listen.o lstat.o madvise.o mincore.o minherit.o mkdir.o mkfifo.o \
mknod.o mlock.o \
mount.o mprotect.o msgctl.o msgget.o msgrcv.o msgsnd.o msync.o \
- munlock.o munmap.o nfssvc.o open.o pathconf.o profil.o quotactl.o \
+ munlock.o munmap.o nfssvc.o \
+ ntp_gettime.o ntp_adjtime.o \
+ open.o pathconf.o profil.o quotactl.o \
read.o readlink.o readv.o recvfrom.o recvmsg.o rename.o revoke.o \
rfork.o \
rmdir.o select.o semconfig.o semget.o semop.o sendmsg.o sendto.o \
file kern/kern_ktrace.c ktrace
file kern/kern_lkm.c lkm
file kern/kern_malloc.c
+file kern/kern_ntptime.c
file kern/kern_physio.c
file kern/kern_proc.c
file kern/kern_prot.c
sys_nosys }, /* 174 = unimplemented */
{ 0, 0,
sys_nosys }, /* 175 = unimplemented */
- { 0, 0,
- sys_nosys }, /* 176 = unimplemented */
- { 0, 0,
- sys_nosys }, /* 177 = unimplemented */
+ { 1, s(struct sys_ntp_adjtime_args),
+ sys_ntp_adjtime }, /* 176 = ntp_adjtime */
+ { 1, s(struct sys_ntp_gettime_args),
+ sys_ntp_gettime }, /* 177 = ntp_gettime */
{ 0, 0,
sys_nosys }, /* 178 = unimplemented */
{ 0, 0,
-/* $NetBSD: kern_clock.c,v 1.24 1996/01/17 04:37:31 cgd Exp $ */
+/* $NetBSD: kern_clock.c,v 1.23 1995/12/28 19:16:41 thorpej Exp $ */
/*-
* Copyright (c) 1982, 1986, 1991, 1993
* @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
*/
+/* Portions of this software are covered by the following: */
+/******************************************************************************
+ * *
+ * Copyright (c) David L. Mills 1993, 1994 *
+ * *
+ * Permission to use, copy, modify, and distribute this software and its *
+ * documentation for any purpose and without fee is hereby granted, provided *
+ * that the above copyright notice appears in all copies and that both the *
+ * copyright notice and this permission notice appear in supporting *
+ * documentation, and that the name University of Delaware not be used in *
+ * advertising or publicity pertaining to distribution of the software *
+ * without specific, written prior permission. The University of Delaware *
+ * makes no representations about the suitability this software for any *
+ * purpose. It is provided "as is" without express or implied warranty. *
+ * *
+ *****************************************************************************/
+
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/dkstat.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
+#include <sys/timex.h>
#include <machine/cpu.h>
int ticks;
static int psdiv, pscnt; /* prof => stat divider */
int psratio; /* ratio: prof / stat */
-int tickfix, tickfixinterval; /* used if tick not really integral */
-static int tickfixcnt; /* number of ticks since last fix */
volatile struct timeval time;
volatile struct timeval mono_time;
+/*
+ * Phase-lock loop (PLL) definitions
+ *
+ * The following variables are read and set by the ntp_adjtime() system
+ * call.
+ *
+ * time_state shows the state of the system clock, with values defined
+ * in the timex.h header file.
+ *
+ * time_status shows the status of the system clock, with bits defined
+ * in the timex.h header file.
+ *
+ * time_offset is used by the PLL to adjust the system time in small
+ * increments.
+ *
+ * time_constant determines the bandwidth or "stiffness" of the PLL.
+ *
+ * time_tolerance determines maximum frequency error or tolerance of the
+ * CPU clock oscillator and is a property of the architecture; however,
+ * in principle it could change as result of the presence of external
+ * discipline signals, for instance.
+ *
+ * time_precision is usually equal to the kernel tick variable; however,
+ * in cases where a precision clock counter or external clock is
+ * available, the resolution can be much less than this and depend on
+ * whether the external clock is working or not.
+ *
+ * time_maxerror is initialized by a ntp_adjtime() call and increased by
+ * the kernel once each second to reflect the maximum error
+ * bound growth.
+ *
+ * time_esterror is set and read by the ntp_adjtime() call, but
+ * otherwise not used by the kernel.
+ */
+int time_status = STA_UNSYNC; /* clock status bits */
+int time_state = TIME_OK; /* clock state */
+long time_offset = 0; /* time offset (us) */
+long time_constant = 0; /* pll time constant */
+long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
+long time_precision = 1; /* clock precision (us) */
+long time_maxerror = MAXPHASE; /* maximum error (us) */
+long time_esterror = MAXPHASE; /* estimated error (us) */
+
+/*
+ * The following variables establish the state of the PLL and the
+ * residual time and frequency offset of the local clock. The scale
+ * factors are defined in the timex.h header file.
+ *
+ * time_phase and time_freq are the phase increment and the frequency
+ * increment, respectively, of the kernel time variable at each tick of
+ * the clock.
+ *
+ * time_freq is set via ntp_adjtime() from a value stored in a file when
+ * the synchronization daemon is first started. Its value is retrieved
+ * via ntp_adjtime() and written to the file about once per hour by the
+ * daemon.
+ *
+ * time_adj is the adjustment added to the value of tick at each timer
+ * interrupt and is recomputed at each timer interrupt.
+ *
+ * time_reftime is the second's portion of the system time on the last
+ * call to ntp_adjtime(). It is used to adjust the time_freq variable
+ * and to increase the time_maxerror as the time since last update
+ * increases.
