--- /dev/null
+// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
+// SPDX-License-Identifier: Apache-2.0 OR ISC
+
+// ----------------------------------------------------------------------------
+// C prototypes for s2n-bignum functions, so you can use them in C programs via
+//
+// #include "s2n-bignum.h"
+//
+// The functions are listed in alphabetical order with a brief description
+// in comments for each one. For more detailed documentation see the comment
+// banner at the top of the corresponding assembly (.S) file, and
+// for the last word in what properties it satisfies see the spec in the
+// formal proof (the .ml file in the architecture-specific directory).
+//
+// For some functions there are additional variants with names ending in
+// "_alt". These have the same core mathematical functionality as their
+// non-"alt" versions, but can be better suited to some microarchitectures:
+//
+// - On x86, the "_alt" forms avoid BMI and ADX instruction set
+// extensions, so will run on any x86_64 machine, even older ones
+//
+// - On ARM, the "_alt" forms target machines with higher multiplier
+// throughput, generally offering higher performance there.
+// ----------------------------------------------------------------------------
+
+// Add, z := x + y
+// Inputs x[m], y[n]; outputs function return (carry-out) and z[p]
+extern uint64_t bignum_add (uint64_t p, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y);
+
+// Add modulo p_25519, z := (x + y) mod p_25519, assuming x and y reduced
+// Inputs x[4], y[4]; output z[4]
+extern void bignum_add_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+
+// Add modulo p_256, z := (x + y) mod p_256, assuming x and y reduced
+// Inputs x[4], y[4]; output z[4]
+extern void bignum_add_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+
+// Add modulo p_256k1, z := (x + y) mod p_256k1, assuming x and y reduced
+// Inputs x[4], y[4]; output z[4]
+extern void bignum_add_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+
+// Add modulo p_384, z := (x + y) mod p_384, assuming x and y reduced
+// Inputs x[6], y[6]; output z[6]
+extern void bignum_add_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]);
+
+// Add modulo p_521, z := (x + y) mod p_521, assuming x and y reduced
+// Inputs x[9], y[9]; output z[9]
+extern void bignum_add_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]);
+
+// Compute "amontification" constant z :== 2^{128k} (congruent mod m)
+// Input m[k]; output z[k]; temporary buffer t[>=k]
+extern void bignum_amontifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t);
+
+// Almost-Montgomery multiply, z :== (x * y / 2^{64k}) (congruent mod m)
+// Inputs x[k], y[k], m[k]; output z[k]
+extern void bignum_amontmul (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m);
+
+// Almost-Montgomery reduce, z :== (x' / 2^{64p}) (congruent mod m)
+// Inputs x[n], m[k], p; output z[k]
+extern void bignum_amontredc (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t *m, uint64_t p);
+
+// Almost-Montgomery square, z :== (x^2 / 2^{64k}) (congruent mod m)
+// Inputs x[k], m[k]; output z[k]
+extern void bignum_amontsqr (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m);
+
+// Convert 4-digit (256-bit) bignum to/from big-endian form
+// Input x[4]; output z[4]
+extern void bignum_bigendian_4 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Convert 6-digit (384-bit) bignum to/from big-endian form
+// Input x[6]; output z[6]
+extern void bignum_bigendian_6 (uint64_t z[static 6], uint64_t x[static 6]);
+
+// Select bitfield starting at bit n with length l <= 64
+// Inputs x[k], n, l; output function return
+extern uint64_t bignum_bitfield (uint64_t k, uint64_t *x, uint64_t n, uint64_t l);
+
+// Return size of bignum in bits
+// Input x[k]; output function return
+extern uint64_t bignum_bitsize (uint64_t k, uint64_t *x);
+
+// Divide by a single (nonzero) word, z := x / m and return x mod m
+// Inputs x[n], m; outputs function return (remainder) and z[k]
