c->function.sfunc = reinit_frame_cache_sfunc;
add_show_from_set (c, &showlist);
}
+
+#ifdef NO_SINGLE_STEP
+/*
+ * If NO_SINGLE_STEP defined, we're simulating single step with
+ * breakpoints, either because the kernel doesn't provide it or
+ * Just Because We Want To.
+ */
+
+/*
+ * Branch types. Only two types are distinguished:
+ * conditional and unconditional.
+ *
+ * We don't bother to set breakpoint after an unconditional
+ * branch, as it's (supposedly 8-) unconditional!
+ */
+
+typedef enum {
+ Error, not_branch,
+ branch_conditional, branch_unconditional,
+} branch_type;
+
+/*
+ * Information about the various breakpoints we may have set:
+ * (1) their addresses, (2) whether or not we actually set them,
+ * and (3) the previous contents of the memory.
+ */
+
+static CORE_ADDR next_pc, target;
+static int brk_next_pc, brk_target;
+typedef char binsn_quantum[BREAKPOINT_MAX];
+static binsn_quantum brkmem_next_pc, brkmem_target;
+
+/*
+ * Non-zero if we just simulated a single-step ptrace call. This is
+ * needed because we cannot remove the breakpoints in the inferior
+ * process until after the `wait' in `wait_for_inferior'.
+ */
+
+int one_stepped;
+
+/*
+ * single_step() is called just before we want to resume the inferior,
+ * if we want to single-step it but there is no hardware or kernel
+ * single-step support (as in NetBSD, on the Alpha). We find all the
+ * possible targets of the coming instruction and breakpoint them.
+ *
+ * single_step() is also called just after the inferior stops. IF we
+ * had set up a simulated single-step, we undo our damage.
+ */
+
+void
+single_step(ignore)
+ enum target_signal ignore; /* pid, but we don't need it. */
+{
+ branch_type br, isbranch();
+ CORE_ADDR pc;
+ unsigned int pc_instruction;
+
+ pc = read_register(PC_REGNUM);
+
+ if (one_stepped) {
+ /*
+ * The inferior has stopped. Adjust the PC to
+ * deal with the breakpoint we just took and
+ * clean up the breakpoints we set.
+ */
+
+ write_pc(pc - DECR_PC_AFTER_BREAK);
+
+ /* If no breakpoints set, we have a problem. */
+ if (!brk_next_pc && !brk_target)
+ abort();
+
+ if (brk_next_pc)
+ target_remove_breakpoint(next_pc, brkmem_next_pc);
+
+ if (brk_target)
+ target_remove_breakpoint(target, brkmem_target);
+
+ one_stepped = 0;
+ return;
+ }
+
+ pc_instruction = read_memory_integer(pc, sizeof(pc_instruction));
+ br = isbranch(pc_instruction, pc, &target);
+
+ switch (br) {
+ default:
+ case Error:
+ abort();
+
+ case not_branch:
+ next_pc = pc + 4;
+ brk_next_pc = 1;
+ brk_target = 0;
+ break;
+
+ case branch_unconditional:
+ brk_next_pc = 0;
+ brk_target = 1;
+ break;
+
+ case branch_conditional:
+ next_pc = pc + 4;
+ brk_next_pc = brk_target = 1;
+ break;
+ }
+
+ if (brk_next_pc)
+ target_insert_breakpoint(next_pc, brkmem_next_pc);
+ if (brk_target)
+ target_insert_breakpoint(target, brkmem_target);
+
+ /* Let it go. */
+ one_stepped = 1;
+}
+
+/*
+ * Check instruction at ADDR to see if it is a branch or other
+ * instruction whose target isn't pc+4. All other instructions
+ * will go to NPC or will trap. Set *TARGET if we find a
+ * candidate branch.
+ */
+
+branch_type
+isbranch(instruction, addr, target)
+ unsigned int instruction;
+ CORE_ADDR addr, *target;
+{
+ branch_type val;
+ long offset; /* Must be signed for sign-extend. */
+ union {
+ unsigned int code; /* raw bits */
+ struct { /* common bits */
+ unsigned int unk:26;
+ unsigned int op:6;
+ } common;
+ struct { /* memory format */
+ int disp:16;
+ unsigned int rb:5;
+ unsigned int ra:5;
+ unsigned int op:6;
+ } m;
+ struct { /* branch format */
+ int disp:21;
+ unsigned int ra:5;
+ unsigned int op:6;
+ } b;
+ } insn;
+
+ insn.code = instruction;
+ switch (insn.common.op) {
+ /*
+ * memory-format branches. all unconditional.
+ */
+ case 0x1a: /* JMP/RET/JSR/JSR_C; memory format */
+ val = branch_unconditional;
+
+ /*
+ * Target PC is (contents of instruction's "RB") & ~3.