+ */
+static long time_phase = 0; /* phase offset (scaled us) */
+long time_freq = 0; /* frequency offset (scaled ppm) */
+static long time_adj = 0; /* tick adjust (scaled 1 / hz) */
+static long time_reftime = 0; /* time at last adjustment (s) */
+
+#ifdef PPS_SYNC
+/*
+ * The following variables are used only if the if the kernel PPS
+ * discipline code is configured (PPS_SYNC). The scale factors are
+ * defined in the timex.h header file.
+ *
+ * pps_time contains the time at each calibration interval, as read by
+ * microtime().
+ *
+ * pps_offset is the time offset produced by the time median filter
+ * pps_tf[], while pps_jitter is the dispersion measured by this
+ * filter.
+ *
+ * pps_freq is the frequency offset produced by the frequency median
+ * filter pps_ff[], while pps_stabil is the dispersion measured by
+ * this filter.
+ *
+ * pps_usec is latched from a high resolution counter or external clock
+ * at pps_time. Here we want the hardware counter contents only, not the
+ * contents plus the time_tv.usec as usual.
+ *
+ * pps_valid counts the number of seconds since the last PPS update. It
+ * is used as a watchdog timer to disable the PPS discipline should the
+ * PPS signal be lost.
+ *
+ * pps_glitch counts the number of seconds since the beginning of an
+ * offset burst more than tick/2 from current nominal offset. It is used
+ * mainly to suppress error bursts due to priority conflicts between the
+ * PPS interrupt and timer interrupt.
+ *
+ * pps_count counts the seconds of the calibration interval, the
+ * duration of which is pps_shift in powers of two.
+ *
+ * pps_intcnt counts the calibration intervals for use in the interval-
+ * adaptation algorithm. It's just too complicated for words.
+ */
+struct timeval pps_time; /* kernel time at last interval */
+long pps_offset = 0; /* pps time offset (us) */
+long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */
+long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
+long pps_freq = 0; /* frequency offset (scaled ppm) */
+long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
+long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */
+long pps_usec = 0; /* microsec counter at last interval */
+long pps_valid = PPS_VALID; /* pps signal watchdog counter */
+int pps_glitch = 0; /* pps signal glitch counter */
+int pps_count = 0; /* calibration interval counter (s) */
+int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
+int pps_intcnt = 0; /* intervals at current duration */
+
+/*
+ * PPS signal quality monitors
+ *
+ * pps_jitcnt counts the seconds that have been discarded because the
+ * jitter measured by the time median filter exceeds the limit MAXTIME
+ * (100 us).
+ *
+ * pps_calcnt counts the frequency calibration intervals, which are
+ * variable from 4 s to 256 s.
+ *
+ * pps_errcnt counts the calibration intervals which have been discarded
+ * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
+ * calibration interval jitter exceeds two ticks.
+ *
+ * pps_stbcnt counts the calibration intervals that have been discarded
+ * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
+ */
+long pps_jitcnt = 0; /* jitter limit exceeded */
+long pps_calcnt = 0; /* calibration intervals */
+long pps_errcnt = 0; /* calibration errors */
+long pps_stbcnt = 0; /* stability limit exceeded */
+#endif /* PPS_SYNC */
+
+/*
+ * hardupdate() - local clock update
+ *
+ * This routine is called by ntp_adjtime() to update the local clock
+ * phase and frequency. This is used to implement an adaptive-parameter,
+ * first-order, type-II phase-lock loop. The code computes new time and
+ * frequency offsets each time it is called. The hardclock() routine
+ * amortizes these offsets at each tick interrupt. If the kernel PPS
+ * discipline code is configured (PPS_SYNC), the PPS signal itself
+ * determines the new time offset, instead of the calling argument.
+ * Presumably, calls to ntp_adjtime() occur only when the caller
+ * believes the local clock is valid within some bound (+-128 ms with
+ * NTP). If the caller's time is far different than the PPS time, an
+ * argument will ensue, and it's not clear who will lose.
+ *
+ * For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the
+ * maximum interval between updates is 4096 s and the maximum frequency
+ * offset is +-31.25 ms/s.
+ *
+ * Note: splclock() is in effect.
+ */
+void
+hardupdate(offset)
+ long offset;
+{
+ long ltemp, mtemp;
+
+ if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
+ return;
+ ltemp = offset;
+#ifdef PPS_SYNC
+ if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
+ ltemp = pps_offset;
+#endif /* PPS_SYNC */
+ if (ltemp > MAXPHASE)
+ time_offset = MAXPHASE << SHIFT_UPDATE;
+ else if (ltemp < -MAXPHASE)
+ time_offset = -(MAXPHASE << SHIFT_UPDATE);
+ else
+ time_offset = ltemp << SHIFT_UPDATE;
+ mtemp = time.tv_sec - time_reftime;
+ time_reftime = time.tv_sec;
+ if (mtemp > MAXSEC)
+ mtemp = 0;
+
+ /* ugly multiply should be replaced */
+ if (ltemp < 0)
+ time_freq -= (-ltemp * mtemp) >> (time_constant +
+ time_constant + SHIFT_KF - SHIFT_USEC);
+ else
+ time_freq += (ltemp * mtemp) >> (time_constant +
+ time_constant + SHIFT_KF - SHIFT_USEC);
+ if (time_freq > time_tolerance)
+ time_freq = time_tolerance;
+ else if (time_freq < -time_tolerance)
+ time_freq = -time_tolerance;
+}
+
/*
* Initialize clock frequencies and start both clocks running.
