file.
+
+Although a library will normally report errors using its own specific
+XXXerr macro, another library's macro can be used. This is normally
+only done when a library wants to include ASN1 code which must use
+the ASN1err() macro.
+
+=head2 Adding new libraries
+
+When adding a new sub-library to OpenSSL, assign it a library number
+B<ERR_LIB_XXX>, define a macro XXXerr() (both in B<err.h>), add its
+name to B<ERR_str_libraries[]> (in B<crypto/err/err.c>), and add
+C<ERR_load_XXX_strings()> to the ERR_load_crypto_strings() function
+(in B<crypto/err/err_all.c>). Finally, add an entry
+
+ L XXX xxx.h xxx_err.c
+
+to B<crypto/err/openssl.ec>, and add B<xxx_err.c> to the Makefile.
+Running B<make errors> will then generate a file B<xxx_err.c>, and
+add all error codes used in the library to B<xxx.h>.
+
+Additionally the library include file must have a certain form.
+Typically it will initially look like this:
+
+ #ifndef HEADER_XXX_H
+ #define HEADER_XXX_H
+
+ #ifdef __cplusplus
+ extern "C" {
+ #endif
+
+ /* Include files */
+
+ #include <openssl/bio.h>
+ #include <openssl/x509.h>
+
+ /* Macros, structures and function prototypes */
+
+
+ /* BEGIN ERROR CODES */
+
+The B<BEGIN ERROR CODES> sequence is used by the error code
+generation script as the point to place new error codes, any text
+after this point will be overwritten when B<make errors> is run.
+The closing #endif etc will be automatically added by the script.
+
+The generated C error code file B<xxx_err.c> will load the header
+files B<stdio.h>, B<openssl/err.h> and B<openssl/xxx.h> so the
+header file must load any additional header files containing any
+definitions it uses.
+
+=head1 USING ERROR CODES IN EXTERNAL LIBRARIES
+
+It is also possible to use OpenSSL's error code scheme in external
+libraries. The library needs to load its own codes and call the OpenSSL
+error code insertion script B<mkerr.pl> explicitly to add codes to
+the header file and generate the C error code file. This will normally
+be done if the external library needs to generate new ASN1 structures
+but it can also be used to add more general purpose error code handling.
+
+TBA more details
+
+=head1 INTERNALS
+
+The error queues are stored in a hash table with one B<ERR_STATE>
+entry for each pid. ERR_get_state() returns the current thread's
+B<ERR_STATE>. An B<ERR_STATE> can hold up to B<ERR_NUM_ERRORS> error
+codes. When more error codes are added, the old ones are overwritten,
+on the assumption that the most recent errors are most important.
+
+Error strings are also stored in hash table. The hash tables can
+be obtained by calling ERR_get_err_state_table(void) and
+ERR_get_string_table(void) respectively.
+
+=head1 SEE ALSO
+
+L<CRYPTO_set_id_callback(3)|CRYPTO_set_id_callback(3)>,
+L<CRYPTO_set_locking_callback(3)|CRYPTO_set_locking_callback(3)>,
+L<ERR_get_error(3)|ERR_get_error(3)>,
+L<ERR_GET_LIB(3)|ERR_GET_LIB(3)>,
+L<ERR_clear_error(3)|ERR_clear_error(3)>,
+L<ERR_error_string(3)|ERR_error_string(3)>,
+L<ERR_print_errors(3)|ERR_print_errors(3)>,
+L<ERR_load_crypto_strings(3)|ERR_load_crypto_strings(3)>,
+L<ERR_remove_state(3)|ERR_remove_state(3)>,
+L<ERR_put_error(3)|ERR_put_error(3)>,
+L<ERR_load_strings(3)|ERR_load_strings(3)>,
+L<SSL_get_error(3)|SSL_get_error(3)>
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+HMAC, HMAC_Init, HMAC_Update, HMAC_Final, HMAC_cleanup - HMAC message
+authentication code
+
+=head1 SYNOPSIS
+
+ #include <openssl/hmac.h>
+
+ unsigned char *HMAC(const EVP_MD *evp_md, const void *key,
+ int key_len, const unsigned char *d, int n,
+ unsigned char *md, unsigned int *md_len);
+
+ void HMAC_CTX_init(HMAC_CTX *ctx);
+
+ int HMAC_Init(HMAC_CTX *ctx, const void *key, int key_len,
+ const EVP_MD *md);
+ int HMAC_Init_ex(HMAC_CTX *ctx, const void *key, int key_len,
+ const EVP_MD *md, ENGINE *impl);
+ int HMAC_Update(HMAC_CTX *ctx, const unsigned char *data, int len);
+ int HMAC_Final(HMAC_CTX *ctx, unsigned char *md, unsigned int *len);
+
+ void HMAC_CTX_cleanup(HMAC_CTX *ctx);
+ void HMAC_cleanup(HMAC_CTX *ctx);
+
+=head1 DESCRIPTION
+
+HMAC is a MAC (message authentication code), i.e. a keyed hash
+function used for message authentication, which is based on a hash
+function.
+
+HMAC() computes the message authentication code of the B<n> bytes at
+B<d> using the hash function B<evp_md> and the key B<key> which is
+B<key_len> bytes long.
+
+It places the result in B<md> (which must have space for the output of
+the hash function, which is no more than B<EVP_MAX_MD_SIZE> bytes).
+If B<md> is NULL, the digest is placed in a static array. The size of
+the output is placed in B<md_len>, unless it is B<NULL>.
+
+B<evp_md> can be EVP_sha1(), EVP_ripemd160() etc.
+
+HMAC_CTX_init() initialises a B<HMAC_CTX> before first use. It must be
+called.
+
+HMAC_CTX_cleanup() erases the key and other data from the B<HMAC_CTX>
+and releases any associated resources. It must be called when an
+B<HMAC_CTX> is no longer required.
+
+HMAC_cleanup() is an alias for HMAC_CTX_cleanup() included for back
+compatibility with 0.9.6b, it is deprecated.
+
+The following functions may be used if the message is not completely
+stored in memory:
+
+HMAC_Init() initializes a B<HMAC_CTX> structure to use the hash
+function B<evp_md> and the key B<key> which is B<key_len> bytes
+long. It is deprecated and only included for backward compatibility
+with OpenSSL 0.9.6b.
+
+HMAC_Init_ex() initializes or reuses a B<HMAC_CTX> structure to use
+the function B<evp_md> and key B<key>. Either can be NULL, in which
+case the existing one will be reused. HMAC_CTX_init() must have been
+called before the first use of an B<HMAC_CTX> in this
+function. B<N.B. HMAC_Init() had this undocumented behaviour in
+previous versions of OpenSSL - failure to switch to HMAC_Init_ex() in
+programs that expect it will cause them to stop working>.
+
+HMAC_Update() can be called repeatedly with chunks of the message to
+be authenticated (B<len> bytes at B<data>).
+
+HMAC_Final() places the message authentication code in B<md>, which
+must have space for the hash function output.
+
+=head1 RETURN VALUES
+
+HMAC() returns a pointer to the message authentication code or NULL if
+an error occurred.
+
+HMAC_Init_ex(), HMAC_Update() and HMAC_Final() return 1 for success or 0 if
+an error occurred.
+
+HMAC_CTX_init() and HMAC_CTX_cleanup() do not return values.
+
+=head1 CONFORMING TO
+
+RFC 2104
+
+=head1 SEE ALSO
+
+L<sha(3)|sha(3)>, L<evp(3)|evp(3)>
+
+=head1 HISTORY
+
+HMAC(), HMAC_Init(), HMAC_Update(), HMAC_Final() and HMAC_cleanup()
+are available since SSLeay 0.9.0.
+
+HMAC_CTX_init(), HMAC_Init_ex() and HMAC_CTX_cleanup() are available
+since OpenSSL 0.9.7.
+
+HMAC_Init_ex(), HMAC_Update() and HMAC_Final() did not return values in
+versions of OpenSSL before 1.0.0.
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+MD2, MD4, MD5, MD2_Init, MD2_Update, MD2_Final, MD4_Init, MD4_Update,
+MD4_Final, MD5_Init, MD5_Update, MD5_Final - MD2, MD4, and MD5 hash functions
+
+=head1 SYNOPSIS
+
+ #include <openssl/md2.h>
+
+ unsigned char *MD2(const unsigned char *d, unsigned long n,
+ unsigned char *md);
+
+ int MD2_Init(MD2_CTX *c);
+ int MD2_Update(MD2_CTX *c, const unsigned char *data,
+ unsigned long len);
+ int MD2_Final(unsigned char *md, MD2_CTX *c);
+
+
+ #include <openssl/md4.h>
+
+ unsigned char *MD4(const unsigned char *d, unsigned long n,
+ unsigned char *md);
+
+ int MD4_Init(MD4_CTX *c);
+ int MD4_Update(MD4_CTX *c, const void *data,
+ unsigned long len);
+ int MD4_Final(unsigned char *md, MD4_CTX *c);
+
+
+ #include <openssl/md5.h>
+
+ unsigned char *MD5(const unsigned char *d, unsigned long n,
+ unsigned char *md);
+
+ int MD5_Init(MD5_CTX *c);
+ int MD5_Update(MD5_CTX *c, const void *data,
+ unsigned long len);
+ int MD5_Final(unsigned char *md, MD5_CTX *c);
+
+=head1 DESCRIPTION
+
+MD2, MD4, and MD5 are cryptographic hash functions with a 128 bit output.
+
+MD2(), MD4(), and MD5() compute the MD2, MD4, and MD5 message digest
+of the B<n> bytes at B<d> and place it in B<md> (which must have space
+for MD2_DIGEST_LENGTH == MD4_DIGEST_LENGTH == MD5_DIGEST_LENGTH == 16
+bytes of output). If B<md> is NULL, the digest is placed in a static
+array.
+
+The following functions may be used if the message is not completely
+stored in memory:
+
+MD2_Init() initializes a B<MD2_CTX> structure.
+
+MD2_Update() can be called repeatedly with chunks of the message to
+be hashed (B<len> bytes at B<data>).
+
+MD2_Final() places the message digest in B<md>, which must have space
+for MD2_DIGEST_LENGTH == 16 bytes of output, and erases the B<MD2_CTX>.
+
+MD4_Init(), MD4_Update(), MD4_Final(), MD5_Init(), MD5_Update(), and
+MD5_Final() are analogous using an B<MD4_CTX> and B<MD5_CTX> structure.
+
+Applications should use the higher level functions
+L<EVP_DigestInit(3)|EVP_DigestInit(3)>
+etc. instead of calling the hash functions directly.
+
+=head1 NOTE
+
+MD2, MD4, and MD5 are recommended only for compatibility with existing
+applications. In new applications, SHA-1 or RIPEMD-160 should be
+preferred.
+
+=head1 RETURN VALUES
+
+MD2(), MD4(), and MD5() return pointers to the hash value.
+
+MD2_Init(), MD2_Update(), MD2_Final(), MD4_Init(), MD4_Update(),
+MD4_Final(), MD5_Init(), MD5_Update(), and MD5_Final() return 1 for
+success, 0 otherwise.
+
+=head1 CONFORMING TO
+
+RFC 1319, RFC 1320, RFC 1321
+
+=head1 SEE ALSO
+
+L<sha(3)|sha(3)>, L<ripemd(3)|ripemd(3)>, L<EVP_DigestInit(3)|EVP_DigestInit(3)>
+
+=head1 HISTORY
+
+MD2(), MD2_Init(), MD2_Update() MD2_Final(), MD5(), MD5_Init(),
+MD5_Update() and MD5_Final() are available in all versions of SSLeay
+and OpenSSL.
+
+MD4(), MD4_Init(), and MD4_Update() are available in OpenSSL 0.9.6 and
+above.
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+PEM, PEM_read_bio_PrivateKey, PEM_read_PrivateKey, PEM_write_bio_PrivateKey, PEM_write_PrivateKey, PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey, PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid, PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY, PEM_write_PUBKEY, PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey, PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey, PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey, PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY, PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey, PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey, PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY, PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams, PEM_read_DSAparams, PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams, PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams, PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509, PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX, PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ, PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW, PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL, PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7, PEM_write_bio_PKCS7, PEM_write_PKCS7, PEM_read_bio_NETSCAPE_CERT_SEQUENCE, PEM_read_NETSCAPE_CERT_SEQUENCE, PEM_write_bio_NETSCAPE_CERT_SEQUENCE, PEM_write_NETSCAPE_CERT_SEQUENCE - PEM routines
+
+=head1 SYNOPSIS
+
+ #include <openssl/pem.h>
+
+ EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
+ pem_password_cb *cb, void *u);
+
+ EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
+ unsigned char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
+ unsigned char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
+ char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
+ char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
+ char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
+ char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
+ pem_password_cb *cb, void *u);
+
+ EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
+ int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
+
+ RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
+ pem_password_cb *cb, void *u);
+
+ RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
+ unsigned char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
+ unsigned char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
+ pem_password_cb *cb, void *u);
+
+ RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
+
+ int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
+
+ RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
+ pem_password_cb *cb, void *u);
+
+ RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
+
+ int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
+
+ DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
+ pem_password_cb *cb, void *u);
+
+ DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
+ unsigned char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
+ unsigned char *kstr, int klen,
+ pem_password_cb *cb, void *u);
+
+ DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
+ pem_password_cb *cb, void *u);
+
+ DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
+
+ int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
+
+ DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
+
+ DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
+
+ int PEM_write_DSAparams(FILE *fp, DSA *x);
+
+ DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
+
+ DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_DHparams(BIO *bp, DH *x);
+
+ int PEM_write_DHparams(FILE *fp, DH *x);
+
+ X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
+
+ X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_X509(BIO *bp, X509 *x);
+
+ int PEM_write_X509(FILE *fp, X509 *x);
+
+ X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
+
+ X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
+
+ int PEM_write_X509_AUX(FILE *fp, X509 *x);
+
+ X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
+ pem_password_cb *cb, void *u);
+
+ X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
+
+ int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
+
+ int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
+
+ int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
+
+ X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
+ pem_password_cb *cb, void *u);
+ X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
+ pem_password_cb *cb, void *u);
+ int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
+ int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
+
+ PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
+
+ PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
+
+ int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
+
+ NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp,
+ NETSCAPE_CERT_SEQUENCE **x,
+ pem_password_cb *cb, void *u);
+
+ NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp,
+ NETSCAPE_CERT_SEQUENCE **x,
+ pem_password_cb *cb, void *u);
+
+ int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);
+
+ int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);
+
+=head1 DESCRIPTION
+
+The PEM functions read or write structures in PEM format. In
+this sense PEM format is simply base64 encoded data surrounded
+by header lines.
+
+For more details about the meaning of arguments see the
+B<PEM FUNCTION ARGUMENTS> section.