+extern uint64_t bignum_cdiv (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t m);
+
+// Divide by a single word, z := x / m when known to be exact
+// Inputs x[n], m; output z[k]
+extern void bignum_cdiv_exact (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t m);
+
+// Count leading zero digits (64-bit words)
+// Input x[k]; output function return
+extern uint64_t bignum_cld (uint64_t k, uint64_t *x);
+
+// Count leading zero bits
+// Input x[k]; output function return
+extern uint64_t bignum_clz (uint64_t k, uint64_t *x);
+
+// Multiply-add with single-word multiplier, z := z + c * y
+// Inputs c, y[n]; outputs function return (carry-out) and z[k]
+extern uint64_t bignum_cmadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y);
+
+// Negated multiply-add with single-word multiplier, z := z - c * y
+// Inputs c, y[n]; outputs function return (negative carry-out) and z[k]
+extern uint64_t bignum_cmnegadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y);
+
+// Find modulus of bignum w.r.t. single nonzero word m, returning x mod m
+// Input x[k], m; output function return
+extern uint64_t bignum_cmod (uint64_t k, uint64_t *x, uint64_t m);
+
+// Multiply by a single word, z := c * y
+// Inputs c, y[n]; outputs function return (carry-out) and z[k]
+extern uint64_t bignum_cmul (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y);
+
+// Multiply by a single word modulo p_25519, z := (c * x) mod p_25519, assuming x reduced
+// Inputs c, x[4]; output z[4]
+extern void bignum_cmul_p25519 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]);
+extern void bignum_cmul_p25519_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]);
+
+// Multiply by a single word modulo p_256, z := (c * x) mod p_256, assuming x reduced
+// Inputs c, x[4]; output z[4]
+extern void bignum_cmul_p256 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]);
+extern void bignum_cmul_p256_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]);
+
+// Multiply by a single word modulo p_256k1, z := (c * x) mod p_256k1, assuming x reduced
+// Inputs c, x[4]; output z[4]
+extern void bignum_cmul_p256k1 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]);
+extern void bignum_cmul_p256k1_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]);
+
+// Multiply by a single word modulo p_384, z := (c * x) mod p_384, assuming x reduced
+// Inputs c, x[6]; output z[6]
+extern void bignum_cmul_p384 (uint64_t z[static 6], uint64_t c, uint64_t x[static 6]);
+extern void bignum_cmul_p384_alt (uint64_t z[static 6], uint64_t c, uint64_t x[static 6]);
+
+// Multiply by a single word modulo p_521, z := (c * x) mod p_521, assuming x reduced
+// Inputs c, x[9]; output z[9]
+extern void bignum_cmul_p521 (uint64_t z[static 9], uint64_t c, uint64_t x[static 9]);
+extern void bignum_cmul_p521_alt (uint64_t z[static 9], uint64_t c, uint64_t x[static 9]);
+
+// Test bignums for coprimality, gcd(x,y) = 1
+// Inputs x[m], y[n]; output function return; temporary buffer t[>=2*max(m,n)]
+extern uint64_t bignum_coprime (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y, uint64_t *t);
+
+// Copy bignum with zero-extension or truncation, z := x
+// Input x[n]; output z[k]
+extern void bignum_copy (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x);
+
+// Count trailing zero digits (64-bit words)
+// Input x[k]; output function return
+extern uint64_t bignum_ctd (uint64_t k, uint64_t *x);
+
+// Count trailing zero bits
+// Input x[k]; output function return
+extern uint64_t bignum_ctz (uint64_t k, uint64_t *x);
+
+// Convert from almost-Montgomery form, z := (x / 2^256) mod p_256
+// Input x[4]; output z[4]
+extern void bignum_deamont_p256 (uint64_t z[static 4], uint64_t x[static 4]);
+extern void bignum_deamont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Convert from almost-Montgomery form, z := (x / 2^256) mod p_256k1
+// Input x[4]; output z[4]
+extern void bignum_deamont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Convert from almost-Montgomery form, z := (x / 2^384) mod p_384