*/
{
register struct callout *p1;
register struct proc *p;
- register int delta, needsoft;
- extern int tickdelta;
- extern long timedelta;
+ register int needsoft;
+ int time_update;
+ struct timeval newtime;
+ long ltemp;
/*
* Update real-time timeout queue.
statclock(frame);
/*
- * Increment the time-of-day. The increment is normally just
- * ``tick''. If the machine is one which has a clock frequency
- * such that ``hz'' would not divide the second evenly into
- * milliseconds, a periodic adjustment must be applied. Finally,
- * if we are still adjusting the time (see adjtime()),
- * ``tickdelta'' may also be added in.
+ * Increment the time-of-day
*/
ticks++;
- delta = tick;
- if (tickfix) {
- tickfixcnt++;
- if (tickfixcnt >= tickfixinterval) {
- delta += tickfix;
- tickfixcnt = 0;
- }
+ newtime = time;
+
+ if (timedelta == 0) {
+ time_update = tick;
}
- if (timedelta != 0) {
- delta = tick + tickdelta;
+ else {
+ time_update = tick + tickdelta;
timedelta -= tickdelta;
}
- BUMPTIME(&time, delta);
- BUMPTIME(&mono_time, delta);
+ BUMPTIME(&mono_time, time_update);
+
+ /*
+ * Compute the phase adjustment. If the low-order bits
+ * (time_phase) of the update overflow, bump the high-order
+ * bits (time_update).
+ */
+ time_phase += time_adj;
+ if (time_phase <= -FINEUSEC) {
+ ltemp = -time_phase >> SHIFT_SCALE;
+ time_phase += ltemp << SHIFT_SCALE;
+ time_update -= ltemp;
+ }
+ else if (time_phase >= FINEUSEC) {
+ ltemp = time_phase >> SHIFT_SCALE;
+ time_phase -= ltemp << SHIFT_SCALE;
+ time_update += ltemp;
+ }
+
+ newtime.tv_usec += time_update;
+ /*
+ * On rollover of the second the phase adjustment to be used for
+ * the next second is calculated. Also, the maximum error is
+ * increased by the tolerance. If the PPS frequency discipline
+ * code is present, the phase is increased to compensate for the
+ * CPU clock oscillator frequency error.
+ *
+ * With SHIFT_SCALE = 23, the maximum frequency adjustment is
+ * +-256 us per tick, or 25.6 ms/s at a clock frequency of 100
+ * Hz. The time contribution is shifted right a minimum of two
+ * bits, while the frequency contribution is a right shift.
+ * Thus, overflow is prevented if the frequency contribution is
+ * limited to half the maximum or 15.625 ms/s.
+ */
+ if (newtime.tv_usec >= 1000000) {
+ newtime.tv_usec -= 1000000;
+ newtime.tv_sec++;
+ time_maxerror += time_tolerance >> SHIFT_USEC;
+ if (time_offset < 0) {
+ ltemp = -time_offset >> (SHIFT_KG + time_constant);
+ time_offset += ltemp;
+ time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
+ }
+ else {
+ ltemp = time_offset >> (SHIFT_KG + time_constant);
+ time_offset -= ltemp;
+ time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
+ }
+#ifdef PPS_SYNC
+ /*
+ * Gnaw on the watchdog counter and update the frequency
+ * computed by the pll and the PPS signal
+ */
+ pps_valid++;
+ if (pps_valid == PPS_VALID) {
+ pps_jitter = MAXTIME;
+ pps_stabil = MAXFREQ;
+ time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
+ STA_PPSWANDER | STA_PPSERROR);
+ }
+ ltemp = time_freq + pps_freq;
+#else
+ ltemp = time_freq;
+#endif /* PPS_SYNC */
+ if (ltemp < 0)
+ time_adj -= -ltemp >> (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
+ else
+ time_adj += ltemp >> (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
+
+ /*
+ * When the CPU clock oscillator frequency is not a
+ * power of two in Hz, the SHIFT_HZ is only an
+ * approximate scale factor. In the following code
+ * the overall gain is increased by a factor of 1.25.
+ */
+ if (hz == 100) {
+ if (time_adj < 0)
+ time_adj -= -time_adj >> 2;
+ else
+ time_adj += time_adj >> 2;
+ }
+ /*
+ * Leap second processing. If in leap-insert state at
+ * the end of the day, the system clock is set back one
+ * second; if in leap-delete state, the system clock is
+ * set ahead one second. The microtime() routine or
+ * external clock driver will insure that reported time
+ * is always monotonic. The ugly divides should be
+ * replacesd.
+ */
+ switch (time_state) {
+
+ case TIME_OK:
+ if (time_status & STA_INS)
+ time_state = TIME_INS;
+ else if (time_status & STA_DEL)
+ time_state = TIME_DEL;
+ break;
+
+ case TIME_INS:
+ if (newtime.tv_sec % 86400 == 0) {
+ newtime.tv_sec--;
+ time_state = TIME_OOP;
+ }
+ break;
+
+ case TIME_DEL:
+ if ((newtime.tv_sec + 1) % 86400 == 0) {
+ newtime.tv_sec++;
+ time_state = TIME_WAIT;
+ }
+ break;
+
+ case TIME_OOP:
+ time_state = TIME_WAIT;
+ break;
+
+ case TIME_WAIT:
+ if (!(time_status & (STA_INS | STA_DEL)))
+ time_state = TIME_OK;
+ break;
+ }
+ }
+ time = newtime;
/*
* Process callouts at a very low cpu priority, so we don't keep the
hzto(tv)
struct timeval *tv;
{
- register long ticks, sec;
+ register unsigned long ticks;
+ register long sec, usec;
int s;
/*
- * If number of microseconds will fit in 32 bit arithmetic,
- * then compute number of microseconds to time and scale to
- * ticks. Otherwise just compute number of hz in time, rounding
- * times greater than representible to maximum value. (We must
- * compute in microseconds, because hz can be greater than 1000,
- * and thus tick can be less than one millisecond).