+
+Each operation has four functions associated with it. For
+clarity the term "B<foobar> functions" will be used to collectively
+refer to the PEM_read_bio_foobar(), PEM_read_foobar(),
+PEM_write_bio_foobar() and PEM_write_foobar() functions.
+
+The B<PrivateKey> functions read or write a private key in
+PEM format using an EVP_PKEY structure. The write routines use
+"traditional" private key format and can handle both RSA and DSA
+private keys. The read functions can additionally transparently
+handle PKCS#8 format encrypted and unencrypted keys too.
+
+PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey()
+write a private key in an EVP_PKEY structure in PKCS#8
+EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based encryption
+algorithms. The B<cipher> argument specifies the encryption algorithm to
+use: unlike all other PEM routines the encryption is applied at the
+PKCS#8 level and not in the PEM headers. If B<cipher> is NULL then no
+encryption is used and a PKCS#8 PrivateKeyInfo structure is used instead.
+
+PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
+also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however
+it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm
+to use is specified in the B<nid> parameter and should be the NID of the
+corresponding OBJECT IDENTIFIER (see NOTES section).
+
+The B<PUBKEY> functions process a public key using an EVP_PKEY
+structure. The public key is encoded as a SubjectPublicKeyInfo
+structure.
+
+The B<RSAPrivateKey> functions process an RSA private key using an
+RSA structure. It handles the same formats as the B<PrivateKey>
+functions but an error occurs if the private key is not RSA.
+
+The B<RSAPublicKey> functions process an RSA public key using an
+RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey
+structure.
+
+The B<RSA_PUBKEY> functions also process an RSA public key using
+an RSA structure. However the public key is encoded using a
+SubjectPublicKeyInfo structure and an error occurs if the public
+key is not RSA.
+
+The B<DSAPrivateKey> functions process a DSA private key using a
+DSA structure. It handles the same formats as the B<PrivateKey>
+functions but an error occurs if the private key is not DSA.
+
+The B<DSA_PUBKEY> functions process a DSA public key using
+a DSA structure. The public key is encoded using a
+SubjectPublicKeyInfo structure and an error occurs if the public
+key is not DSA.
+
+The B<DSAparams> functions process DSA parameters using a DSA
+structure. The parameters are encoded using a foobar structure.
+
+The B<DHparams> functions process DH parameters using a DH
+structure. The parameters are encoded using a PKCS#3 DHparameter
+structure.
+
+The B<X509> functions process an X509 certificate using an X509
+structure. They will also process a trusted X509 certificate but
+any trust settings are discarded.
+
+The B<X509_AUX> functions process a trusted X509 certificate using
+an X509 structure.
+
+The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10
+certificate request using an X509_REQ structure. The B<X509_REQ>
+write functions use B<CERTIFICATE REQUEST> in the header whereas
+the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST>
+(as required by some CAs). The B<X509_REQ> read functions will
+handle either form so there are no B<X509_REQ_NEW> read functions.
+
+The B<X509_CRL> functions process an X509 CRL using an X509_CRL
+structure.
+
+The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7
+structure.
+
+The B<NETSCAPE_CERT_SEQUENCE> functions process a Netscape Certificate
+Sequence using a NETSCAPE_CERT_SEQUENCE structure.
+
+=head1 PEM FUNCTION ARGUMENTS
+
+The PEM functions have many common arguments.
+
+The B<bp> BIO parameter (if present) specifies the BIO to read from
+or write to.
+
+The B<fp> FILE parameter (if present) specifies the FILE pointer to
+read from or write to.
+
+The PEM read functions all take an argument B<TYPE **x> and return
+a B<TYPE *> pointer. Where B<TYPE> is whatever structure the function
+uses. If B<x> is NULL then the parameter is ignored. If B<x> is not
+NULL but B<*x> is NULL then the structure returned will be written
+to B<*x>. If neither B<x> nor B<*x> is NULL then an attempt is made
+to reuse the structure at B<*x> (but see BUGS and EXAMPLES sections).
+Irrespective of the value of B<x> a pointer to the structure is always
+returned (or NULL if an error occurred).
+
+The PEM functions which write private keys take an B<enc> parameter
+which specifies the encryption algorithm to use, encryption is done
+at the PEM level. If this parameter is set to NULL then the private
+key is written in unencrypted form.
+
+The B<cb> argument is the callback to use when querying for the pass
+phrase used for encrypted PEM structures (normally only private keys).
+
+For the PEM write routines if the B<kstr> parameter is not NULL then
+B<klen> bytes at B<kstr> are used as the passphrase and B<cb> is
+ignored.
+
+If the B<cb> parameters is set to NULL and the B<u> parameter is not
+NULL then the B<u> parameter is interpreted as a null terminated string
+to use as the passphrase. If both B<cb> and B<u> are NULL then the
+default callback routine is used which will typically prompt for the
+passphrase on the current terminal with echoing turned off.
+
+The default passphrase callback is sometimes inappropriate (for example
+in a GUI application) so an alternative can be supplied. The callback
+routine has the following form:
+
+ int cb(char *buf, int size, int rwflag, void *u);
+
+B<buf> is the buffer to write the passphrase to. B<size> is the maximum
+length of the passphrase (i.e. the size of buf). B<rwflag> is a flag
+which is set to 0 when reading and 1 when writing. A typical routine
+will ask the user to verify the passphrase (for example by prompting
+for it twice) if B<rwflag> is 1. The B<u> parameter has the same
+value as the B<u> parameter passed to the PEM routine. It allows
+arbitrary data to be passed to the callback by the application
+(for example a window handle in a GUI application). The callback
+B<must> return the number of characters in the passphrase or 0 if
+an error occurred.
+
+=head1 EXAMPLES
+
+Although the PEM routines take several arguments in almost all applications
+most of them are set to 0 or NULL.
+
+Read a certificate in PEM format from a BIO:
+
+ X509 *x;
+ x = PEM_read_bio_X509(bp, NULL, 0, NULL);
+ if (x == NULL)
+ {
+ /* Error */
+ }
+
+Alternative method:
+
+ X509 *x = NULL;
+ if (!PEM_read_bio_X509(bp, &x, 0, NULL))
+ {
+ /* Error */
+ }
+
+Write a certificate to a BIO:
+
+ if (!PEM_write_bio_X509(bp, x))
+ {
+ /* Error */
+ }
+
+Write an unencrypted private key to a FILE pointer:
+
+ if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
+ {
+ /* Error */
+ }
+
+Write a private key (using traditional format) to a BIO using
+triple DES encryption, the pass phrase is prompted for:
+
+ if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
+ {
+ /* Error */
+ }
+
+Write a private key (using PKCS#8 format) to a BIO using triple
+DES encryption, using the pass phrase "hello":
+
+ if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello"))
+ {
+ /* Error */
+ }
+
+Read a private key from a BIO using the pass phrase "hello":
+
+ key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello");
+ if (key == NULL)
+ {
+ /* Error */
+ }
+
+Read a private key from a BIO using a pass phrase callback:
+
+ key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
+ if (key == NULL)
+ {
+ /* Error */
+ }
+
+Skeleton pass phrase callback:
+
+ int pass_cb(char *buf, int size, int rwflag, void *u);
+ {
+ int len;
+ char *tmp;
+ /* We'd probably do something else if 'rwflag' is 1 */
+ printf("Enter pass phrase for \"%s\"\n", u);
+
+ /* get pass phrase, length 'len' into 'tmp' */
+ tmp = "hello";
+ len = strlen(tmp);
+
+ if (len <= 0) return 0;
+ /* if too long, truncate */
+ if (len > size) len = size;
+ memcpy(buf, tmp, len);
+ return len;
+ }
+
+=head1 NOTES
+
+The old B<PrivateKey> write routines are retained for compatibility.
+New applications should write private keys using the
+PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
+because they are more secure (they use an iteration count of 2048 whereas
+the traditional routines use a count of 1) unless compatibility with older
+versions of OpenSSL is important.
+
+The B<PrivateKey> read routines can be used in all applications because
+they handle all formats transparently.
+
+A frequent cause of problems is attempting to use the PEM routines like
+this:
+
+ X509 *x;
+ PEM_read_bio_X509(bp, &x, 0, NULL);
+
+this is a bug because an attempt will be made to reuse the data at B<x>
+which is an uninitialised pointer.
+
+=head1 PEM ENCRYPTION FORMAT
+
+This old B<PrivateKey> routines use a non standard technique for encryption.
+
+The private key (or other data) takes the following form:
+
+ -----BEGIN RSA PRIVATE KEY-----
+ Proc-Type: 4,ENCRYPTED
+ DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
+
+ ...base64 encoded data...
+ -----END RSA PRIVATE KEY-----
+
+The line beginning DEK-Info contains two comma separated pieces of information:
+the encryption algorithm name as used by EVP_get_cipherbyname() and an 8
+byte B<salt> encoded as a set of hexadecimal digits.
+
+After this is the base64 encoded encrypted data.
+
+The encryption key is determined using EVP_bytestokey(), using B<salt> and an
+iteration count of 1. The IV used is the value of B<salt> and *not* the IV
+returned by EVP_bytestokey().
+
+=head1 BUGS
+
+The PEM read routines in some versions of OpenSSL will not correctly reuse
+an existing structure. Therefore the following:
+
+ PEM_read_bio_X509(bp, &x, 0, NULL);
+
+where B<x> already contains a valid certificate, may not work, whereas:
+
+ X509_free(x);
+ x = PEM_read_bio_X509(bp, NULL, 0, NULL);
+
+is guaranteed to work.
+
+=head1 RETURN CODES
+
+The read routines return either a pointer to the structure read or NULL
+if an error occurred.
+
+The write routines return 1 for success or 0 for failure.
--- /dev/null
+=pod
+
+=head1 NAME
+
+rand - pseudo-random number generator
+
+=head1 SYNOPSIS
+
+ #include <openssl/rand.h>
+
+ int RAND_set_rand_engine(ENGINE *engine);
+
+ int RAND_bytes(unsigned char *buf, int num);
+ int RAND_pseudo_bytes(unsigned char *buf, int num);
+
+ void RAND_seed(const void *buf, int num);
+ void RAND_add(const void *buf, int num, int entropy);
+ int RAND_status(void);
+
+ int RAND_load_file(const char *file, long max_bytes);
+ int RAND_write_file(const char *file);
+ const char *RAND_file_name(char *file, size_t num);
+
+ int RAND_egd(const char *path);
+
+ void RAND_set_rand_method(const RAND_METHOD *meth);
+ const RAND_METHOD *RAND_get_rand_method(void);
+ RAND_METHOD *RAND_SSLeay(void);
+
+ void RAND_cleanup(void);
+
+=head1 DESCRIPTION
+
+Since the introduction of the ENGINE API, the recommended way of controlling
+default implementations is by using the ENGINE API functions. The default
+B<RAND_METHOD>, as set by RAND_set_rand_method() and returned by
+RAND_get_rand_method(), is only used if no ENGINE has been set as the default
+"rand" implementation. Hence, these two functions are no longer the recommened
+way to control defaults.
+
+If an alternative B<RAND_METHOD> implementation is being used (either set
+directly or as provided by an ENGINE module), then it is entirely responsible
+for the generation and management of a cryptographically secure PRNG stream. The
+mechanisms described below relate solely to the software PRNG implementation
+built in to OpenSSL and used by default.
+
+These functions implement a cryptographically secure pseudo-random
+number generator (PRNG). It is used by other library functions for
+example to generate random keys, and applications can use it when they
+need randomness.
+
+A cryptographic PRNG must be seeded with unpredictable data such as
+mouse movements or keys pressed at random by the user. This is
+described in L<RAND_add(3)|RAND_add(3)>. Its state can be saved in a seed file
+(see L<RAND_load_file(3)|RAND_load_file(3)>) to avoid having to go through the
+seeding process whenever the application is started.
+
+L<RAND_bytes(3)|RAND_bytes(3)> describes how to obtain random data from the
+PRNG.
+
+=head1 INTERNALS
+
+The RAND_SSLeay() method implements a PRNG based on the systems'
+L<arc4random_buf(3)> random number generator.
+
+=head1 SEE ALSO
+
+L<BN_rand(3)|BN_rand(3)>, L<RAND_add(3)|RAND_add(3)>,
+L<RAND_load_file(3)|RAND_load_file(3)>, L<RAND_egd(3)|RAND_egd(3)>,
+L<RAND_bytes(3)|RAND_bytes(3)>,
+L<RAND_set_rand_method(3)|RAND_set_rand_method(3)>,
+L<RAND_cleanup(3)|RAND_cleanup(3)>
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+RC4_set_key, RC4 - RC4 encryption
+
+=head1 SYNOPSIS
+
+ #include <openssl/rc4.h>
+
+ void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);
+
+ void RC4(RC4_KEY *key, unsigned long len, const unsigned char *indata,
+ unsigned char *outdata);
+
+=head1 DESCRIPTION
+
+This library implements the Alleged RC4 cipher, which is described for
+example in I<Applied Cryptography>. It is believed to be compatible
+with RC4[TM], a proprietary cipher of RSA Security Inc.
+
+RC4 is a stream cipher with variable key length. Typically, 128 bit
+(16 byte) keys are used for strong encryption, but shorter insecure
+key sizes have been widely used due to export restrictions.
+
+RC4 consists of a key setup phase and the actual encryption or
+decryption phase.
+
+RC4_set_key() sets up the B<RC4_KEY> B<key> using the B<len> bytes long
+key at B<data>.
+
+RC4() encrypts or decrypts the B<len> bytes of data at B<indata> using
+B<key> and places the result at B<outdata>. Repeated RC4() calls with
+the same B<key> yield a continuous key stream.
+
+Since RC4 is a stream cipher (the input is XORed with a pseudo-random
+key stream to produce the output), decryption uses the same function
+calls as encryption.
+
+Applications should use the higher level functions
+L<EVP_EncryptInit(3)|EVP_EncryptInit(3)>
+etc. instead of calling the RC4 functions directly.
+
+=head1 RETURN VALUES
+
+RC4_set_key() and RC4() do not return values.
+
+=head1 NOTE
+
+Certain conditions have to be observed to securely use stream ciphers.
+It is not permissible to perform multiple encryptions using the same
+key stream.
+
+=head1 SEE ALSO
+
+L<blowfish(3)|blowfish(3)>, L<des(3)|des(3)>, L<rc2(3)|rc2(3)>
+
+=head1 HISTORY
+
+RC4_set_key() and RC4() are available in all versions of SSLeay and OpenSSL.