+// Input x[6]; output z[6]
+extern void bignum_deamont_p384 (uint64_t z[static 6], uint64_t x[static 6]);
+extern void bignum_deamont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]);
+
+// Convert from almost-Montgomery form z := (x / 2^576) mod p_521
+// Input x[9]; output z[9]
+extern void bignum_deamont_p521 (uint64_t z[static 9], uint64_t x[static 9]);
+
+// Convert from (almost-)Montgomery form z := (x / 2^{64k}) mod m
+// Inputs x[k], m[k]; output z[k]
+extern void bignum_demont (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m);
+
+// Convert from Montgomery form z := (x / 2^256) mod p_256, assuming x reduced
+// Input x[4]; output z[4]
+extern void bignum_demont_p256 (uint64_t z[static 4], uint64_t x[static 4]);
+extern void bignum_demont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Convert from Montgomery form z := (x / 2^256) mod p_256k1, assuming x reduced
+// Input x[4]; output z[4]
+extern void bignum_demont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Convert from Montgomery form z := (x / 2^384) mod p_384, assuming x reduced
+// Input x[6]; output z[6]
+extern void bignum_demont_p384 (uint64_t z[static 6], uint64_t x[static 6]);
+extern void bignum_demont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]);
+
+// Convert from Montgomery form z := (x / 2^576) mod p_521, assuming x reduced
+// Input x[9]; output z[9]
+extern void bignum_demont_p521 (uint64_t z[static 9], uint64_t x[static 9]);
+
+// Select digit x[n]
+// Inputs x[k], n; output function return
+extern uint64_t bignum_digit (uint64_t k, uint64_t *x, uint64_t n);
+
+// Return size of bignum in digits (64-bit word)
+// Input x[k]; output function return
+extern uint64_t bignum_digitsize (uint64_t k, uint64_t *x);
+
+// Divide bignum by 10: z' := z div 10, returning remainder z mod 10
+// Inputs z[k]; outputs function return (remainder) and z[k]
+extern uint64_t bignum_divmod10 (uint64_t k, uint64_t *z);
+
+// Double modulo p_25519, z := (2 * x) mod p_25519, assuming x reduced
+// Input x[4]; output z[4]
+extern void bignum_double_p25519 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Double modulo p_256, z := (2 * x) mod p_256, assuming x reduced
+// Input x[4]; output z[4]
+extern void bignum_double_p256 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Double modulo p_256k1, z := (2 * x) mod p_256k1, assuming x reduced
+// Input x[4]; output z[4]
+extern void bignum_double_p256k1 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Double modulo p_384, z := (2 * x) mod p_384, assuming x reduced
+// Input x[6]; output z[6]
+extern void bignum_double_p384 (uint64_t z[static 6], uint64_t x[static 6]);
+
+// Double modulo p_521, z := (2 * x) mod p_521, assuming x reduced
+// Input x[9]; output z[9]
+extern void bignum_double_p521 (uint64_t z[static 9], uint64_t x[static 9]);
+
+// Extended Montgomery reduce, returning results in input-output buffer
+// Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k]
+extern uint64_t bignum_emontredc (uint64_t k, uint64_t *z, uint64_t *m, uint64_t w);
+
+// Extended Montgomery reduce in 8-digit blocks, results in input-output buffer
+// Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k]
+extern uint64_t bignum_emontredc_8n (uint64_t k, uint64_t *z, uint64_t *m, uint64_t w);
+
+// Test bignums for equality, x = y
+// Inputs x[m], y[n]; output function return
+extern uint64_t bignum_eq (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y);
+
+// Test bignum for even-ness
+// Input x[k]; output function return
+extern uint64_t bignum_even (uint64_t k, uint64_t *x);
+
+// Convert 4-digit (256-bit) bignum from big-endian bytes
+// Input x[32] (bytes); output z[4]
+extern void bignum_frombebytes_4 (uint64_t z[static 4], uint8_t x[static 32]);
+
+// Convert 6-digit (384-bit) bignum from big-endian bytes
+// Input x[48] (bytes); output z[6]
+extern void bignum_frombebytes_6 (uint64_t z[static 6], uint8_t x[static 48]);
+
+// Convert 4-digit (256-bit) bignum from little-endian bytes
+// Input x[32] (bytes); output z[4]