+ * If the number of usecs in the whole seconds part of the time
+ * difference fits in a long, then the total number of usecs will
+ * fit in an unsigned long. Compute the total and convert it to
+ * ticks, rounding up and adding 1 to allow for the current tick
+ * to expire. Rounding also depends on unsigned long arithmetic
+ * to avoid overflow.
+ *
+ * Otherwise, if the number of ticks in the whole seconds part of
+ * the time difference fits in a long, then convert the parts to
+ * ticks separately and add, using similar rounding methods and
+ * overflow avoidance. This method would work in the previous
+ * case but it is slightly slower and assumes that hz is integral.
+ *
+ * Otherwise, round the time difference down to the maximum
+ * representable value.
*
- * Delta times less than 14 hours can be computed ``exactly''.
- * (Note that if hz would yeild a non-integral number of us per
- * tick, i.e. tickfix is nonzero, timouts can be a tick longer
- * than they should be.) Maximum value for any timeout in 10ms
- * ticks is 250 days.
+ * If ints have 32 bits, then the maximum value for any timeout in
+ * 10ms ticks is 248 days.
*/
- s = splhigh();
+ s = splclock();
sec = tv->tv_sec - time.tv_sec;
- if (sec <= 0x7fffffff / 1000000 - 1)
- ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
- (tv->tv_usec - time.tv_usec)) / tick;
- else if (sec <= 0x7fffffff / hz)
- ticks = sec * hz;
- else
- ticks = 0x7fffffff;
+ usec = tv->tv_usec - time.tv_usec;
splx(s);
+ if (usec < 0) {
+ sec--;
+ usec += 1000000;
+ }
+ if (sec < 0) {
+#ifdef DIAGNOSTIC
+ printf("hzto: negative time difference %ld sec %ld usec\n",
+ sec, usec);
+#endif
+ ticks = 1;
+ }
+ else if (sec <= LONG_MAX / 1000000)
+ ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) / tick + 1;
+ else if (sec <= LONG_MAX / hz)
+ ticks = sec * hz + ((unsigned long)usec + (tick - 1)) / tick + 1;
+ else
+ ticks = LONG_MAX;
+ if (ticks > INT_MAX)
+ ticks = INT_MAX;
return (ticks);
}
/*
* Construct clockinfo structure.
*/
- clkinfo.tick = tick;
- clkinfo.tickadj = tickadj;
clkinfo.hz = hz;
+ clkinfo.tick = tick;
clkinfo.profhz = profhz;
clkinfo.stathz = stathz ? stathz : hz;
return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
--- /dev/null
+/******************************************************************************
+ * *
+ * Copyright (c) David L. Mills 1993, 1994 *
+ * *
+ * Permission to use, copy, modify, and distribute this software and its *
+ * documentation for any purpose and without fee is hereby granted, provided *
+ * that the above copyright notice appears in all copies and that both the *
+ * copyright notice and this permission notice appear in supporting *
+ * documentation, and that the name University of Delaware not be used in *
+ * advertising or publicity pertaining to distribution of the software *
+ * without specific, written prior permission. The University of Delaware *
+ * makes no representations about the suitability this software for any *
+ * purpose. It is provided "as is" without express or implied warranty. *
+ * *
+ ******************************************************************************/
+
+/*
+ * Modification history kern_ntptime.c
+ *
+ * 24 Sep 94 David L. Mills
+ * Tightened code at exits.
+ *
+ * 24 Mar 94 David L. Mills
+ * Revised syscall interface to include new variables for PPS
+ * time discipline.
+ *
+ * 14 Feb 94 David L. Mills
+ * Added code for external clock
+ *
+ * 28 Nov 93 David L. Mills
+ * Revised frequency scaling to conform with adjusted parameters
+ *
+ * 17 Sep 93 David L. Mills
+ * Created file
+ */
+/*
+ * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
+ * V4.1.1 and V4.1.3
+ *
+ * These routines consitute the Network Time Protocol (NTP) interfaces
+ * for user and daemon application programs. The ntp_gettime() routine
+ * provides the time, maximum error (synch distance) and estimated error
+ * (dispersion) to client user application programs. The ntp_adjtime()
+ * routine is used by the NTP daemon to adjust the system clock to an
+ * externally derived time. The time offset and related variables set by
+ * this routine are used by hardclock() to adjust the phase and
+ * frequency of the phase-lock loop which controls the system clock.
+ */
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/kernel.h>
+#include <sys/proc.h>
+#include <sys/timex.h>
+
+#include <sys/mount.h>
+#include <sys/syscallargs.h>
+
+/*
+ * The following variables are used by the hardclock() routine in the
+ * kern_clock.c module and are described in that module.