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+RIPEMD160, RIPEMD160_Init, RIPEMD160_Update, RIPEMD160_Final -
+RIPEMD-160 hash function
+
+=head1 SYNOPSIS
+
+ #include <openssl/ripemd.h>
+
+ unsigned char *RIPEMD160(const unsigned char *d, unsigned long n,
+ unsigned char *md);
+
+ int RIPEMD160_Init(RIPEMD160_CTX *c);
+ int RIPEMD160_Update(RIPEMD_CTX *c, const void *data,
+ unsigned long len);
+ int RIPEMD160_Final(unsigned char *md, RIPEMD160_CTX *c);
+
+=head1 DESCRIPTION
+
+RIPEMD-160 is a cryptographic hash function with a
+160 bit output.
+
+RIPEMD160() computes the RIPEMD-160 message digest of the B<n>
+bytes at B<d> and places it in B<md> (which must have space for
+RIPEMD160_DIGEST_LENGTH == 20 bytes of output). If B<md> is NULL, the digest
+is placed in a static array.
+
+The following functions may be used if the message is not completely
+stored in memory:
+
+RIPEMD160_Init() initializes a B<RIPEMD160_CTX> structure.
+
+RIPEMD160_Update() can be called repeatedly with chunks of the message to
+be hashed (B<len> bytes at B<data>).
+
+RIPEMD160_Final() places the message digest in B<md>, which must have
+space for RIPEMD160_DIGEST_LENGTH == 20 bytes of output, and erases
+the B<RIPEMD160_CTX>.
+
+Applications should use the higher level functions
+L<EVP_DigestInit(3)|EVP_DigestInit(3)> etc. instead of calling the
+hash functions directly.
+
+=head1 RETURN VALUES
+
+RIPEMD160() returns a pointer to the hash value.
+
+RIPEMD160_Init(), RIPEMD160_Update() and RIPEMD160_Final() return 1 for
+success, 0 otherwise.
+
+=head1 CONFORMING TO
+
+ISO/IEC 10118-3 (draft) (??)
+
+=head1 SEE ALSO
+
+L<sha(3)|sha(3)>, L<hmac(3)|hmac(3)>, L<EVP_DigestInit(3)|EVP_DigestInit(3)>
+
+=head1 HISTORY
+
+RIPEMD160(), RIPEMD160_Init(), RIPEMD160_Update() and
+RIPEMD160_Final() are available since SSLeay 0.9.0.
+
+=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+SHA1, SHA1_Init, SHA1_Update, SHA1_Final - Secure Hash Algorithm
+
+=head1 SYNOPSIS
+
+ #include <openssl/sha.h>
+
+ unsigned char *SHA1(const unsigned char *d, unsigned long n,
+ unsigned char *md);
+
+ int SHA1_Init(SHA_CTX *c);
+ int SHA1_Update(SHA_CTX *c, const void *data,
+ unsigned long len);
+ int SHA1_Final(unsigned char *md, SHA_CTX *c);
+
+=head1 DESCRIPTION
+
+SHA-1 (Secure Hash Algorithm) is a cryptographic hash function with a
+160 bit output.
+
+SHA1() computes the SHA-1 message digest of the B<n>
+bytes at B<d> and places it in B<md> (which must have space for
+SHA_DIGEST_LENGTH == 20 bytes of output). If B<md> is NULL, the digest
+is placed in a static array.
+
+The following functions may be used if the message is not completely
+stored in memory:
+
+SHA1_Init() initializes a B<SHA_CTX> structure.
+
+SHA1_Update() can be called repeatedly with chunks of the message to
+be hashed (B<len> bytes at B<data>).
+
+SHA1_Final() places the message digest in B<md>, which must have space
+for SHA_DIGEST_LENGTH == 20 bytes of output, and erases the B<SHA_CTX>.
+
+Applications should use the higher level functions
+L<EVP_DigestInit(3)|EVP_DigestInit(3)>
+etc. instead of calling the hash functions directly.
+
+The predecessor of SHA-1, SHA, is also implemented, but it should be
+used only when backward compatibility is required.
+
+=head1 RETURN VALUES
+
+SHA1() returns a pointer to the hash value.
+
+SHA1_Init(), SHA1_Update() and SHA1_Final() return 1 for success, 0 otherwise.
+
+=head1 CONFORMING TO
+
+SHA: US Federal Information Processing Standard FIPS PUB 180 (Secure Hash
+Standard),
+SHA-1: US Federal Information Processing Standard FIPS PUB 180-1 (Secure Hash
+Standard),
+ANSI X9.30
+
+=head1 SEE ALSO
+
+L<ripemd(3)|ripemd(3)>, L<hmac(3)|hmac(3)>, L<EVP_DigestInit(3)|EVP_DigestInit(3)>
+
+=head1 HISTORY
+
+SHA1(), SHA1_Init(), SHA1_Update() and SHA1_Final() are available in all
+versions of SSLeay and OpenSSL.
+
+=cut
+++ /dev/null
-=pod
-
-=head1 NAME
-
-bio - I/O abstraction
-
-=head1 SYNOPSIS
-
- #include <openssl/bio.h>
-
-TBA
-
-
-=head1 DESCRIPTION
-
-A BIO is an I/O abstraction, it hides many of the underlying I/O
-details from an application. If an application uses a BIO for its
-I/O it can transparently handle SSL connections, unencrypted network
-connections and file I/O.
-
-There are two type of BIO, a source/sink BIO and a filter BIO.
-
-As its name implies a source/sink BIO is a source and/or sink of data,
-examples include a socket BIO and a file BIO.
-
-A filter BIO takes data from one BIO and passes it through to
-another, or the application. The data may be left unmodified (for
-example a message digest BIO) or translated (for example an
-encryption BIO). The effect of a filter BIO may change according
-to the I/O operation it is performing: for example an encryption
-BIO will encrypt data if it is being written to and decrypt data
-if it is being read from.
-
-BIOs can be joined together to form a chain (a single BIO is a chain
-with one component). A chain normally consist of one source/sink
-BIO and one or more filter BIOs. Data read from or written to the
-first BIO then traverses the chain to the end (normally a source/sink
-BIO).
-
-=head1 SEE ALSO
-
-L<BIO_ctrl(3)|BIO_ctrl(3)>,
-L<BIO_f_base64(3)|BIO_f_base64(3)>, L<BIO_f_buffer(3)|BIO_f_buffer(3)>,
-L<BIO_f_cipher(3)|BIO_f_cipher(3)>, L<BIO_f_md(3)|BIO_f_md(3)>,
-L<BIO_f_null(3)|BIO_f_null(3)>, L<BIO_f_ssl(3)|BIO_f_ssl(3)>,
-L<BIO_find_type(3)|BIO_find_type(3)>, L<BIO_new(3)|BIO_new(3)>,
-L<BIO_new_bio_pair(3)|BIO_new_bio_pair(3)>,
-L<BIO_push(3)|BIO_push(3)>, L<BIO_read(3)|BIO_read(3)>,
-L<BIO_s_accept(3)|BIO_s_accept(3)>, L<BIO_s_bio(3)|BIO_s_bio(3)>,
-L<BIO_s_connect(3)|BIO_s_connect(3)>, L<BIO_s_fd(3)|BIO_s_fd(3)>,
-L<BIO_s_file(3)|BIO_s_file(3)>, L<BIO_s_mem(3)|BIO_s_mem(3)>,
-L<BIO_s_null(3)|BIO_s_null(3)>, L<BIO_s_socket(3)|BIO_s_socket(3)>,
-L<BIO_set_callback(3)|BIO_set_callback(3)>,
-L<BIO_should_retry(3)|BIO_should_retry(3)>
+++ /dev/null
-=pod
-
-=head1 NAME
-
-blowfish, BF_set_key, BF_encrypt, BF_decrypt, BF_ecb_encrypt, BF_cbc_encrypt,
-BF_cfb64_encrypt, BF_ofb64_encrypt, BF_options - Blowfish encryption
-
-=head1 SYNOPSIS
-
- #include <openssl/blowfish.h>
-
- void BF_set_key(BF_KEY *key, int len, const unsigned char *data);
-
- void BF_ecb_encrypt(const unsigned char *in, unsigned char *out,
- BF_KEY *key, int enc);
- void BF_cbc_encrypt(const unsigned char *in, unsigned char *out,
- long length, BF_KEY *schedule, unsigned char *ivec, int enc);
- void BF_cfb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, BF_KEY *schedule, unsigned char *ivec, int *num,
- int enc);
- void BF_ofb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, BF_KEY *schedule, unsigned char *ivec, int *num);
- const char *BF_options(void);
-
- void BF_encrypt(BF_LONG *data,const BF_KEY *key);
- void BF_decrypt(BF_LONG *data,const BF_KEY *key);
-
-=head1 DESCRIPTION
-
-This library implements the Blowfish cipher, which was invented and described
-by Counterpane (see http://www.counterpane.com/blowfish.html ).
-
-Blowfish is a block cipher that operates on 64 bit (8 byte) blocks of data.
-It uses a variable size key, but typically, 128 bit (16 byte) keys are
-considered good for strong encryption. Blowfish can be used in the same
-modes as DES (see L<des_modes(7)|des_modes(7)>). Blowfish is currently one
-of the faster block ciphers. It is quite a bit faster than DES, and much
-faster than IDEA or RC2.
-
-Blowfish consists of a key setup phase and the actual encryption or decryption
-phase.
-
-BF_set_key() sets up the B<BF_KEY> B<key> using the B<len> bytes long key
-at B<data>.
-
-BF_ecb_encrypt() is the basic Blowfish encryption and decryption function.
-It encrypts or decrypts the first 64 bits of B<in> using the key B<key>,
-putting the result in B<out>. B<enc> decides if encryption (B<BF_ENCRYPT>)
-or decryption (B<BF_DECRYPT>) shall be performed. The vector pointed at by
-B<in> and B<out> must be 64 bits in length, no less. If they are larger,
-everything after the first 64 bits is ignored.
-
-The mode functions BF_cbc_encrypt(), BF_cfb64_encrypt() and BF_ofb64_encrypt()
-all operate on variable length data. They all take an initialization vector
-B<ivec> which needs to be passed along into the next call of the same function
-for the same message. B<ivec> may be initialized with anything, but the
-recipient needs to know what it was initialized with, or it won't be able
-to decrypt. Some programs and protocols simplify this, like SSH, where
-B<ivec> is simply initialized to zero.
-BF_cbc_encrypt() operates on data that is a multiple of 8 bytes long, while
-BF_cfb64_encrypt() and BF_ofb64_encrypt() are used to encrypt an variable
-number of bytes (the amount does not have to be an exact multiple of 8). The
-purpose of the latter two is to simulate stream ciphers, and therefore, they
-need the parameter B<num>, which is a pointer to an integer where the current
-offset in B<ivec> is stored between calls. This integer must be initialized
-to zero when B<ivec> is initialized.
-
-BF_cbc_encrypt() is the Cipher Block Chaining function for Blowfish. It
-encrypts or decrypts the 64 bits chunks of B<in> using the key B<schedule>,
-putting the result in B<out>. B<enc> decides if encryption (BF_ENCRYPT) or
-decryption (BF_DECRYPT) shall be performed. B<ivec> must point at an 8 byte
-long initialization vector.
-
-BF_cfb64_encrypt() is the CFB mode for Blowfish with 64 bit feedback.
-It encrypts or decrypts the bytes in B<in> using the key B<schedule>,
-putting the result in B<out>. B<enc> decides if encryption (B<BF_ENCRYPT>)
-or decryption (B<BF_DECRYPT>) shall be performed. B<ivec> must point at an
-8 byte long initialization vector. B<num> must point at an integer which must
-be initially zero.
-
-BF_ofb64_encrypt() is the OFB mode for Blowfish with 64 bit feedback.
-It uses the same parameters as BF_cfb64_encrypt(), which must be initialized
-the same way.
-
-BF_encrypt() and BF_decrypt() are the lowest level functions for Blowfish
-encryption. They encrypt/decrypt the first 64 bits of the vector pointed by
-B<data>, using the key B<key>. These functions should not be used unless you
-implement 'modes' of Blowfish. The alternative is to use BF_ecb_encrypt().
-If you still want to use these functions, you should be aware that they take
-each 32-bit chunk in host-byte order, which is little-endian on little-endian
-platforms and big-endian on big-endian ones.
-
-=head1 RETURN VALUES
-
-None of the functions presented here return any value.
-
-=head1 NOTE
-
-Applications should use the higher level functions
-L<EVP_EncryptInit(3)|EVP_EncryptInit(3)> etc. instead of calling the
-blowfish functions directly.
-
-=head1 SEE ALSO
-
-L<des_modes(7)|des_modes(7)>
-
-=head1 HISTORY
-
-The Blowfish functions are available in all versions of SSLeay and OpenSSL.
-
-=cut
-
+++ /dev/null
-=pod
-
-=head1 NAME
-
-BUF_MEM_new, BUF_MEM_free, BUF_MEM_grow, BUF_strdup - simple
-character arrays structure
-
-=head1 SYNOPSIS
-
- #include <openssl/buffer.h>
-
- BUF_MEM *BUF_MEM_new(void);
-
- void BUF_MEM_free(BUF_MEM *a);
-
- int BUF_MEM_grow(BUF_MEM *str, int len);
-
- char * BUF_strdup(const char *str);
-
-=head1 DESCRIPTION
-
-The buffer library handles simple character arrays. Buffers are used for
-various purposes in the library, most notably memory BIOs.
-
-The library uses the BUF_MEM structure defined in buffer.h:
-
- typedef struct buf_mem_st
- {
- int length; /* current number of bytes */
- char *data;
- int max; /* size of buffer */
- } BUF_MEM;
-
-B<length> is the current size of the buffer in bytes, B<max> is the amount of
-memory allocated to the buffer. There are three functions which handle these
-and one "miscellaneous" function.
-
-BUF_MEM_new() allocates a new buffer of zero size.
-
-BUF_MEM_free() frees up an already existing buffer. The data is zeroed
-before freeing up in case the buffer contains sensitive data.
-
-BUF_MEM_grow() changes the size of an already existing buffer to
-B<len>. Any data already in the buffer is preserved if it increases in
-size.
-
-BUF_strdup() copies a null terminated string into a block of allocated
-memory and returns a pointer to the allocated block.
-Unlike the standard C library strdup() this function uses OPENSSL_malloc() and so
-should be used in preference to the standard library strdup() because it can
-be used for memory leak checking or replacing the malloc() function.
-
-The memory allocated from BUF_strdup() should be freed up using the OPENSSL_free()
-function.
-
-=head1 RETURN VALUES
-
-BUF_MEM_new() returns the buffer or NULL on error.
-
-BUF_MEM_free() has no return value.
-
-BUF_MEM_grow() returns zero on error or the new size (i.e. B<len>).
-
-=head1 SEE ALSO
-
-L<bio(3)|bio(3)>
-
-=head1 HISTORY
-
-BUF_MEM_new(), BUF_MEM_free() and BUF_MEM_grow() are available in all
-versions of SSLeay and OpenSSL. BUF_strdup() was added in SSLeay 0.8.