+ */
+ *target = read_register(insn.m.rb) & ~3;
+ break;
+
+ /*
+ * branch-format branches. conditional unless otherwise noted.
+ */
+ case 0x30: /* BR; unconditional*/
+ case 0x31: /* FBEQ */
+ case 0x32: /* FBLT */
+ case 0x33: /* FBLE */
+ case 0x34: /* BSR; unconditional */
+ case 0x35: /* FBNE */
+ case 0x36: /* FBGE */
+ case 0x37: /* FBGT */
+ case 0x38: /* BLBC */
+ case 0x39: /* BEQ */
+ case 0x3a: /* BLT */
+ case 0x3b: /* BLE */
+ case 0x3c: /* BLBS */
+ case 0x3d: /* BNE */
+ case 0x3e: /* BGE */
+ case 0x3f: /* BGT */
+
+ if (insn.b.op == 0x30 || insn.b.op == 0x34)
+ val = branch_unconditional;
+ else
+ val = branch_conditional;
+
+ /*
+ * Branch format is easy.
+ * Target PC is (new PC) + (4 * sign-ext(displacement)).
+ */
+ offset = 4 + (4 * insn.b.disp);
+ *target = addr + offset;
+ break;
+
+
+ default:
+ val = not_branch;
+ break;
+ }
+
+ return val;
+}
+#endif
--- /dev/null
+/* Low level Alpha interface, for GDB when running native.
+ Copyright 1993, 1995 Free Software Foundation, Inc.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+#include "defs.h"
+#include "inferior.h"
+#include "gdbcore.h"
+#include "target.h"
+#include <sys/ptrace.h>
+#include <machine/reg.h>
+#include <machine/frame.h>
+#include <machine/pcb.h>
+#include <string.h>
+
+/* Size of elements in jmpbuf */
+
+#define JB_ELEMENT_SIZE 8
+
+/* The definition for JB_PC in machine/reg.h is wrong.
+ And we can't get at the correct definition in setjmp.h as it is
+ not always available (eg. if _POSIX_SOURCE is defined which is the
+ default). As the defintion is unlikely to change (see comment
+ in <setjmp.h>, define the correct value here. */
+
+#undef JB_PC
+#define JB_PC 2
+
+/* Figure out where the longjmp will land.
+ We expect the first arg to be a pointer to the jmp_buf structure from which
+ we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
+ This routine returns true on success. */
+
+int
+get_longjmp_target (pc)
+ CORE_ADDR *pc;
+{
+ CORE_ADDR jb_addr;
+ char raw_buffer[MAX_REGISTER_RAW_SIZE];
+
+ jb_addr = read_register(A0_REGNUM);
+
+ if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
+ sizeof(CORE_ADDR)))
+ return 0;
+
+ *pc = extract_address (raw_buffer, sizeof(CORE_ADDR));
+ return 1;
+}
+
+/* Extract the register values out of the core file and store
+ them where `read_register' will find them.
+
+ CORE_REG_SECT points to the register values themselves, read into memory.
+ CORE_REG_SIZE is the size of that area.
+ WHICH says which set of registers we are handling (0 = int, 2 = float
+ on machines where they are discontiguous).
+ REG_ADDR is the offset from u.u_ar0 to the register values relative to
+ core_reg_sect. This is used with old-fashioned core files to
+ locate the registers in a large upage-plus-stack ".reg" section.
+ Original upage address X is at location core_reg_sect+x+reg_addr.