+ */
+extern int time_state; /* clock state */
+extern int time_status; /* clock status bits */
+extern long time_offset; /* time adjustment (us) */
+extern long time_freq; /* frequency offset (scaled ppm) */
+extern long time_maxerror; /* maximum error (us) */
+extern long time_esterror; /* estimated error (us) */
+extern long time_constant; /* pll time constant */
+extern long time_precision; /* clock precision (us) */
+extern long time_tolerance; /* frequency tolerance (scaled ppm) */
+
+#ifdef PPS_SYNC
+/*
+ * The following variables are used only if the PPS signal discipline
+ * is configured in the kernel.
+ */
+extern int pps_shift; /* interval duration (s) (shift) */
+extern long pps_freq; /* pps frequency offset (scaled ppm) */
+extern long pps_jitter; /* pps jitter (us) */
+extern long pps_stabil; /* pps stability (scaled ppm) */
+extern long pps_jitcnt; /* jitter limit exceeded */
+extern long pps_calcnt; /* calibration intervals */
+extern long pps_errcnt; /* calibration errors */
+extern long pps_stbcnt; /* stability limit exceeded */
+#endif /* PPS_SYNC */
+
+/*
+ * ntp_gettime() - NTP user application interface
+ */
+int
+sys_ntp_gettime(p, v, retval)
+ struct proc *p;
+ void *v;
+ register_t *retval;
+{
+ register struct sys_ntp_gettime_args /* {
+ syscallarg(struct ntptimeval *) tp;
+ } */ *uap = v;
+ struct timeval atv;
+ struct ntptimeval ntv;
+ int error, s;
+
+ if (SCARG(uap, tp)) {
+ s = splclock();
+#ifdef EXT_CLOCK
+ /*
+ * The microtime() external clock routine returns a
+ * status code. If less than zero, we declare an error
+ * in the clock status word and return the kernel
+ * (software) time variable. While there are other
+ * places that call microtime(), this is the only place
+ * that matters from an application point of view.
+ */
+ if (microtime(&atv) < 0) {
+ time_status |= STA_CLOCKERR;
+ ntv.time = time;
+ } else
+ time_status &= ~STA_CLOCKERR;
+#else /* EXT_CLOCK */
+ microtime(&atv);
+#endif /* EXT_CLOCK */
+ ntv.time = atv;
+ ntv.maxerror = time_maxerror;
+ ntv.esterror = time_esterror;
+ (void) splx(s);
+
+ error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp),
+ sizeof (ntv));
+ }
+ if (!error) {
+
+ /*
+ * Status word error decode. If any of these conditions
+ * occur, an error is returned, instead of the status
+ * word. Most applications will care only about the fact
+ * the system clock may not be trusted, not about the
+ * details.
+ *
+ * Hardware or software error
+ */
+ if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
+
+ /*
+ * PPS signal lost when either time or frequency
+ * synchronization requested
+ */
+ (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
+ !(time_status & STA_PPSSIGNAL)) ||
+
+ /*
+ * PPS jitter exceeded when time synchronization
+ * requested
+ */
+ (time_status & STA_PPSTIME &&
+ time_status & STA_PPSJITTER) ||
+
+ /*
+ * PPS wander exceeded or calibration error when
+ * frequency synchronization requested
+ */
+ (time_status & STA_PPSFREQ &&
+ time_status & (STA_PPSWANDER | STA_PPSERROR)))
+ *retval = TIME_ERROR;
+ else
+ *retval = time_state;
+ }
+ return (error);
+}
+
+/*
+ * ntp_adjtime() - NTP daemon application interface
+ */
+int
+sys_ntp_adjtime(p, v, retval)
+ struct proc *p;
+ void *v;
+ register_t *retval;
+{
+ register struct sys_ntp_adjtime_args /* {
+ syscallarg(struct timex *) tp;
+ } */ *uap = v;
+ struct timex ntv;
+ int modes;
+ int error, s;
+
+ error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
+ if (error)
+ return (error);
+
+ /*
+ * Update selected clock variables - only the superuser can
+ * change anything. Note that there is no error checking here on
+ * the assumption the superuser should know what it is doing.
+ */
+ modes = ntv.modes;
+ if (!suser(p->p_ucred, &p->p_acflag) && modes != 0)
+ return;
+ s = splclock();
+ if (modes & MOD_FREQUENCY)
+#ifdef PPS_SYNC
+ time_freq = ntv.freq - pps_freq;
+#else /* PPS_SYNC */
+ time_freq = ntv.freq;
+#endif /* PPS_SYNC */
+ if (modes & MOD_MAXERROR)
+ time_maxerror = ntv.maxerror;
+ if (modes & MOD_ESTERROR)
+ time_esterror = ntv.esterror;
+ if (modes & MOD_STATUS) {
+ time_status &= STA_RONLY;
+ time_status |= ntv.status & ~STA_RONLY;
+ }
+ if (modes & MOD_TIMECONST)
+ time_constant = ntv.constant;
+ if (modes & MOD_OFFSET)
+ hardupdate(ntv.offset);
+
+ /*
+ * Retrieve all clock variables
+ */
+ if (time_offset < 0)
+ ntv.offset = -(-time_offset >> SHIFT_UPDATE);
+ else
+ ntv.offset = time_offset >> SHIFT_UPDATE;
+#ifdef PPS_SYNC
+ ntv.freq = time_freq + pps_freq;
+#else /* PPS_SYNC */
+ ntv.freq = time_freq;
+#endif /* PPS_SYNC */
+ ntv.maxerror = time_maxerror;
+ ntv.esterror = time_esterror;
+ ntv.status = time_status;
+ ntv.constant = time_constant;
+ ntv.precision = time_precision;
+ ntv.tolerance = time_tolerance;
+#ifdef PPS_SYNC
+ ntv.shift = pps_shift;
+ ntv.ppsfreq = pps_freq;
+ ntv.jitter = pps_jitter >> PPS_AVG;
+ ntv.stabil = pps_stabil;
+ ntv.calcnt = pps_calcnt;
+ ntv.errcnt = pps_errcnt;
+ ntv.jitcnt = pps_jitcnt;
+ ntv.stbcnt = pps_stbcnt;
+#endif /* PPS_SYNC */
+ (void)splx(s);
+
+ error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp),
+ sizeof(ntv));
+ if (!error) {
+
+ /*
+ * Status word error decode. See comments in
+ * ntp_gettime() routine.