-
-=cut
+++ /dev/null
-=pod
-
-=head1 NAME
-
-DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked,
-DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key,
-DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt,
-DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
-DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt,
-DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt,
-DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
-DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys,
-DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write - DES encryption
-
-=head1 SYNOPSIS
-
- #include <openssl/des.h>
-
- void DES_random_key(DES_cblock *ret);
-
- int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
- int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
- int DES_set_key_checked(const_DES_cblock *key,
- DES_key_schedule *schedule);
- void DES_set_key_unchecked(const_DES_cblock *key,
- DES_key_schedule *schedule);
-
- void DES_set_odd_parity(DES_cblock *key);
- int DES_is_weak_key(const_DES_cblock *key);
-
- void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
- DES_key_schedule *ks, int enc);
- void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
- DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
- void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
- DES_key_schedule *ks1, DES_key_schedule *ks2,
- DES_key_schedule *ks3, int enc);
-
- void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
- long length, DES_key_schedule *schedule, DES_cblock *ivec,
- int enc);
- void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
- int numbits, long length, DES_key_schedule *schedule,
- DES_cblock *ivec, int enc);
- void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
- int numbits, long length, DES_key_schedule *schedule,
- DES_cblock *ivec);
- void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
- long length, DES_key_schedule *schedule, DES_cblock *ivec,
- int enc);
- void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, DES_key_schedule *schedule, DES_cblock *ivec,
- int *num, int enc);
- void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, DES_key_schedule *schedule, DES_cblock *ivec,
- int *num);
-
- void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
- long length, DES_key_schedule *schedule, DES_cblock *ivec,
- const_DES_cblock *inw, const_DES_cblock *outw, int enc);
-
- void DES_ede2_cbc_encrypt(const unsigned char *input,
- unsigned char *output, long length, DES_key_schedule *ks1,
- DES_key_schedule *ks2, DES_cblock *ivec, int enc);
- void DES_ede2_cfb64_encrypt(const unsigned char *in,
- unsigned char *out, long length, DES_key_schedule *ks1,
- DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);
- void DES_ede2_ofb64_encrypt(const unsigned char *in,
- unsigned char *out, long length, DES_key_schedule *ks1,
- DES_key_schedule *ks2, DES_cblock *ivec, int *num);
-
- void DES_ede3_cbc_encrypt(const unsigned char *input,
- unsigned char *output, long length, DES_key_schedule *ks1,
- DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
- int enc);
- void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
- long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
- DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2,
- int enc);
- void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
- DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);
- void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
- long length, DES_key_schedule *ks1,
- DES_key_schedule *ks2, DES_key_schedule *ks3,
- DES_cblock *ivec, int *num);
-
- DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
- long length, DES_key_schedule *schedule,
- const_DES_cblock *ivec);
- DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
- long length, int out_count, DES_cblock *seed);
- void DES_string_to_key(const char *str, DES_cblock *key);
- void DES_string_to_2keys(const char *str, DES_cblock *key1,
- DES_cblock *key2);
-
- char *DES_fcrypt(const char *buf, const char *salt, char *ret);
- char *DES_crypt(const char *buf, const char *salt);
-
- int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
- DES_cblock *iv);
- int DES_enc_write(int fd, const void *buf, int len,
- DES_key_schedule *sched, DES_cblock *iv);
-
-=head1 DESCRIPTION
-
-This library contains a fast implementation of the DES encryption
-algorithm.
-
-There are two phases to the use of DES encryption. The first is the
-generation of a I<DES_key_schedule> from a key, the second is the
-actual encryption. A DES key is of type I<DES_cblock>. This type is
-consists of 8 bytes with odd parity. The least significant bit in
-each byte is the parity bit. The key schedule is an expanded form of
-the key; it is used to speed the encryption process.
-
-DES_random_key() generates a random key. The PRNG must be seeded
-prior to using this function (see L<rand(3)|rand(3)>). If the PRNG
-could not generate a secure key, 0 is returned.
-
-Before a DES key can be used, it must be converted into the
-architecture dependent I<DES_key_schedule> via the
-DES_set_key_checked() or DES_set_key_unchecked() function.
-
-DES_set_key_checked() will check that the key passed is of odd parity
-and is not a week or semi-weak key. If the parity is wrong, then -1
-is returned. If the key is a weak key, then -2 is returned. If an
-error is returned, the key schedule is not generated.
-
-DES_set_key() works like
-DES_set_key_checked() if the I<DES_check_key> flag is non-zero,
-otherwise like DES_set_key_unchecked(). These functions are available
-for compatibility; it is recommended to use a function that does not
-depend on a global variable.
-
-DES_set_odd_parity() sets the parity of the passed I<key> to odd.
-
-DES_is_weak_key() returns 1 is the passed key is a weak key, 0 if it
-is ok. The probability that a randomly generated key is weak is
-1/2^52, so it is not really worth checking for them.
-
-The following routines mostly operate on an input and output stream of
-I<DES_cblock>s.
-
-DES_ecb_encrypt() is the basic DES encryption routine that encrypts or
-decrypts a single 8-byte I<DES_cblock> in I<electronic code book>
-(ECB) mode. It always transforms the input data, pointed to by
-I<input>, into the output data, pointed to by the I<output> argument.
-If the I<encrypt> argument is non-zero (DES_ENCRYPT), the I<input>
-(cleartext) is encrypted in to the I<output> (ciphertext) using the
-key_schedule specified by the I<schedule> argument, previously set via
-I<DES_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now
-ciphertext) is decrypted into the I<output> (now cleartext). Input
-and output may overlap. DES_ecb_encrypt() does not return a value.
-
-DES_ecb3_encrypt() encrypts/decrypts the I<input> block by using
-three-key Triple-DES encryption in ECB mode. This involves encrypting
-the input with I<ks1>, decrypting with the key schedule I<ks2>, and
-then encrypting with I<ks3>. This routine greatly reduces the chances
-of brute force breaking of DES and has the advantage of if I<ks1>,
-I<ks2> and I<ks3> are the same, it is equivalent to just encryption
-using ECB mode and I<ks1> as the key.
-
-The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES
-encryption by using I<ks1> for the final encryption.
-
-DES_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining>
-(CBC) mode of DES. If the I<encrypt> argument is non-zero, the
-routine cipher-block-chain encrypts the cleartext data pointed to by
-the I<input> argument into the ciphertext pointed to by the I<output>
-argument, using the key schedule provided by the I<schedule> argument,
-and initialization vector provided by the I<ivec> argument. If the
-I<length> argument is not an integral multiple of eight bytes, the
-last block is copied to a temporary area and zero filled. The output
-is always an integral multiple of eight bytes.
-
-DES_xcbc_encrypt() is RSA's DESX mode of DES. It uses I<inw> and
-I<outw> to 'whiten' the encryption. I<inw> and I<outw> are secret
-(unlike the iv) and are as such, part of the key. So the key is sort
-of 24 bytes. This is much better than CBC DES.
-
-DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with
-three keys. This means that each DES operation inside the CBC mode is
-really an C<C=E(ks3,D(ks2,E(ks1,M)))>. This mode is used by SSL.
-
-The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by
-reusing I<ks1> for the final encryption. C<C=E(ks1,D(ks2,E(ks1,M)))>.
-This form of Triple-DES is used by the RSAREF library.
-
-DES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block
-chaining mode used by Kerberos v4. Its parameters are the same as
-DES_ncbc_encrypt().
-
-DES_cfb_encrypt() encrypt/decrypts using cipher feedback mode. This
-method takes an array of characters as input and outputs and array of
-characters. It does not require any padding to 8 character groups.
-Note: the I<ivec> variable is changed and the new changed value needs to
-be passed to the next call to this function. Since this function runs
-a complete DES ECB encryption per I<numbits>, this function is only
-suggested for use when sending small numbers of characters.
-
-DES_cfb64_encrypt()
-implements CFB mode of DES with 64bit feedback. Why is this
-useful you ask? Because this routine will allow you to encrypt an
-arbitrary number of bytes, no 8 byte padding. Each call to this
-routine will encrypt the input bytes to output and then update ivec
-and num. num contains 'how far' we are though ivec. If this does
-not make much sense, read more about cfb mode of DES :-).
-
-DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as
-DES_cfb64_encrypt() except that Triple-DES is used.
-
-DES_ofb_encrypt() encrypts using output feedback mode. This method
-takes an array of characters as input and outputs and array of
-characters. It does not require any padding to 8 character groups.
-Note: the I<ivec> variable is changed and the new changed value needs to
-be passed to the next call to this function. Since this function runs
-a complete DES ECB encryption per numbits, this function is only
-suggested for use when sending small numbers of characters.
-
-DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output
-Feed Back mode.
-
-DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as
-DES_ofb64_encrypt(), using Triple-DES.
-
-The following functions are included in the DES library for
-compatibility with the MIT Kerberos library.
-
-DES_cbc_cksum() produces an 8 byte checksum based on the input stream
-(via CBC encryption). The last 4 bytes of the checksum are returned
-and the complete 8 bytes are placed in I<output>. This function is
-used by Kerberos v4. Other applications should use
-L<EVP_DigestInit(3)|EVP_DigestInit(3)> etc. instead.
-
-DES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte
-checksum from the input bytes. The algorithm can be iterated over the
-input, depending on I<out_count>, 1, 2, 3 or 4 times. If I<output> is
-non-NULL, the 8 bytes generated by each pass are written into
-I<output>.
-
-The following are DES-based transformations:
-
-DES_fcrypt() is a fast version of the Unix crypt(3) function. This
-version takes only a small amount of space relative to other fast
-crypt() implementations. This is different to the normal crypt in
-that the third parameter is the buffer that the return value is
-written into. It needs to be at least 14 bytes long. This function
-is thread safe, unlike the normal crypt.
-
-DES_crypt() is a faster replacement for the normal system crypt().
-This function calls DES_fcrypt() with a static array passed as the
-third parameter. This emulates the normal non-thread safe semantics
-of crypt(3).
-
-DES_enc_write() writes I<len> bytes to file descriptor I<fd> from
-buffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default)
-using I<sched> for the key and I<iv> as a starting vector. The actual
-data send down I<fd> consists of 4 bytes (in network byte order)
-containing the length of the following encrypted data. The encrypted
-data then follows, padded with random data out to a multiple of 8
-bytes.
-
-DES_enc_read() is used to read I<len> bytes from file descriptor
-I<fd> into buffer I<buf>. The data being read from I<fd> is assumed to
-have come from DES_enc_write() and is decrypted using I<sched> for
-the key schedule and I<iv> for the initial vector.
-
-B<Warning:> The data format used by DES_enc_write() and DES_enc_read()
-has a cryptographic weakness: When asked to write more than MAXWRITE
-bytes, DES_enc_write() will split the data into several chunks that
-are all encrypted using the same IV. So don't use these functions
-unless you are sure you know what you do (in which case you might not
-want to use them anyway). They cannot handle non-blocking sockets.
-DES_enc_read() uses an internal state and thus cannot be used on
-multiple files.
-
-I<DES_rw_mode> is used to specify the encryption mode to use with
-DES_enc_read() and DES_end_write(). If set to I<DES_PCBC_MODE> (the
-default), DES_pcbc_encrypt is used. If set to I<DES_CBC_MODE>
-DES_cbc_encrypt is used.
-
-=head1 NOTES
-
-Single-key DES is insecure due to its short key size. ECB mode is
-not suitable for most applications; see L<des_modes(7)|des_modes(7)>.
-
-The L<evp(3)|evp(3)> library provides higher-level encryption functions.
-
-=head1 BUGS
-
-DES_3cbc_encrypt() is flawed and must not be used in applications.
-
-DES_cbc_encrypt() does not modify B<ivec>; use DES_ncbc_encrypt()
-instead.
-
-DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits.
-What this means is that if you set numbits to 12, and length to 2, the
-first 12 bits will come from the 1st input byte and the low half of
-the second input byte. The second 12 bits will have the low 8 bits
-taken from the 3rd input byte and the top 4 bits taken from the 4th
-input byte. The same holds for output. This function has been
-implemented this way because most people will be using a multiple of 8
-and because once you get into pulling bytes input bytes apart things
-get ugly!
-
-DES_string_to_key() is available for backward compatibility with the
-MIT library. New applications should use a cryptographic hash function.
-The same applies for DES_string_to_2key().
-
-=head1 CONFORMING TO
-
-ANSI X3.106
-
-The B<des> library was written to be source code compatible with
-the MIT Kerberos library.
-
-=head1 SEE ALSO
-
-crypt(3), L<des_modes(7)|des_modes(7)>, L<evp(3)|evp(3)>, L<rand(3)|rand(3)>
-
-=head1 HISTORY
-
-In OpenSSL 0.9.7, all des_ functions were renamed to DES_ to avoid
-clashes with older versions of libdes. Compatibility des_ functions
-are provided for a short while, as well as crypt().
-Declarations for these are in <openssl/des_old.h>. There is no DES_
-variant for des_random_seed().
-This will happen to other functions
-as well if they are deemed redundant (des_random_seed() just calls
-RAND_seed() and is present for backward compatibility only), buggy or
-already scheduled for removal.
-
-des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(),
-des_is_weak_key(), des_key_sched(), des_pcbc_encrypt(),
-des_quad_cksum(), des_random_key() and des_string_to_key()
-are available in the MIT Kerberos library;
-des_check_key_parity(), des_fixup_key_parity() and des_is_weak_key()
-are available in newer versions of that library.
-
-des_set_key_checked() and des_set_key_unchecked() were added in
-OpenSSL 0.9.5.
-
-des_generate_random_block(), des_init_random_number_generator(),
-des_new_random_key(), des_set_random_generator_seed() and
-des_set_sequence_number() and des_rand_data() are used in newer
-versions of Kerberos but are not implemented here.
-
-des_random_key() generated cryptographically weak random data in
-SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
-MIT library.
-
-=head1 AUTHOR
-
-Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
-(http://www.openssl.org).