+ */
+
+#define oi(name) \
+ offsetof(struct md_coredump, md_tf.tf_regs[__CONCAT(FRAME_,name)])
+#define of(num) \
+ offsetof(struct md_coredump, md_fpstate.fpr_regs[num])
+
+void
+fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
+ char *core_reg_sect;
+ unsigned core_reg_size;
+ int which;
+ unsigned reg_addr;
+{
+ register int regno;
+ register int addr;
+ int bad_reg = -1;
+ static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
+ int regoff[NUM_REGS] = {
+ oi(V0), oi(T0), oi(T1), oi(T2), oi(T3), oi(T4), oi(T5), oi(T6),
+ oi(T7), oi(S0), oi(S1), oi(S2), oi(S3), oi(S4), oi(S5), oi(S6),
+ oi(A0), oi(A1), oi(A2), oi(A3), oi(A4), oi(A5), oi(T8), oi(T9),
+ oi(T10), oi(T11), oi(RA), oi(T12), oi(AT), oi(GP), oi(SP), -1,
+ of(0), of(1), of(2), of(3), of(4), of(5), of(6), of(7),
+ of(8), of(9), of(10), of(11), of(12), of(13), of(14), of(15),
+ of(16), of(17), of(18), of(19), of(20), of(21), of(22), of(23),
+ of(24), of(25), of(26), of(27), of(28), of(29), of(30), of(31),
+ oi(PC), -1,
+ };
+
+ for (regno = 0; regno < NUM_REGS; regno++)
+ {
+ if (CANNOT_FETCH_REGISTER (regno))
+ {
+ supply_register (regno, zerobuf);
+ continue;
+ }
+ addr = regoff[regno];
+ if (addr < 0 || addr >= core_reg_size)
+ {
+ if (bad_reg < 0)
+ bad_reg = regno;
+ }
+ else
+ {
+ supply_register (regno, core_reg_sect + addr);
+ }
+ }
+ if (bad_reg >= 0)
+ {
+ error ("Register %s not found in core file.", reg_names[bad_reg]);
+ }
+}
+
+register_t
+rrf_to_register(regno, reg, fpreg)
+ int regno;
+ struct reg *reg;
+ struct fpreg *fpreg;
+{
+
+ if (regno < 0)
+ abort();
+ else if (regno < FP0_REGNUM)
+ return (reg->r_regs[regno]);
+ else if (regno == PC_REGNUM)
+ return (reg->r_regs[R_ZERO]);
+ else if (regno >= FP0_REGNUM)
+ return (fpreg->fpr_regs[regno - FP0_REGNUM]);
+ else
+ abort();
+}
+
+void
+fetch_inferior_registers (regno)
+ int regno;
+{
+ struct reg reg;
+ struct fpreg fpreg;
+ register_t regval;
+ static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
+ char *rp;
+
+ ptrace(PT_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE)®, 0);
+ ptrace(PT_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE)&fpreg, 0);
+
+ if (regno < 0) {
+ for (regno = 0; regno < NUM_REGS; regno++) {
+ if (CANNOT_FETCH_REGISTER (regno))
+ rp = zerobuf;
+ else {
+ regval = rrf_to_register(regno, ®, &fpreg);
+ rp = (char *)®val;
+ }
+ supply_register(regno, rp);
+ }
+ } else {
+ if (CANNOT_FETCH_REGISTER (regno))
+ rp = zerobuf;
+ else {
+ regval = rrf_to_register(regno, ®, &fpreg);
+ rp = (char *)®val;
+ }
+
+ supply_register(regno, rp);
+ }
+}
+
+void
+register_into_rrf(val, regno, reg, fpreg)
+ register_t val;
+ int regno;
+ struct reg *reg;
+ struct fpreg *fpreg;
+{
+
+ if (regno < 0)
+ abort();
+ else if (regno < FP0_REGNUM)
+ reg->r_regs[regno] = val;
+ else if (regno == PC_REGNUM)
+ reg->r_regs[R_ZERO] = val;
+ else if (regno >= FP0_REGNUM)
+ fpreg->fpr_regs[regno - FP0_REGNUM] = val;
+ else
+ abort();
+}
+
+void
+store_inferior_registers (regno)
+ int regno;
+{
+ struct reg reg;
+ struct fpreg fpreg;
+ register_t regval;
+
+ if (regno < 0) {
+ for (regno = 0; regno < NUM_REGS; regno++) {
+ if (CANNOT_STORE_REGISTER (regno))
+ continue;
+
+ if (REGISTER_RAW_SIZE (regno) != sizeof regval)
+ abort();
+ memcpy(®val, ®isters[REGISTER_BYTE (regno)],
+ REGISTER_RAW_SIZE (regno));
+ register_into_rrf(regval, regno, ®, &fpreg);
+ }
+ } else {
+ ptrace(PT_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE)®, 0);
+ ptrace(PT_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE)&fpreg, 0);
+
+ memcpy(®val, ®isters[REGISTER_BYTE (regno)],
+ REGISTER_RAW_SIZE (regno));
+ register_into_rrf(regval, regno, ®, &fpreg);
+ }
+
+ ptrace(PT_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE)®, 0);
+ ptrace(PT_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE)&fpreg, 0);
+}
+
+void
+child_resume (pid, step, signal)
+ int pid;
+ int step;
+ enum target_signal signal;
+{
+
+ errno = 0;
+
+ if (pid == -1)
+ /* Resume all threads. */
+ /* I think this only gets used in the non-threaded case, where "resume
+ all threads" and "resume inferior_pid" are the same. */
+ pid = inferior_pid;
+
+ /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
+ it was. (If GDB wanted it to start some other way, we have already
+ written a new PC value to the child.)
+
+ If this system does not support PT_STEP, a higher level function will
+ have called single_step() to transmute the step request into a
+ continue request (by setting breakpoints on all possible successor
+ instructions), so we don't have to worry about that here. */
+
+ if (step)
+ abort();
+ else
+ ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
+ target_signal_to_host (signal));
+
+ if (errno)
+ perror_with_name ("ptrace");
+}