+ */
+ if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
+ (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
+ !(time_status & STA_PPSSIGNAL)) ||
+ (time_status & STA_PPSTIME &&
+ time_status & STA_PPSJITTER) ||
+ (time_status & STA_PPSFREQ &&
+ time_status & (STA_PPSWANDER | STA_PPSERROR)))
+ *retval = TIME_ERROR;
+ else
+ *retval = time_state;
+ }
+ return (error);
+}
"#173 (unimplemented)", /* 173 = unimplemented */
"#174 (unimplemented)", /* 174 = unimplemented */
"#175 (unimplemented)", /* 175 = unimplemented */
- "#176 (unimplemented)", /* 176 = unimplemented */
- "#177 (unimplemented)", /* 177 = unimplemented */
+ "ntp_adjtime", /* 176 = ntp_adjtime */
+ "ntp_gettime", /* 177 = ntp_gettime */
"#178 (unimplemented)", /* 178 = unimplemented */
"#179 (unimplemented)", /* 179 = unimplemented */
"#180 (unimplemented)", /* 180 = unimplemented */
173 UNIMPL
174 UNIMPL
175 UNIMPL
-176 UNIMPL
-177 UNIMPL
+176 STD { int sys_ntp_adjtime(struct timex *tp); }
+177 STD { int sys_ntp_gettime(struct ntptimeval *tp); }
178 UNIMPL
179 UNIMPL
180 UNIMPL
/* 169 is compat_10 osemsys */
/* 170 is compat_10 omsgsys */
/* 171 is compat_10 oshmsys */
+#define SYS_ntp_adjtime 176
+#define SYS_ntp_gettime 177
#define SYS_setgid 181
#define SYS_setegid 182
#define SYS_seteuid 183
syscallarg(int) a4;
};
+struct sys_ntp_adjtime_args {
+ syscallarg(struct timex *) tp;
+};
+
+struct sys_ntp_gettime_args {
+ syscallarg(struct ntptimeval *) tp;
+};
+
struct sys_setgid_args {
syscallarg(gid_t) gid;
};
int compat_10_sys_shmsys __P((struct proc *, void *, register_t *));
#else
#endif
+int sys_ntp_adjtime __P((struct proc *, void *, register_t *));
+int sys_ntp_gettime __P((struct proc *, void *, register_t *));
int sys_setgid __P((struct proc *, void *, register_t *));
int sys_setegid __P((struct proc *, void *, register_t *));
int sys_seteuid __P((struct proc *, void *, register_t *));
--- /dev/null
+/******************************************************************************
+ * *
+ * Copyright (c) David L. Mills 1993, 1994 *
+ * *
+ * Permission to use, copy, modify, and distribute this software and its *
+ * documentation for any purpose and without fee is hereby granted, provided *
+ * that the above copyright notice appears in all copies and that both the *
+ * copyright notice and this permission notice appear in supporting *
+ * documentation, and that the name University of Delaware not be used in *
+ * advertising or publicity pertaining to distribution of the software *
+ * without specific, written prior permission. The University of Delaware *
+ * makes no representations about the suitability this software for any *
+ * purpose. It is provided "as is" without express or implied warranty. *
+ * *
+ ******************************************************************************/
+
+/*
+ * Modification history timex.h
+ *
+ * 26 Sep 94 David L. Mills
+ * Added defines for hybrid phase/frequency-lock loop.
+ *
+ * 19 Mar 94 David L. Mills
+ * Moved defines from kernel routines to header file and added new
+ * defines for PPS phase-lock loop.
+ *
+ * 20 Feb 94 David L. Mills
+ * Revised status codes and structures for external clock and PPS
+ * signal discipline.
+ *
+ * 28 Nov 93 David L. Mills
+ * Adjusted parameters to improve stability and increase poll
+ * interval.
+ *
+ * 17 Sep 93 David L. Mills
+ * Created file
+ */
+/*
+ * This header file defines the Network Time Protocol (NTP) interfaces
+ * for user and daemon application programs. These are implemented using
+ * private syscalls and data structures and require specific kernel
+ * support.
+ *
+ * NAME
+ * ntp_gettime - NTP user application interface
+ *
+ * SYNOPSIS
+ * #include <sys/timex.h>
+ *
+ * int syscall(SYS_ntp_gettime, tptr)
+ *
+ * int SYS_ntp_gettime defined in syscall.h header file
+ * struct ntptimeval *tptr pointer to ntptimeval structure
+ *
+ * NAME
+ * ntp_adjtime - NTP daemon application interface
+ *
+ * SYNOPSIS
+ * #include <sys/timex.h>
+ *
+ * int syscall(SYS_ntp_adjtime, mode, tptr)
+ *
+ * int SYS_ntp_adjtime defined in syscall.h header file
+ * struct timex *tptr pointer to timex structure
+ *
+ */
+#ifndef _SYS_TIMEX_H_
+#define _SYS_TIMEX_H_ 1
+
+#include <sys/syscall.h>
+
+/*
+ * The following defines establish the engineering parameters of the
+ * phase-lock loop (PLL) model used in the kernel implementation. These
+ * parameters have been carefully chosen by analysis for good stability
+ * and wide dynamic range.