-
-=cut
+++ /dev/null
-=pod
-
-=head1 NAME
-
-err - error codes
-
-=head1 SYNOPSIS
-
- #include <openssl/err.h>
-
- unsigned long ERR_get_error(void);
- unsigned long ERR_peek_error(void);
- unsigned long ERR_get_error_line(const char **file, int *line);
- unsigned long ERR_peek_error_line(const char **file, int *line);
- unsigned long ERR_get_error_line_data(const char **file, int *line,
- const char **data, int *flags);
- unsigned long ERR_peek_error_line_data(const char **file, int *line,
- const char **data, int *flags);
-
- int ERR_GET_LIB(unsigned long e);
- int ERR_GET_FUNC(unsigned long e);
- int ERR_GET_REASON(unsigned long e);
-
- void ERR_clear_error(void);
-
- char *ERR_error_string(unsigned long e, char *buf);
- const char *ERR_lib_error_string(unsigned long e);
- const char *ERR_func_error_string(unsigned long e);
- const char *ERR_reason_error_string(unsigned long e);
-
- void ERR_print_errors(BIO *bp);
- void ERR_print_errors_fp(FILE *fp);
-
- void ERR_load_crypto_strings(void);
- void ERR_free_strings(void);
-
- void ERR_remove_state(unsigned long pid);
-
- void ERR_put_error(int lib, int func, int reason, const char *file,
- int line);
- void ERR_add_error_data(int num, ...);
-
- void ERR_load_strings(int lib,ERR_STRING_DATA str[]);
- unsigned long ERR_PACK(int lib, int func, int reason);
- int ERR_get_next_error_library(void);
-
-=head1 DESCRIPTION
-
-When a call to the OpenSSL library fails, this is usually signalled
-by the return value, and an error code is stored in an error queue
-associated with the current thread. The B<err> library provides
-functions to obtain these error codes and textual error messages.
-
-The L<ERR_get_error(3)|ERR_get_error(3)> manpage describes how to
-access error codes.
-
-Error codes contain information about where the error occurred, and
-what went wrong. L<ERR_GET_LIB(3)|ERR_GET_LIB(3)> describes how to
-extract this information. A method to obtain human-readable error
-messages is described in L<ERR_error_string(3)|ERR_error_string(3)>.
-
-L<ERR_clear_error(3)|ERR_clear_error(3)> can be used to clear the
-error queue.
-
-Note that L<ERR_remove_state(3)|ERR_remove_state(3)> should be used to
-avoid memory leaks when threads are terminated.
-
-=head1 ADDING NEW ERROR CODES TO OPENSSL
-
-See L<ERR_put_error(3)> if you want to record error codes in the
-OpenSSL error system from within your application.
-
-The remainder of this section is of interest only if you want to add
-new error codes to OpenSSL or add error codes from external libraries.
-
-=head2 Reporting errors
-
-Each sub-library has a specific macro XXXerr() that is used to report
-errors. Its first argument is a function code B<XXX_F_...>, the second
-argument is a reason code B<XXX_R_...>. Function codes are derived
-from the function names; reason codes consist of textual error
-descriptions. For example, the function ssl23_read() reports a
-"handshake failure" as follows:
-
- SSLerr(SSL_F_SSL23_READ, SSL_R_SSL_HANDSHAKE_FAILURE);
-
-Function and reason codes should consist of upper case characters,
-numbers and underscores only. The error file generation script translates
-function codes into function names by looking in the header files
-for an appropriate function name, if none is found it just uses
-the capitalized form such as "SSL23_READ" in the above example.
-
-The trailing section of a reason code (after the "_R_") is translated
-into lower case and underscores changed to spaces.
-
-When you are using new function or reason codes, run B<make errors>.
-The necessary B<#define>s will then automatically be added to the
-sub-library's header file.
-
-Although a library will normally report errors using its own specific
-XXXerr macro, another library's macro can be used. This is normally
-only done when a library wants to include ASN1 code which must use
-the ASN1err() macro.
-
-=head2 Adding new libraries
-
-When adding a new sub-library to OpenSSL, assign it a library number
-B<ERR_LIB_XXX>, define a macro XXXerr() (both in B<err.h>), add its
-name to B<ERR_str_libraries[]> (in B<crypto/err/err.c>), and add
-C<ERR_load_XXX_strings()> to the ERR_load_crypto_strings() function
-(in B<crypto/err/err_all.c>). Finally, add an entry
-
- L XXX xxx.h xxx_err.c
-
-to B<crypto/err/openssl.ec>, and add B<xxx_err.c> to the Makefile.
-Running B<make errors> will then generate a file B<xxx_err.c>, and
-add all error codes used in the library to B<xxx.h>.
-
-Additionally the library include file must have a certain form.
-Typically it will initially look like this:
-
- #ifndef HEADER_XXX_H
- #define HEADER_XXX_H
-
- #ifdef __cplusplus
- extern "C" {
- #endif
-
- /* Include files */
-
- #include <openssl/bio.h>
- #include <openssl/x509.h>
-
- /* Macros, structures and function prototypes */
-
-
- /* BEGIN ERROR CODES */
-
-The B<BEGIN ERROR CODES> sequence is used by the error code
-generation script as the point to place new error codes, any text
-after this point will be overwritten when B<make errors> is run.
-The closing #endif etc will be automatically added by the script.
-
-The generated C error code file B<xxx_err.c> will load the header
-files B<stdio.h>, B<openssl/err.h> and B<openssl/xxx.h> so the
-header file must load any additional header files containing any
-definitions it uses.
-
-=head1 USING ERROR CODES IN EXTERNAL LIBRARIES
-
-It is also possible to use OpenSSL's error code scheme in external
-libraries. The library needs to load its own codes and call the OpenSSL
-error code insertion script B<mkerr.pl> explicitly to add codes to
-the header file and generate the C error code file. This will normally
-be done if the external library needs to generate new ASN1 structures
-but it can also be used to add more general purpose error code handling.
-
-TBA more details
-
-=head1 INTERNALS
-
-The error queues are stored in a hash table with one B<ERR_STATE>
-entry for each pid. ERR_get_state() returns the current thread's
-B<ERR_STATE>. An B<ERR_STATE> can hold up to B<ERR_NUM_ERRORS> error
-codes. When more error codes are added, the old ones are overwritten,
-on the assumption that the most recent errors are most important.
-
-Error strings are also stored in hash table. The hash tables can
-be obtained by calling ERR_get_err_state_table(void) and
-ERR_get_string_table(void) respectively.
-
-=head1 SEE ALSO
-
-L<CRYPTO_set_id_callback(3)|CRYPTO_set_id_callback(3)>,
-L<CRYPTO_set_locking_callback(3)|CRYPTO_set_locking_callback(3)>,
-L<ERR_get_error(3)|ERR_get_error(3)>,
-L<ERR_GET_LIB(3)|ERR_GET_LIB(3)>,
-L<ERR_clear_error(3)|ERR_clear_error(3)>,
-L<ERR_error_string(3)|ERR_error_string(3)>,
-L<ERR_print_errors(3)|ERR_print_errors(3)>,
-L<ERR_load_crypto_strings(3)|ERR_load_crypto_strings(3)>,
-L<ERR_remove_state(3)|ERR_remove_state(3)>,
-L<ERR_put_error(3)|ERR_put_error(3)>,
-L<ERR_load_strings(3)|ERR_load_strings(3)>,
-L<SSL_get_error(3)|SSL_get_error(3)>
-
-=cut
+++ /dev/null
-=pod
-
-=head1 NAME
-
-HMAC, HMAC_Init, HMAC_Update, HMAC_Final, HMAC_cleanup - HMAC message
-authentication code
-
-=head1 SYNOPSIS
-
- #include <openssl/hmac.h>
-
- unsigned char *HMAC(const EVP_MD *evp_md, const void *key,
- int key_len, const unsigned char *d, int n,
- unsigned char *md, unsigned int *md_len);
-
- void HMAC_CTX_init(HMAC_CTX *ctx);
-
- int HMAC_Init(HMAC_CTX *ctx, const void *key, int key_len,
- const EVP_MD *md);
- int HMAC_Init_ex(HMAC_CTX *ctx, const void *key, int key_len,
- const EVP_MD *md, ENGINE *impl);
- int HMAC_Update(HMAC_CTX *ctx, const unsigned char *data, int len);
- int HMAC_Final(HMAC_CTX *ctx, unsigned char *md, unsigned int *len);
-
- void HMAC_CTX_cleanup(HMAC_CTX *ctx);
- void HMAC_cleanup(HMAC_CTX *ctx);
-
-=head1 DESCRIPTION
-
-HMAC is a MAC (message authentication code), i.e. a keyed hash
-function used for message authentication, which is based on a hash
-function.
-
-HMAC() computes the message authentication code of the B<n> bytes at
-B<d> using the hash function B<evp_md> and the key B<key> which is
-B<key_len> bytes long.
-
-It places the result in B<md> (which must have space for the output of
-the hash function, which is no more than B<EVP_MAX_MD_SIZE> bytes).
-If B<md> is NULL, the digest is placed in a static array. The size of
-the output is placed in B<md_len>, unless it is B<NULL>.
-
-B<evp_md> can be EVP_sha1(), EVP_ripemd160() etc.
-
-HMAC_CTX_init() initialises a B<HMAC_CTX> before first use. It must be
-called.
-
-HMAC_CTX_cleanup() erases the key and other data from the B<HMAC_CTX>
-and releases any associated resources. It must be called when an
-B<HMAC_CTX> is no longer required.
-
-HMAC_cleanup() is an alias for HMAC_CTX_cleanup() included for back
-compatibility with 0.9.6b, it is deprecated.
-
-The following functions may be used if the message is not completely
-stored in memory:
-
-HMAC_Init() initializes a B<HMAC_CTX> structure to use the hash
-function B<evp_md> and the key B<key> which is B<key_len> bytes
-long. It is deprecated and only included for backward compatibility
-with OpenSSL 0.9.6b.
-
-HMAC_Init_ex() initializes or reuses a B<HMAC_CTX> structure to use
-the function B<evp_md> and key B<key>. Either can be NULL, in which
-case the existing one will be reused. HMAC_CTX_init() must have been
-called before the first use of an B<HMAC_CTX> in this
-function. B<N.B. HMAC_Init() had this undocumented behaviour in
-previous versions of OpenSSL - failure to switch to HMAC_Init_ex() in
-programs that expect it will cause them to stop working>.
-
-HMAC_Update() can be called repeatedly with chunks of the message to
-be authenticated (B<len> bytes at B<data>).
-
-HMAC_Final() places the message authentication code in B<md>, which
-must have space for the hash function output.
-
-=head1 RETURN VALUES
-
-HMAC() returns a pointer to the message authentication code or NULL if
-an error occurred.
-
-HMAC_Init_ex(), HMAC_Update() and HMAC_Final() return 1 for success or 0 if
-an error occurred.
-
-HMAC_CTX_init() and HMAC_CTX_cleanup() do not return values.
-
-=head1 CONFORMING TO
-
-RFC 2104
-
-=head1 SEE ALSO
-
-L<sha(3)|sha(3)>, L<evp(3)|evp(3)>
-
-=head1 HISTORY
-
-HMAC(), HMAC_Init(), HMAC_Update(), HMAC_Final() and HMAC_cleanup()
-are available since SSLeay 0.9.0.
-
-HMAC_CTX_init(), HMAC_Init_ex() and HMAC_CTX_cleanup() are available
-since OpenSSL 0.9.7.
-
-HMAC_Init_ex(), HMAC_Update() and HMAC_Final() did not return values in
-versions of OpenSSL before 1.0.0.
-
-=cut
+++ /dev/null
-=pod
-
-=head1 NAME
-
-MD2, MD4, MD5, MD2_Init, MD2_Update, MD2_Final, MD4_Init, MD4_Update,
-MD4_Final, MD5_Init, MD5_Update, MD5_Final - MD2, MD4, and MD5 hash functions
-
-=head1 SYNOPSIS
-
- #include <openssl/md2.h>
-
- unsigned char *MD2(const unsigned char *d, unsigned long n,
- unsigned char *md);
-
- int MD2_Init(MD2_CTX *c);
- int MD2_Update(MD2_CTX *c, const unsigned char *data,
- unsigned long len);
- int MD2_Final(unsigned char *md, MD2_CTX *c);
-
-
- #include <openssl/md4.h>
-
- unsigned char *MD4(const unsigned char *d, unsigned long n,
- unsigned char *md);
-
- int MD4_Init(MD4_CTX *c);
- int MD4_Update(MD4_CTX *c, const void *data,
- unsigned long len);
- int MD4_Final(unsigned char *md, MD4_CTX *c);
-
-
- #include <openssl/md5.h>
-
- unsigned char *MD5(const unsigned char *d, unsigned long n,
- unsigned char *md);
-
- int MD5_Init(MD5_CTX *c);
- int MD5_Update(MD5_CTX *c, const void *data,
- unsigned long len);
- int MD5_Final(unsigned char *md, MD5_CTX *c);
-
-=head1 DESCRIPTION
-
-MD2, MD4, and MD5 are cryptographic hash functions with a 128 bit output.
-
-MD2(), MD4(), and MD5() compute the MD2, MD4, and MD5 message digest
-of the B<n> bytes at B<d> and place it in B<md> (which must have space
-for MD2_DIGEST_LENGTH == MD4_DIGEST_LENGTH == MD5_DIGEST_LENGTH == 16
-bytes of output). If B<md> is NULL, the digest is placed in a static
-array.
-
-The following functions may be used if the message is not completely
-stored in memory:
-
-MD2_Init() initializes a B<MD2_CTX> structure.
-
-MD2_Update() can be called repeatedly with chunks of the message to
-be hashed (B<len> bytes at B<data>).
-
-MD2_Final() places the message digest in B<md>, which must have space
-for MD2_DIGEST_LENGTH == 16 bytes of output, and erases the B<MD2_CTX>.
-
-MD4_Init(), MD4_Update(), MD4_Final(), MD5_Init(), MD5_Update(), and
-MD5_Final() are analogous using an B<MD4_CTX> and B<MD5_CTX> structure.
-
-Applications should use the higher level functions
-L<EVP_DigestInit(3)|EVP_DigestInit(3)>
-etc. instead of calling the hash functions directly.
-
-=head1 NOTE
-
-MD2, MD4, and MD5 are recommended only for compatibility with existing
-applications. In new applications, SHA-1 or RIPEMD-160 should be
-preferred.
-
-=head1 RETURN VALUES
-
-MD2(), MD4(), and MD5() return pointers to the hash value.
-
-MD2_Init(), MD2_Update(), MD2_Final(), MD4_Init(), MD4_Update(),
-MD4_Final(), MD5_Init(), MD5_Update(), and MD5_Final() return 1 for
-success, 0 otherwise.
-
-=head1 CONFORMING TO
-
-RFC 1319, RFC 1320, RFC 1321
-
-=head1 SEE ALSO
-
-L<sha(3)|sha(3)>, L<ripemd(3)|ripemd(3)>, L<EVP_DigestInit(3)|EVP_DigestInit(3)>
-
-=head1 HISTORY
-
-MD2(), MD2_Init(), MD2_Update() MD2_Final(), MD5(), MD5_Init(),
-MD5_Update() and MD5_Final() are available in all versions of SSLeay
-and OpenSSL.
-
-MD4(), MD4_Init(), and MD4_Update() are available in OpenSSL 0.9.6 and
-above.