+ *
+ * The hz variable is defined in the kernel build environment. It
+ * establishes the timer interrupt frequency, 100 Hz for the SunOS
+ * kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the OSF/1
+ * kernel. SHIFT_HZ expresses the same value as the nearest power of two
+ * in order to avoid hardware multiply operations.
+ *
+ * SHIFT_KG and SHIFT_KF establish the damping of the PLL and are chosen
+ * for a slightly underdamped convergence characteristic. SHIFT_KH
+ * establishes the damping of the FLL and is chosen by wisdom and black
+ * art.
+ *
+ * MAXTC establishes the maximum time constant of the PLL. With the
+ * SHIFT_KG and SHIFT_KF values given and a time constant range from
+ * zero to MAXTC, the PLL will converge in 15 minutes to 16 hours,
+ * respectively.
+ */
+#define SHIFT_HZ 7 /* log2(hz) */
+#define SHIFT_KG 6 /* phase factor (shift) */
+#define SHIFT_KF 16 /* PLL frequency factor (shift) */
+#define SHIFT_KH 2 /* FLL frequency factor (shift) */
+#define MAXTC 6 /* maximum time constant (shift) */
+
+/*
+ * The following defines establish the scaling of the various variables
+ * used by the PLL. They are chosen to allow the greatest precision
+ * possible without overflow of a 32-bit word.
+ *
+ * SHIFT_SCALE defines the scaling (shift) of the time_phase variable,
+ * which serves as a an extension to the low-order bits of the system
+ * clock variable time.tv_usec.
+ *
+ * SHIFT_UPDATE defines the scaling (shift) of the time_offset variable,
+ * which represents the current time offset with respect to standard
+ * time.
+ *
+ * SHIFT_USEC defines the scaling (shift) of the time_freq and
+ * time_tolerance variables, which represent the current frequency
+ * offset and maximum frequency tolerance.
+ *
+ * FINEUSEC is 1 us in SHIFT_UPDATE units of the time_phase variable.
+ */
+#define SHIFT_SCALE 22 /* phase scale (shift) */
+#define SHIFT_UPDATE (SHIFT_KG + MAXTC) /* time offset scale (shift) */
+#define SHIFT_USEC 16 /* frequency offset scale (shift) */
+#define FINEUSEC (1L << SHIFT_SCALE) /* 1 us in phase units */
+
+/*
+ * The following defines establish the performance envelope of the PLL.
+ * They insure it operates within predefined limits, in order to satisfy
+ * correctness assertions. An excursion which exceeds these bounds is
+ * clamped to the bound and operation proceeds accordingly. In practice,
+ * this can occur only if something has failed or is operating out of
+ * tolerance, but otherwise the PLL continues to operate in a stable
+ * mode.
+ *
+ * MAXPHASE must be set greater than or equal to CLOCK.MAX (128 ms), as
+ * defined in the NTP specification. CLOCK.MAX establishes the maximum
+ * time offset allowed before the system time is reset, rather than
+ * incrementally adjusted. Here, the maximum offset is clamped to
+ * MAXPHASE only in order to prevent overflow errors due to defective
+ * protocol implementations.
+ *
+ * MAXFREQ is the maximum frequency tolerance of the CPU clock
+ * oscillator plus the maximum slew rate allowed by the protocol. It
+ * should be set to at least the frequency tolerance of the oscillator
+ * plus 100 ppm for vernier frequency adjustments. If the kernel
+ * PPS discipline code is configured (PPS_SYNC), the oscillator time and
+ * frequency are disciplined to an external source, presumably with
+ * negligible time and frequency error relative to UTC, and MAXFREQ can
+ * be reduced.
+ *
+ * MAXTIME is the maximum jitter tolerance of the PPS signal if the
+ * kernel PPS discipline code is configured (PPS_SYNC).
+ *
+ * MINSEC and MAXSEC define the lower and upper bounds on the interval
+ * between protocol updates.
+ */
+#define MAXPHASE 512000L /* max phase error (us) */
+#ifdef PPS_SYNC
+#define MAXFREQ (512L << SHIFT_USEC) /* max freq error (100 ppm) */
+#define MAXTIME (200L << PPS_AVG) /* max PPS error (jitter) (200 us) */
+#else
+#define MAXFREQ (512L << SHIFT_USEC) /* max freq error (200 ppm) */
+#endif /* PPS_SYNC */
+#define MINSEC 16L /* min interval between updates (s) */
+#define MAXSEC 1200L /* max interval between updates (s) */
+
+#ifdef PPS_SYNC
+/*
+ * The following defines are used only if a pulse-per-second (PPS)
+ * signal is available and connected via a modem control lead, such as
+ * produced by the optional ppsclock feature incorporated in the Sun
+ * asynch driver. They establish the design parameters of the frequency-
+ * lock loop used to discipline the CPU clock oscillator to the PPS
+ * signal.
+ *
+ * PPS_AVG is the averaging factor for the frequency loop, as well as
+ * the time and frequency dispersion.