-
-=cut
+++ /dev/null
-=pod
-
-=head1 NAME
-
-PEM, PEM_read_bio_PrivateKey, PEM_read_PrivateKey, PEM_write_bio_PrivateKey, PEM_write_PrivateKey, PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey, PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid, PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY, PEM_write_PUBKEY, PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey, PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey, PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey, PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY, PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey, PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey, PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY, PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams, PEM_read_DSAparams, PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams, PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams, PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509, PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX, PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ, PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW, PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL, PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7, PEM_write_bio_PKCS7, PEM_write_PKCS7, PEM_read_bio_NETSCAPE_CERT_SEQUENCE, PEM_read_NETSCAPE_CERT_SEQUENCE, PEM_write_bio_NETSCAPE_CERT_SEQUENCE, PEM_write_NETSCAPE_CERT_SEQUENCE - PEM routines
-
-=head1 SYNOPSIS
-
- #include <openssl/pem.h>
-
- EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
- pem_password_cb *cb, void *u);
-
- EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
- pem_password_cb *cb, void *u);
-
- int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
-
- int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
-
- int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
- char *kstr, int klen,
- pem_password_cb *cb, void *u);
-
- int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
- char *kstr, int klen,
- pem_password_cb *cb, void *u);
-
- int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
- char *kstr, int klen,
- pem_password_cb *cb, void *u);
-
- int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
- char *kstr, int klen,
- pem_password_cb *cb, void *u);
-
- EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
- pem_password_cb *cb, void *u);
-
- EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
- pem_password_cb *cb, void *u);
-
- int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
- int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
-
- RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
- pem_password_cb *cb, void *u);
-
- RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
- pem_password_cb *cb, void *u);
-
- int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
-
- int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
-
- RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
- pem_password_cb *cb, void *u);
-
- RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
- pem_password_cb *cb, void *u);
-
- int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
-
- int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
-
- RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
- pem_password_cb *cb, void *u);
-
- RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
- pem_password_cb *cb, void *u);
-
- int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
-
- int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
-
- DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
- pem_password_cb *cb, void *u);
-
- DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
- pem_password_cb *cb, void *u);
-
- int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
-
- int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
- unsigned char *kstr, int klen,
- pem_password_cb *cb, void *u);
-
- DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
- pem_password_cb *cb, void *u);
-
- DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
- pem_password_cb *cb, void *u);
-
- int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
-
- int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
-
- DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
-
- DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
-
- int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
-
- int PEM_write_DSAparams(FILE *fp, DSA *x);
-
- DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
-
- DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
-
- int PEM_write_bio_DHparams(BIO *bp, DH *x);
-
- int PEM_write_DHparams(FILE *fp, DH *x);
-
- X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
-
- X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
-
- int PEM_write_bio_X509(BIO *bp, X509 *x);
-
- int PEM_write_X509(FILE *fp, X509 *x);
-
- X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
-
- X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
-
- int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
-
- int PEM_write_X509_AUX(FILE *fp, X509 *x);
-
- X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
- pem_password_cb *cb, void *u);
-
- X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
- pem_password_cb *cb, void *u);
-
- int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
-
- int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
-
- int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
-
- int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
-
- X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
- pem_password_cb *cb, void *u);
- X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
- pem_password_cb *cb, void *u);
- int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
- int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
-
- PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
-
- PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
-
- int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
-
- int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
-
- NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp,
- NETSCAPE_CERT_SEQUENCE **x,
- pem_password_cb *cb, void *u);
-
- NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp,
- NETSCAPE_CERT_SEQUENCE **x,
- pem_password_cb *cb, void *u);
-
- int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);
-
- int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);
-
-=head1 DESCRIPTION
-
-The PEM functions read or write structures in PEM format. In
-this sense PEM format is simply base64 encoded data surrounded
-by header lines.
-
-For more details about the meaning of arguments see the
-B<PEM FUNCTION ARGUMENTS> section.
-
-Each operation has four functions associated with it. For
-clarity the term "B<foobar> functions" will be used to collectively
-refer to the PEM_read_bio_foobar(), PEM_read_foobar(),
-PEM_write_bio_foobar() and PEM_write_foobar() functions.
-
-The B<PrivateKey> functions read or write a private key in
-PEM format using an EVP_PKEY structure. The write routines use
-"traditional" private key format and can handle both RSA and DSA
-private keys. The read functions can additionally transparently
-handle PKCS#8 format encrypted and unencrypted keys too.
-
-PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey()
-write a private key in an EVP_PKEY structure in PKCS#8
-EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based encryption
-algorithms. The B<cipher> argument specifies the encryption algorithm to
-use: unlike all other PEM routines the encryption is applied at the
-PKCS#8 level and not in the PEM headers. If B<cipher> is NULL then no
-encryption is used and a PKCS#8 PrivateKeyInfo structure is used instead.
-
-PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
-also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however
-it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm
-to use is specified in the B<nid> parameter and should be the NID of the
-corresponding OBJECT IDENTIFIER (see NOTES section).
-
-The B<PUBKEY> functions process a public key using an EVP_PKEY
-structure. The public key is encoded as a SubjectPublicKeyInfo
-structure.
-
-The B<RSAPrivateKey> functions process an RSA private key using an
-RSA structure. It handles the same formats as the B<PrivateKey>
-functions but an error occurs if the private key is not RSA.
-
-The B<RSAPublicKey> functions process an RSA public key using an
-RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey
-structure.
-
-The B<RSA_PUBKEY> functions also process an RSA public key using
-an RSA structure. However the public key is encoded using a
-SubjectPublicKeyInfo structure and an error occurs if the public
-key is not RSA.
-
-The B<DSAPrivateKey> functions process a DSA private key using a
-DSA structure. It handles the same formats as the B<PrivateKey>
-functions but an error occurs if the private key is not DSA.
-
-The B<DSA_PUBKEY> functions process a DSA public key using
-a DSA structure. The public key is encoded using a
-SubjectPublicKeyInfo structure and an error occurs if the public
-key is not DSA.
-
-The B<DSAparams> functions process DSA parameters using a DSA
-structure. The parameters are encoded using a foobar structure.
-
-The B<DHparams> functions process DH parameters using a DH
-structure. The parameters are encoded using a PKCS#3 DHparameter
-structure.
-
-The B<X509> functions process an X509 certificate using an X509
-structure. They will also process a trusted X509 certificate but
-any trust settings are discarded.
-
-The B<X509_AUX> functions process a trusted X509 certificate using
-an X509 structure.
-
-The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10
-certificate request using an X509_REQ structure. The B<X509_REQ>
-write functions use B<CERTIFICATE REQUEST> in the header whereas
-the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST>
-(as required by some CAs). The B<X509_REQ> read functions will
-handle either form so there are no B<X509_REQ_NEW> read functions.
-
-The B<X509_CRL> functions process an X509 CRL using an X509_CRL
-structure.
-
-The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7
-structure.
-
-The B<NETSCAPE_CERT_SEQUENCE> functions process a Netscape Certificate
-Sequence using a NETSCAPE_CERT_SEQUENCE structure.
-
-=head1 PEM FUNCTION ARGUMENTS
-
-The PEM functions have many common arguments.
-
-The B<bp> BIO parameter (if present) specifies the BIO to read from
-or write to.
-
-The B<fp> FILE parameter (if present) specifies the FILE pointer to
-read from or write to.
-
-The PEM read functions all take an argument B<TYPE **x> and return
-a B<TYPE *> pointer. Where B<TYPE> is whatever structure the function
-uses. If B<x> is NULL then the parameter is ignored. If B<x> is not
-NULL but B<*x> is NULL then the structure returned will be written
-to B<*x>. If neither B<x> nor B<*x> is NULL then an attempt is made
-to reuse the structure at B<*x> (but see BUGS and EXAMPLES sections).
-Irrespective of the value of B<x> a pointer to the structure is always
-returned (or NULL if an error occurred).
-
-The PEM functions which write private keys take an B<enc> parameter
-which specifies the encryption algorithm to use, encryption is done
-at the PEM level. If this parameter is set to NULL then the private
-key is written in unencrypted form.
-
-The B<cb> argument is the callback to use when querying for the pass
-phrase used for encrypted PEM structures (normally only private keys).
-
-For the PEM write routines if the B<kstr> parameter is not NULL then
-B<klen> bytes at B<kstr> are used as the passphrase and B<cb> is
-ignored.
-
-If the B<cb> parameters is set to NULL and the B<u> parameter is not
-NULL then the B<u> parameter is interpreted as a null terminated string
-to use as the passphrase. If both B<cb> and B<u> are NULL then the
-default callback routine is used which will typically prompt for the
-passphrase on the current terminal with echoing turned off.
-
-The default passphrase callback is sometimes inappropriate (for example
-in a GUI application) so an alternative can be supplied. The callback
-routine has the following form:
-
- int cb(char *buf, int size, int rwflag, void *u);
-
-B<buf> is the buffer to write the passphrase to. B<size> is the maximum
-length of the passphrase (i.e. the size of buf). B<rwflag> is a flag
-which is set to 0 when reading and 1 when writing. A typical routine
-will ask the user to verify the passphrase (for example by prompting
-for it twice) if B<rwflag> is 1. The B<u> parameter has the same
-value as the B<u> parameter passed to the PEM routine. It allows
-arbitrary data to be passed to the callback by the application
-(for example a window handle in a GUI application). The callback
-B<must> return the number of characters in the passphrase or 0 if
-an error occurred.
-
-=head1 EXAMPLES
-
-Although the PEM routines take several arguments in almost all applications
-most of them are set to 0 or NULL.
-
-Read a certificate in PEM format from a BIO:
-
- X509 *x;
- x = PEM_read_bio_X509(bp, NULL, 0, NULL);
- if (x == NULL)
- {
- /* Error */
- }
-
-Alternative method:
-
- X509 *x = NULL;
- if (!PEM_read_bio_X509(bp, &x, 0, NULL))
- {
- /* Error */
- }
-
-Write a certificate to a BIO:
-
- if (!PEM_write_bio_X509(bp, x))
- {
- /* Error */
- }
-
-Write an unencrypted private key to a FILE pointer:
-
- if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
- {
- /* Error */
- }
-
-Write a private key (using traditional format) to a BIO using
-triple DES encryption, the pass phrase is prompted for:
-
- if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
- {
- /* Error */
- }
-
-Write a private key (using PKCS#8 format) to a BIO using triple
-DES encryption, using the pass phrase "hello":
-
- if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello"))
- {
- /* Error */
- }
-
-Read a private key from a BIO using the pass phrase "hello":
-
- key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello");
- if (key == NULL)
- {
- /* Error */
- }
-
-Read a private key from a BIO using a pass phrase callback:
-
- key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
- if (key == NULL)
- {
- /* Error */
- }
-
-Skeleton pass phrase callback:
-
- int pass_cb(char *buf, int size, int rwflag, void *u);
- {
- int len;
- char *tmp;
- /* We'd probably do something else if 'rwflag' is 1 */
- printf("Enter pass phrase for \"%s\"\n", u);
-
- /* get pass phrase, length 'len' into 'tmp' */
- tmp = "hello";
- len = strlen(tmp);
-
- if (len <= 0) return 0;
- /* if too long, truncate */
- if (len > size) len = size;
- memcpy(buf, tmp, len);
- return len;
- }
-
-=head1 NOTES
-
-The old B<PrivateKey> write routines are retained for compatibility.
-New applications should write private keys using the
-PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
-because they are more secure (they use an iteration count of 2048 whereas
-the traditional routines use a count of 1) unless compatibility with older
-versions of OpenSSL is important.
-
-The B<PrivateKey> read routines can be used in all applications because
-they handle all formats transparently.
-
-A frequent cause of problems is attempting to use the PEM routines like
-this:
-
- X509 *x;
- PEM_read_bio_X509(bp, &x, 0, NULL);
-
-this is a bug because an attempt will be made to reuse the data at B<x>
-which is an uninitialised pointer.
-
-=head1 PEM ENCRYPTION FORMAT
-
-This old B<PrivateKey> routines use a non standard technique for encryption.
-
-The private key (or other data) takes the following form:
-
- -----BEGIN RSA PRIVATE KEY-----
- Proc-Type: 4,ENCRYPTED
- DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
-
- ...base64 encoded data...
- -----END RSA PRIVATE KEY-----
-
-The line beginning DEK-Info contains two comma separated pieces of information:
-the encryption algorithm name as used by EVP_get_cipherbyname() and an 8
-byte B<salt> encoded as a set of hexadecimal digits.
-
-After this is the base64 encoded encrypted data.
-
-The encryption key is determined using EVP_bytestokey(), using B<salt> and an
-iteration count of 1. The IV used is the value of B<salt> and *not* the IV
-returned by EVP_bytestokey().
-
-=head1 BUGS
-
-The PEM read routines in some versions of OpenSSL will not correctly reuse
-an existing structure. Therefore the following:
-
- PEM_read_bio_X509(bp, &x, 0, NULL);
-
-where B<x> already contains a valid certificate, may not work, whereas:
-
- X509_free(x);
- x = PEM_read_bio_X509(bp, NULL, 0, NULL);
-
-is guaranteed to work.
-
-=head1 RETURN CODES
-
-The read routines return either a pointer to the structure read or NULL
-if an error occurred.
-
-The write routines return 1 for success or 0 for failure.
+++ /dev/null
-=pod
-
-=head1 NAME
-
-rand - pseudo-random number generator
-
-=head1 SYNOPSIS
-
- #include <openssl/rand.h>
-
- int RAND_set_rand_engine(ENGINE *engine);
-
- int RAND_bytes(unsigned char *buf, int num);
- int RAND_pseudo_bytes(unsigned char *buf, int num);
-
- void RAND_seed(const void *buf, int num);
- void RAND_add(const void *buf, int num, int entropy);
- int RAND_status(void);
-
- int RAND_load_file(const char *file, long max_bytes);
- int RAND_write_file(const char *file);
- const char *RAND_file_name(char *file, size_t num);
-
- int RAND_egd(const char *path);
-
- void RAND_set_rand_method(const RAND_METHOD *meth);
- const RAND_METHOD *RAND_get_rand_method(void);
- RAND_METHOD *RAND_SSLeay(void);
-
- void RAND_cleanup(void);
-
-=head1 DESCRIPTION
-
-Since the introduction of the ENGINE API, the recommended way of controlling
-default implementations is by using the ENGINE API functions. The default
-B<RAND_METHOD>, as set by RAND_set_rand_method() and returned by
-RAND_get_rand_method(), is only used if no ENGINE has been set as the default
-"rand" implementation. Hence, these two functions are no longer the recommened
-way to control defaults.
-
-If an alternative B<RAND_METHOD> implementation is being used (either set
-directly or as provided by an ENGINE module), then it is entirely responsible
-for the generation and management of a cryptographically secure PRNG stream. The
-mechanisms described below relate solely to the software PRNG implementation
-built in to OpenSSL and used by default.
-
-These functions implement a cryptographically secure pseudo-random
-number generator (PRNG). It is used by other library functions for
-example to generate random keys, and applications can use it when they
-need randomness.
-
-A cryptographic PRNG must be seeded with unpredictable data such as
-mouse movements or keys pressed at random by the user. This is
-described in L<RAND_add(3)|RAND_add(3)>. Its state can be saved in a seed file
-(see L<RAND_load_file(3)|RAND_load_file(3)>) to avoid having to go through the
-seeding process whenever the application is started.
-
-L<RAND_bytes(3)|RAND_bytes(3)> describes how to obtain random data from the
-PRNG.
-
-=head1 INTERNALS
-
-The RAND_SSLeay() method implements a PRNG based on the systems'
-L<arc4random_buf(3)> random number generator.
-
-=head1 SEE ALSO
-
-L<BN_rand(3)|BN_rand(3)>, L<RAND_add(3)|RAND_add(3)>,
-L<RAND_load_file(3)|RAND_load_file(3)>, L<RAND_egd(3)|RAND_egd(3)>,
-L<RAND_bytes(3)|RAND_bytes(3)>,
-L<RAND_set_rand_method(3)|RAND_set_rand_method(3)>,
-L<RAND_cleanup(3)|RAND_cleanup(3)>
-
-=cut
+++ /dev/null
-=pod
-
-=head1 NAME
-
-RC4_set_key, RC4 - RC4 encryption
-
-=head1 SYNOPSIS
-
- #include <openssl/rc4.h>
-
- void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);
-
- void RC4(RC4_KEY *key, unsigned long len, const unsigned char *indata,
- unsigned char *outdata);
-
-=head1 DESCRIPTION
-
-This library implements the Alleged RC4 cipher, which is described for
-example in I<Applied Cryptography>. It is believed to be compatible
-with RC4[TM], a proprietary cipher of RSA Security Inc.
-
-RC4 is a stream cipher with variable key length. Typically, 128 bit
-(16 byte) keys are used for strong encryption, but shorter insecure
-key sizes have been widely used due to export restrictions.
-
-RC4 consists of a key setup phase and the actual encryption or
-decryption phase.
-
-RC4_set_key() sets up the B<RC4_KEY> B<key> using the B<len> bytes long
-key at B<data>.
-
-RC4() encrypts or decrypts the B<len> bytes of data at B<indata> using
-B<key> and places the result at B<outdata>. Repeated RC4() calls with
-the same B<key> yield a continuous key stream.
-
-Since RC4 is a stream cipher (the input is XORed with a pseudo-random
-key stream to produce the output), decryption uses the same function
-calls as encryption.
-
-Applications should use the higher level functions
-L<EVP_EncryptInit(3)|EVP_EncryptInit(3)>
-etc. instead of calling the RC4 functions directly.
-
-=head1 RETURN VALUES
-
-RC4_set_key() and RC4() do not return values.
-
-=head1 NOTE
-
-Certain conditions have to be observed to securely use stream ciphers.
-It is not permissible to perform multiple encryptions using the same
-key stream.
-
-=head1 SEE ALSO
-
-L<blowfish(3)|blowfish(3)>, L<des(3)|des(3)>, L<rc2(3)|rc2(3)>
-
-=head1 HISTORY
-
-RC4_set_key() and RC4() are available in all versions of SSLeay and OpenSSL.
-
-=cut
+++ /dev/null
-=pod
-
-=head1 NAME
-
-RIPEMD160, RIPEMD160_Init, RIPEMD160_Update, RIPEMD160_Final -
-RIPEMD-160 hash function
-
-=head1 SYNOPSIS
-
- #include <openssl/ripemd.h>
-
- unsigned char *RIPEMD160(const unsigned char *d, unsigned long n,
- unsigned char *md);
-
- int RIPEMD160_Init(RIPEMD160_CTX *c);
- int RIPEMD160_Update(RIPEMD_CTX *c, const void *data,
- unsigned long len);
- int RIPEMD160_Final(unsigned char *md, RIPEMD160_CTX *c);
-
-=head1 DESCRIPTION
-
-RIPEMD-160 is a cryptographic hash function with a
-160 bit output.
-
-RIPEMD160() computes the RIPEMD-160 message digest of the B<n>
-bytes at B<d> and places it in B<md> (which must have space for
-RIPEMD160_DIGEST_LENGTH == 20 bytes of output). If B<md> is NULL, the digest
-is placed in a static array.
-
-The following functions may be used if the message is not completely
-stored in memory:
-
-RIPEMD160_Init() initializes a B<RIPEMD160_CTX> structure.
-
-RIPEMD160_Update() can be called repeatedly with chunks of the message to
-be hashed (B<len> bytes at B<data>).
-
-RIPEMD160_Final() places the message digest in B<md>, which must have
-space for RIPEMD160_DIGEST_LENGTH == 20 bytes of output, and erases
-the B<RIPEMD160_CTX>.
-
-Applications should use the higher level functions
-L<EVP_DigestInit(3)|EVP_DigestInit(3)> etc. instead of calling the
-hash functions directly.
-
-=head1 RETURN VALUES
-
-RIPEMD160() returns a pointer to the hash value.
-
-RIPEMD160_Init(), RIPEMD160_Update() and RIPEMD160_Final() return 1 for
-success, 0 otherwise.
-
-=head1 CONFORMING TO
-
-ISO/IEC 10118-3 (draft) (??)
-
-=head1 SEE ALSO
-
-L<sha(3)|sha(3)>, L<hmac(3)|hmac(3)>, L<EVP_DigestInit(3)|EVP_DigestInit(3)>
-
-=head1 HISTORY
-
-RIPEMD160(), RIPEMD160_Init(), RIPEMD160_Update() and
-RIPEMD160_Final() are available since SSLeay 0.9.0.
-
-=cut
+++ /dev/null
-=pod
-
-=head1 NAME
-
-SHA1, SHA1_Init, SHA1_Update, SHA1_Final - Secure Hash Algorithm
-
-=head1 SYNOPSIS
-
- #include <openssl/sha.h>
-
- unsigned char *SHA1(const unsigned char *d, unsigned long n,
- unsigned char *md);
-
- int SHA1_Init(SHA_CTX *c);
- int SHA1_Update(SHA_CTX *c, const void *data,
- unsigned long len);
- int SHA1_Final(unsigned char *md, SHA_CTX *c);
-
-=head1 DESCRIPTION
-
-SHA-1 (Secure Hash Algorithm) is a cryptographic hash function with a
-160 bit output.
-
-SHA1() computes the SHA-1 message digest of the B<n>
-bytes at B<d> and places it in B<md> (which must have space for
-SHA_DIGEST_LENGTH == 20 bytes of output). If B<md> is NULL, the digest
-is placed in a static array.
-
-The following functions may be used if the message is not completely
-stored in memory:
-
-SHA1_Init() initializes a B<SHA_CTX> structure.
-
-SHA1_Update() can be called repeatedly with chunks of the message to
-be hashed (B<len> bytes at B<data>).
-
-SHA1_Final() places the message digest in B<md>, which must have space
-for SHA_DIGEST_LENGTH == 20 bytes of output, and erases the B<SHA_CTX>.
-
-Applications should use the higher level functions
-L<EVP_DigestInit(3)|EVP_DigestInit(3)>
-etc. instead of calling the hash functions directly.
-
-The predecessor of SHA-1, SHA, is also implemented, but it should be
-used only when backward compatibility is required.
-
-=head1 RETURN VALUES
-
-SHA1() returns a pointer to the hash value.
-
-SHA1_Init(), SHA1_Update() and SHA1_Final() return 1 for success, 0 otherwise.
-
-=head1 CONFORMING TO
-
-SHA: US Federal Information Processing Standard FIPS PUB 180 (Secure Hash
-Standard),
-SHA-1: US Federal Information Processing Standard FIPS PUB 180-1 (Secure Hash
-Standard),
-ANSI X9.30
-
-=head1 SEE ALSO
-
-L<ripemd(3)|ripemd(3)>, L<hmac(3)|hmac(3)>, L<EVP_DigestInit(3)|EVP_DigestInit(3)>
-
-=head1 HISTORY
-
-SHA1(), SHA1_Init(), SHA1_Update() and SHA1_Final() are available in all
-versions of SSLeay and OpenSSL.
-
-=cut
+++ /dev/null
-=pod
-
-=head1 NAME
-
-CRYPTO_THREADID_set_callback, CRYPTO_THREADID_get_callback,
-CRYPTO_THREADID_current, CRYPTO_THREADID_cmp, CRYPTO_THREADID_cpy,
-CRYPTO_THREADID_hash, CRYPTO_set_locking_callback, CRYPTO_num_locks,
-CRYPTO_set_dynlock_create_callback, CRYPTO_set_dynlock_lock_callback,
-CRYPTO_set_dynlock_destroy_callback, CRYPTO_get_new_dynlockid,
-CRYPTO_destroy_dynlockid, CRYPTO_lock - OpenSSL thread support
-
-=head1 SYNOPSIS
-
- #include <openssl/crypto.h>
-
- /* Don't use this structure directly. */
- typedef struct crypto_threadid_st
- {
- void *ptr;
- unsigned long val;
- } CRYPTO_THREADID;
- /* Only use CRYPTO_THREADID_set_[numeric|pointer]() within callbacks */
- void CRYPTO_THREADID_set_numeric(CRYPTO_THREADID *id, unsigned long val);
- void CRYPTO_THREADID_set_pointer(CRYPTO_THREADID *id, void *ptr);
- int CRYPTO_THREADID_set_callback(void (*threadid_func)(CRYPTO_THREADID *));
- void (*CRYPTO_THREADID_get_callback(void))(CRYPTO_THREADID *);
- void CRYPTO_THREADID_current(CRYPTO_THREADID *id);
- int CRYPTO_THREADID_cmp(const CRYPTO_THREADID *a,
- const CRYPTO_THREADID *b);
- void CRYPTO_THREADID_cpy(CRYPTO_THREADID *dest,
- const CRYPTO_THREADID *src);
- unsigned long CRYPTO_THREADID_hash(const CRYPTO_THREADID *id);
-
- int CRYPTO_num_locks(void);
-
- /* struct CRYPTO_dynlock_value needs to be defined by the user */
- struct CRYPTO_dynlock_value;
-
- void CRYPTO_set_dynlock_create_callback(struct CRYPTO_dynlock_value *
- (*dyn_create_function)(char *file, int line));
- void CRYPTO_set_dynlock_lock_callback(void (*dyn_lock_function)
- (int mode, struct CRYPTO_dynlock_value *l,
- const char *file, int line));
- void CRYPTO_set_dynlock_destroy_callback(void (*dyn_destroy_function)
- (struct CRYPTO_dynlock_value *l, const char *file, int line));
-
- int CRYPTO_get_new_dynlockid(void);
-
- void CRYPTO_destroy_dynlockid(int i);
-
- void CRYPTO_lock(int mode, int n, const char *file, int line);
-
- #define CRYPTO_w_lock(type) \
- CRYPTO_lock(CRYPTO_LOCK|CRYPTO_WRITE,type,__FILE__,__LINE__)
- #define CRYPTO_w_unlock(type) \
- CRYPTO_lock(CRYPTO_UNLOCK|CRYPTO_WRITE,type,__FILE__,__LINE__)
- #define CRYPTO_r_lock(type) \
- CRYPTO_lock(CRYPTO_LOCK|CRYPTO_READ,type,__FILE__,__LINE__)
- #define CRYPTO_r_unlock(type) \
- CRYPTO_lock(CRYPTO_UNLOCK|CRYPTO_READ,type,__FILE__,__LINE__)
- #define CRYPTO_add(addr,amount,type) \
- CRYPTO_add_lock(addr,amount,type,__FILE__,__LINE__)
-
-=head1 DESCRIPTION
-
-OpenSSL can safely be used in multi-threaded applications provided
-that at least two callback functions are set, locking_function and
-threadid_func.
-
-locking_function(int mode, int n, const char *file, int line) is
-needed to perform locking on shared data structures.
-(Note that OpenSSL uses a number of global data structures that
-will be implicitly shared whenever multiple threads use OpenSSL.)
-Multi-threaded applications will crash at random if it is not set.
-
-locking_function() must be able to handle up to CRYPTO_num_locks()
-different mutex locks. It sets the B<n>-th lock if B<mode> &
-B<CRYPTO_LOCK>, and releases it otherwise.
-
-B<file> and B<line> are the file number of the function setting the
-lock. They can be useful for debugging.
-
-threadid_func(CRYPTO_THREADID *id) is needed to record the currently-executing
-thread's identifier into B<id>. The implementation of this callback should not
-fill in B<id> directly, but should use CRYPTO_THREADID_set_numeric() if thread
-IDs are numeric, or CRYPTO_THREADID_set_pointer() if they are pointer-based.
-If the application does not register such a callback using
-CRYPTO_THREADID_set_callback(), then a default implementation is used - on
-Windows and BeOS this uses the system's default thread identifying APIs, and on
-all other platforms it uses the address of B<errno>. The latter is satisfactory
-for thread-safety if and only if the platform has a thread-local error number
-facility.
-
-Once threadid_func() is registered, or if the built-in default implementation is
-to be used;
-
-=over 4
-
-=item *
-CRYPTO_THREADID_current() records the currently-executing thread ID into the
-given B<id> object.
-
-=item *
-CRYPTO_THREADID_cmp() compares two thread IDs (returning zero for equality, ie.
-the same semantics as memcmp()).
-
-=item *
-CRYPTO_THREADID_cpy() duplicates a thread ID value,
-
-=item *
-CRYPTO_THREADID_hash() returns a numeric value usable as a hash-table key. This
-is usually the exact numeric or pointer-based thread ID used internally, however
-this also handles the unusual case where pointers are larger than 'long'
-variables and the platform's thread IDs are pointer-based - in this case, mixing
-is done to attempt to produce a unique numeric value even though it is not as
-wide as the platform's true thread IDs.
-
-=back
-
-Additionally, OpenSSL supports dynamic locks, and sometimes, some parts
-of OpenSSL need it for better performance. To enable this, the following
-is required:
-
-=over 4
-
-=item *
-Three additional callback function, dyn_create_function, dyn_lock_function
-and dyn_destroy_function.
-
-=item *
-A structure defined with the data that each lock needs to handle.
-
-=back
-
-struct CRYPTO_dynlock_value has to be defined to contain whatever structure
-is needed to handle locks.
-
-dyn_create_function(const char *file, int line) is needed to create a
-lock. Multi-threaded applications might crash at random if it is not set.
-
-dyn_lock_function(int mode, CRYPTO_dynlock *l, const char *file, int line)
-is needed to perform locking off dynamic lock numbered n. Multi-threaded
-applications might crash at random if it is not set.
-
-dyn_destroy_function(CRYPTO_dynlock *l, const char *file, int line) is
-needed to destroy the lock l. Multi-threaded applications might crash at
-random if it is not set.