+ *
+ * PPS_SHIFT and PPS_SHIFTMAX specify the minimum and maximum
+ * calibration intervals, respectively, in seconds as a power of two.
+ *
+ * PPS_VALID is the maximum interval before the PPS signal is considered
+ * invalid and protocol updates used directly instead.
+ *
+ * MAXGLITCH is the maximum interval before a time offset of more than
+ * MAXTIME is believed.
+ */
+#define PPS_AVG 2 /* pps averaging constant (shift) */
+#define PPS_SHIFT 2 /* min interval duration (s) (shift) */
+#define PPS_SHIFTMAX 8 /* max interval duration (s) (shift) */
+#define PPS_VALID 120 /* pps signal watchdog max (s) */
+#define MAXGLITCH 30 /* pps signal glitch max (s) */
+#endif /* PPS_SYNC */
+
+/*
+ * The following defines and structures define the user interface for
+ * the ntp_gettime() and ntp_adjtime() system calls.
+ *
+ * Control mode codes (timex.modes)
+ */
+#define MOD_OFFSET 0x0001 /* set time offset */
+#define MOD_FREQUENCY 0x0002 /* set frequency offset */
+#define MOD_MAXERROR 0x0004 /* set maximum time error */
+#define MOD_ESTERROR 0x0008 /* set estimated time error */
+#define MOD_STATUS 0x0010 /* set clock status bits */
+#define MOD_TIMECONST 0x0020 /* set pll time constant */
+#define MOD_CLKB 0x4000 /* set clock B */
+#define MOD_CLKA 0x8000 /* set clock A */
+
+/*
+ * Status codes (timex.status)
+ */
+#define STA_PLL 0x0001 /* enable PLL updates (rw) */
+#define STA_PPSFREQ 0x0002 /* enable PPS freq discipline (rw) */
+#define STA_PPSTIME 0x0004 /* enable PPS time discipline (rw) */
+#define STA_FLL 0x0008 /* select frequency-lock mode (rw) */
+
+#define STA_INS 0x0010 /* insert leap (rw) */
+#define STA_DEL 0x0020 /* delete leap (rw) */
+#define STA_UNSYNC 0x0040 /* clock unsynchronized (rw) */
+#define STA_FREQHOLD 0x0080 /* hold frequency (rw) */
+
+#define STA_PPSSIGNAL 0x0100 /* PPS signal present (ro) */
+#define STA_PPSJITTER 0x0200 /* PPS signal jitter exceeded (ro) */
+#define STA_PPSWANDER 0x0400 /* PPS signal wander exceeded (ro) */
+#define STA_PPSERROR 0x0800 /* PPS signal calibration error (ro) */
+
+#define STA_CLOCKERR 0x1000 /* clock hardware fault (ro) */
+
+#define STA_RONLY (STA_PPSSIGNAL | STA_PPSJITTER | STA_PPSWANDER | \
+ STA_PPSERROR | STA_CLOCKERR) /* read-only bits */
+
+/*
+ * Clock states (time_state)
+ */
+#define TIME_OK 0 /* no leap second warning */
+#define TIME_INS 1 /* insert leap second warning */
+#define TIME_DEL 2 /* delete leap second warning */
+#define TIME_OOP 3 /* leap second in progress */
+#define TIME_WAIT 4 /* leap second has occured */
+#define TIME_ERROR 5 /* clock not synchronized */
+
+/*
+ * NTP user interface (ntp_gettime()) - used to read kernel clock values
+ *
+ * Note: maximum error = NTP synch distance = dispersion + delay / 2;
+ * estimated error = NTP dispersion.
+ */
+struct ntptimeval {
+ struct timeval time; /* current time (ro) */
+ long maxerror; /* maximum error (us) (ro) */
+ long esterror; /* estimated error (us) (ro) */
+};
+
+/*
+ * NTP daemon interface - (ntp_adjtime()) used to discipline CPU clock
+ * oscillator
+ */
+struct timex {
+ unsigned int modes; /* clock mode bits (wo) */
+ long offset; /* time offset (us) (rw) */
+ long freq; /* frequency offset (scaled ppm) (rw) */
+ long maxerror; /* maximum error (us) (rw) */
+ long esterror; /* estimated error (us) (rw) */
+ int status; /* clock status bits (rw) */
+ long constant; /* pll time constant (rw) */
+ long precision; /* clock precision (us) (ro) */
+ long tolerance; /* clock frequency tolerance (scaled
+ * ppm) (ro) */
+ /*
+ * The following read-only structure members are implemented
+ * only if the PPS signal discipline is configured in the
+ * kernel.
+ */
+ long ppsfreq; /* pps frequency (scaled ppm) (ro) */
+ long jitter; /* pps jitter (us) (ro) */
+ int shift; /* interval duration (s) (shift) (ro) */
+ long stabil; /* pps stability (scaled ppm) (ro) */
+ long jitcnt; /* jitter limit exceeded (ro) */
+ long calcnt; /* calibration intervals (ro) */
+ long errcnt; /* calibration errors (ro) */
+ long stbcnt; /* stability limit exceeded (ro) */
+
+};
+
+#ifndef _KERNEL
+#include <sys/cdefs.h>
+
+__BEGIN_DECLS
+extern int ntp_gettime __P((struct ntptimeval *));
+extern int ntp_adjtime __P((struct timex *));
+__END_DECLS
+
+#endif /* not _KERNEL */
+#endif /* _SYS_TIMEX_H_ */