-
-CRYPTO_get_new_dynlockid() is used to create locks. It will call
-dyn_create_function for the actual creation.
-
-CRYPTO_destroy_dynlockid() is used to destroy locks. It will call
-dyn_destroy_function for the actual destruction.
-
-CRYPTO_lock() is used to lock and unlock the locks. mode is a bitfield
-describing what should be done with the lock. n is the number of the
-lock as returned from CRYPTO_get_new_dynlockid(). mode can be combined
-from the following values. These values are pairwise exclusive, with
-undefined behaviour if misused (for example, CRYPTO_READ and CRYPTO_WRITE
-should not be used together):
-
- CRYPTO_LOCK 0x01
- CRYPTO_UNLOCK 0x02
- CRYPTO_READ 0x04
- CRYPTO_WRITE 0x08
-
-=head1 RETURN VALUES
-
-CRYPTO_num_locks() returns the required number of locks.
-
-CRYPTO_get_new_dynlockid() returns the index to the newly created lock.
-
-The other functions return no values.
-
-=head1 NOTES
-
-You can find out if OpenSSL was configured with thread support:
-
- #define OPENSSL_THREAD_DEFINES
- #include <openssl/opensslconf.h>
- #if defined(OPENSSL_THREADS)
- // thread support enabled
- #else
- // no thread support
- #endif
-
-Also, dynamic locks are currently not used internally by OpenSSL, but
-may do so in the future.
-
-=head1 EXAMPLES
-
-B<crypto/threads/mttest.c> shows examples of the callback functions on
-Solaris, Irix and Win32.
-
-=head1 HISTORY
-
-CRYPTO_set_locking_callback() is
-available in all versions of SSLeay and OpenSSL.
-CRYPTO_num_locks() was added in OpenSSL 0.9.4.
-All functions dealing with dynamic locks were added in OpenSSL 0.9.5b-dev.
-B<CRYPTO_THREADID> and associated functions were introduced in OpenSSL 1.0.0
-to replace (actually, deprecate) the previous CRYPTO_set_id_callback(),
-CRYPTO_get_id_callback(), and CRYPTO_thread_id() functions which assumed
-thread IDs to always be represented by 'unsigned long'.
-
-=head1 SEE ALSO
-
-L<crypto(3)|crypto(3)>
-
-=cut
--- /dev/null
+=pod
+
+=head1 NAME
+
+BIO_f_ssl, BIO_set_ssl, BIO_get_ssl, BIO_set_ssl_mode, BIO_set_ssl_renegotiate_bytes,
+BIO_get_num_renegotiates, BIO_set_ssl_renegotiate_timeout, BIO_new_ssl,
+BIO_new_ssl_connect, BIO_new_buffer_ssl_connect, BIO_ssl_copy_session_id,
+BIO_ssl_shutdown - SSL BIO
+
+=head1 SYNOPSIS
+
+ #include <openssl/bio.h>
+ #include <openssl/ssl.h>
+
+ BIO_METHOD *BIO_f_ssl(void);
+
+ #define BIO_set_ssl(b,ssl,c) BIO_ctrl(b,BIO_C_SET_SSL,c,(char *)ssl)
+ #define BIO_get_ssl(b,sslp) BIO_ctrl(b,BIO_C_GET_SSL,0,(char *)sslp)
+ #define BIO_set_ssl_mode(b,client) BIO_ctrl(b,BIO_C_SSL_MODE,client,NULL)
+ #define BIO_set_ssl_renegotiate_bytes(b,num) \
+ BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_BYTES,num,NULL);
+ #define BIO_set_ssl_renegotiate_timeout(b,seconds) \
+ BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_TIMEOUT,seconds,NULL);
+ #define BIO_get_num_renegotiates(b) \
+ BIO_ctrl(b,BIO_C_SET_SSL_NUM_RENEGOTIATES,0,NULL);
+
+ BIO *BIO_new_ssl(SSL_CTX *ctx,int client);
+ BIO *BIO_new_ssl_connect(SSL_CTX *ctx);
+ BIO *BIO_new_buffer_ssl_connect(SSL_CTX *ctx);
+ int BIO_ssl_copy_session_id(BIO *to,BIO *from);
+ void BIO_ssl_shutdown(BIO *bio);
+
+ #define BIO_do_handshake(b) BIO_ctrl(b,BIO_C_DO_STATE_MACHINE,0,NULL)
+
+=head1 DESCRIPTION
+
+BIO_f_ssl() returns the SSL BIO method. This is a filter BIO which
+is a wrapper round the OpenSSL SSL routines adding a BIO "flavour" to
+SSL I/O.
+
+I/O performed on an SSL BIO communicates using the SSL protocol with
+the SSLs read and write BIOs. If an SSL connection is not established
+then an attempt is made to establish one on the first I/O call.
+
+If a BIO is appended to an SSL BIO using BIO_push() it is automatically
+used as the SSL BIOs read and write BIOs.
+
+Calling BIO_reset() on an SSL BIO closes down any current SSL connection
+by calling SSL_shutdown(). BIO_reset() is then sent to the next BIO in
+the chain: this will typically disconnect the underlying transport.
+The SSL BIO is then reset to the initial accept or connect state.
+
+If the close flag is set when an SSL BIO is freed then the internal
+SSL structure is also freed using SSL_free().
+
+BIO_set_ssl() sets the internal SSL pointer of BIO B<b> to B<ssl> using
+the close flag B<c>.
+
+BIO_get_ssl() retrieves the SSL pointer of BIO B<b>, it can then be
+manipulated using the standard SSL library functions.
+
+BIO_set_ssl_mode() sets the SSL BIO mode to B<client>. If B<client>
+is 1 client mode is set. If B<client> is 0 server mode is set.
+
+BIO_set_ssl_renegotiate_bytes() sets the renegotiate byte count
+to B<num>. When set after every B<num> bytes of I/O (read and write)
+the SSL session is automatically renegotiated. B<num> must be at
+least 512 bytes.
+
+BIO_set_ssl_renegotiate_timeout() sets the renegotiate timeout to
+B<seconds>. When the renegotiate timeout elapses the session is
+automatically renegotiated.
+
+BIO_get_num_renegotiates() returns the total number of session
+renegotiations due to I/O or timeout.
+
+BIO_new_ssl() allocates an SSL BIO using SSL_CTX B<ctx> and using
+client mode if B<client> is non zero.
+
+BIO_new_ssl_connect() creates a new BIO chain consisting of an
+SSL BIO (using B<ctx>) followed by a connect BIO.
+
+BIO_new_buffer_ssl_connect() creates a new BIO chain consisting
+of a buffering BIO, an SSL BIO (using B<ctx>) and a connect
+BIO.
+
+BIO_ssl_copy_session_id() copies an SSL session id between
+BIO chains B<from> and B<to>. It does this by locating the
+SSL BIOs in each chain and calling SSL_copy_session_id() on
+the internal SSL pointer.
+
+BIO_ssl_shutdown() closes down an SSL connection on BIO
+chain B<bio>. It does this by locating the SSL BIO in the
+chain and calling SSL_shutdown() on its internal SSL
+pointer.
+
+BIO_do_handshake() attempts to complete an SSL handshake on the
+supplied BIO and establish the SSL connection. It returns 1
+if the connection was established successfully. A zero or negative
+value is returned if the connection could not be established, the
+call BIO_should_retry() should be used for non blocking connect BIOs
+to determine if the call should be retried. If an SSL connection has
+already been established this call has no effect.
+
+=head1 NOTES
+
+SSL BIOs are exceptional in that if the underlying transport
+is non blocking they can still request a retry in exceptional
+circumstances. Specifically this will happen if a session
+renegotiation takes place during a BIO_read() operation, one
+case where this happens is when SGC or step up occurs.
+
+In OpenSSL 0.9.6 and later the SSL flag SSL_AUTO_RETRY can be
+set to disable this behaviour. That is when this flag is set
+an SSL BIO using a blocking transport will never request a
+retry.
+
+Since unknown BIO_ctrl() operations are sent through filter
+BIOs the servers name and port can be set using BIO_set_host()
+on the BIO returned by BIO_new_ssl_connect() without having
+to locate the connect BIO first.
+
+Applications do not have to call BIO_do_handshake() but may wish
+to do so to separate the handshake process from other I/O
+processing.
+
+=head1 RETURN VALUES
+
+TBA
+
+=head1 EXAMPLE
+
+This SSL/TLS client example, attempts to retrieve a page from an
+SSL/TLS web server. The I/O routines are identical to those of the
+unencrypted example in L<BIO_s_connect(3)|BIO_s_connect(3)>.
+
+ BIO *sbio, *out;
+ int len;
+ char tmpbuf[1024];
+ SSL_CTX *ctx;
+ SSL *ssl;
+
+ ERR_load_crypto_strings();
+ ERR_load_SSL_strings();
+ OpenSSL_add_all_algorithms();
+
+ /* We would seed the PRNG here if the platform didn't
+ * do it automatically
+ */
+
+ ctx = SSL_CTX_new(SSLv23_client_method());
+
+ /* We'd normally set some stuff like the verify paths and
+ * mode here because as things stand this will connect to
+ * any server whose certificate is signed by any CA.
+ */
+
+ sbio = BIO_new_ssl_connect(ctx);
+
+ BIO_get_ssl(sbio, &ssl);
+
+ if(!ssl) {
+ fprintf(stderr, "Can't locate SSL pointer\n");
+ /* whatever ... */
+ }
+
+ /* Don't want any retries */
+ SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY);
+
+ /* We might want to do other things with ssl here */
+
+ BIO_set_conn_hostname(sbio, "localhost:https");
+
+ out = BIO_new_fp(stdout, BIO_NOCLOSE);
+ if(BIO_do_connect(sbio) <= 0) {
+ fprintf(stderr, "Error connecting to server\n");
+ ERR_print_errors_fp(stderr);
+ /* whatever ... */
+ }
+
+ if(BIO_do_handshake(sbio) <= 0) {
+ fprintf(stderr, "Error establishing SSL connection\n");
+ ERR_print_errors_fp(stderr);
+ /* whatever ... */
+ }
+
+ /* Could examine ssl here to get connection info */
+
+ BIO_puts(sbio, "GET / HTTP/1.0\n\n");
+ for(;;) {
+ len = BIO_read(sbio, tmpbuf, 1024);
+ if(len <= 0) break;
+ BIO_write(out, tmpbuf, len);
+ }
+ BIO_free_all(sbio);
+ BIO_free(out);
+
+Here is a simple server example. It makes use of a buffering
+BIO to allow lines to be read from the SSL BIO using BIO_gets.
+It creates a pseudo web page containing the actual request from
+a client and also echoes the request to standard output.
+
+ BIO *sbio, *bbio, *acpt, *out;
+ int len;
+ char tmpbuf[1024];
+ SSL_CTX *ctx;
+ SSL *ssl;
+
+ ERR_load_crypto_strings();
+ ERR_load_SSL_strings();
+ OpenSSL_add_all_algorithms();
+
+ /* Might seed PRNG here */
+
+ ctx = SSL_CTX_new(SSLv23_server_method());
+
+ if (!SSL_CTX_use_certificate_file(ctx,"server.pem",SSL_FILETYPE_PEM)
+ || !SSL_CTX_use_PrivateKey_file(ctx,"server.pem",SSL_FILETYPE_PEM)
+ || !SSL_CTX_check_private_key(ctx)) {
+
+ fprintf(stderr, "Error setting up SSL_CTX\n");
+ ERR_print_errors_fp(stderr);
+ return 0;
+ }
+
+ /* Might do other things here like setting verify locations and
+ * DH and/or RSA temporary key callbacks
+ */
+
+ /* New SSL BIO setup as server */
+ sbio=BIO_new_ssl(ctx,0);
+
+ BIO_get_ssl(sbio, &ssl);
+
+ if(!ssl) {
+ fprintf(stderr, "Can't locate SSL pointer\n");
+ /* whatever ... */
+ }
+
+ /* Don't want any retries */
+ SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY);
+
+ /* Create the buffering BIO */
+
+ bbio = BIO_new(BIO_f_buffer());
+
+ /* Add to chain */
+ sbio = BIO_push(bbio, sbio);
+
+ acpt=BIO_new_accept("4433");
+
+ /* By doing this when a new connection is established
+ * we automatically have sbio inserted into it. The
+ * BIO chain is now 'swallowed' by the accept BIO and
+ * will be freed when the accept BIO is freed.
+ */
+
+ BIO_set_accept_bios(acpt,sbio);
+
+ out = BIO_new_fp(stdout, BIO_NOCLOSE);
+
+ /* Setup accept BIO */
+ if(BIO_do_accept(acpt) <= 0) {
+ fprintf(stderr, "Error setting up accept BIO\n");
+ ERR_print_errors_fp(stderr);
+ return 0;
+ }
+
+ /* Now wait for incoming connection */
+ if(BIO_do_accept(acpt) <= 0) {
+ fprintf(stderr, "Error in connection\n");
+ ERR_print_errors_fp(stderr);
+ return 0;
+ }
+
+ /* We only want one connection so remove and free
+ * accept BIO
+ */
+
+ sbio = BIO_pop(acpt);
+
+ BIO_free_all(acpt);
+
+ if(BIO_do_handshake(sbio) <= 0) {
+ fprintf(stderr, "Error in SSL handshake\n");
+ ERR_print_errors_fp(stderr);
+ return 0;
+ }
+
+ BIO_puts(sbio, "HTTP/1.0 200 OK\r\nContent-type: text/plain\r\n\r\n");
+ BIO_puts(sbio, "\r\nConnection Established\r\nRequest headers:\r\n");
+ BIO_puts(sbio, "--------------------------------------------------\r\n");
+
+ for(;;) {
+ len = BIO_gets(sbio, tmpbuf, 1024);
+ if(len <= 0) break;
+ BIO_write(sbio, tmpbuf, len);
+ BIO_write(out, tmpbuf, len);
+ /* Look for blank line signifying end of headers*/
+ if((tmpbuf[0] == '\r') || (tmpbuf[0] == '\n')) break;
+ }
+
+ BIO_puts(sbio, "--------------------------------------------------\r\n");
+ BIO_puts(sbio, "\r\n");
+
+ /* Since there is a buffering BIO present we had better flush it */
+ BIO_flush(sbio);
+
+ BIO_free_all(sbio);
+
+=head1 BUGS
+
+In OpenSSL versions before 1.0.0 the BIO_pop() call was handled incorrectly,
+the I/O BIO reference count was incorrectly incremented (instead of
+decremented) and dissociated with the SSL BIO even if the SSL BIO was not
+explicitly being popped (e.g. a pop higher up the chain). Applications which
+included workarounds for this bug (e.g. freeing BIOs more than once) should
+be modified to handle this fix or they may free up an already freed BIO.
+
+=head1 SEE ALSO
+
+TBA