+extern void bignum_fromlebytes_4 (uint64_t z[static 4], uint8_t x[static 32]);
+
+// Convert 6-digit (384-bit) bignum from little-endian bytes
+// Input x[48] (bytes); output z[6]
+extern void bignum_fromlebytes_6 (uint64_t z[static 6], uint8_t x[static 48]);
+
+// Convert little-endian bytes to 9-digit 528-bit bignum
+// Input x[66] (bytes); output z[9]
+extern void bignum_fromlebytes_p521 (uint64_t z[static 9],uint8_t x[static 66]);
+
+// Compare bignums, x >= y
+// Inputs x[m], y[n]; output function return
+extern uint64_t bignum_ge (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y);
+
+// Compare bignums, x > y
+// Inputs x[m], y[n]; output function return
+extern uint64_t bignum_gt (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y);
+
+// Halve modulo p_256, z := (x / 2) mod p_256, assuming x reduced
+// Input x[4]; output z[4]
+extern void bignum_half_p256 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Halve modulo p_256k1, z := (x / 2) mod p_256k1, assuming x reduced
+// Input x[4]; output z[4]
+extern void bignum_half_p256k1 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Halve modulo p_384, z := (x / 2) mod p_384, assuming x reduced
+// Input x[6]; output z[6]
+extern void bignum_half_p384 (uint64_t z[static 6], uint64_t x[static 6]);
+
+// Halve modulo p_521, z := (x / 2) mod p_521, assuming x reduced
+// Input x[9]; output z[9]
+extern void bignum_half_p521 (uint64_t z[static 9], uint64_t x[static 9]);
+
+// Test bignum for zero-ness, x = 0
+// Input x[k]; output function return
+extern uint64_t bignum_iszero (uint64_t k, uint64_t *x);
+
+// Multiply z := x * y
+// Inputs x[16], y[16]; output z[32]; temporary buffer t[>=32]
+extern void bignum_kmul_16_32 (uint64_t z[static 32], uint64_t x[static 16], uint64_t y[static 16], uint64_t t[static 32]);
+
+// Multiply z := x * y
+// Inputs x[32], y[32]; output z[64]; temporary buffer t[>=96]
+extern void bignum_kmul_32_64 (uint64_t z[static 64], uint64_t x[static 32], uint64_t y[static 32], uint64_t t[static 96]);
+
+// Square, z := x^2
+// Input x[16]; output z[32]; temporary buffer t[>=24]
+extern void bignum_ksqr_16_32 (uint64_t z[static 32], uint64_t x[static 16], uint64_t t[static 24]);
+
+// Square, z := x^2
+// Input x[32]; output z[64]; temporary buffer t[>=72]
+extern void bignum_ksqr_32_64 (uint64_t z[static 64], uint64_t x[static 32], uint64_t t[static 72]);
+
+// Compare bignums, x <= y
+// Inputs x[m], y[n]; output function return
+extern uint64_t bignum_le (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y);
+
+// Convert 4-digit (256-bit) bignum to/from little-endian form
+// Input x[4]; output z[4]
+extern void bignum_littleendian_4 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Convert 6-digit (384-bit) bignum to/from little-endian form
+// Input x[6]; output z[6]
+extern void bignum_littleendian_6 (uint64_t z[static 6], uint64_t x[static 6]);
+
+// Compare bignums, x < y
+// Inputs x[m], y[n]; output function return
+extern uint64_t bignum_lt (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y);
+
+// Multiply-add, z := z + x * y
+// Inputs x[m], y[n]; outputs function return (carry-out) and z[k]
+extern uint64_t bignum_madd (uint64_t k, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y);
+
+// Reduce modulo group order, z := x mod n_256
+// Input x[k]; output z[4]
+extern void bignum_mod_n256 (uint64_t z[static 4], uint64_t k, uint64_t *x);
+extern void bignum_mod_n256_alt (uint64_t z[static 4], uint64_t k, uint64_t *x);
+
+// Reduce modulo group order, z := x mod n_256
+// Input x[4]; output z[4]
+extern void bignum_mod_n256_4 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Reduce modulo group order, z := x mod n_256k1
+// Input x[4]; output z[4]
+extern void bignum_mod_n256k1_4 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Reduce modulo group order, z := x mod n_384
+// Input x[k]; output z[6]
+extern void bignum_mod_n384 (uint64_t z[static 6], uint64_t k, uint64_t *x);
+extern void bignum_mod_n384_alt (uint64_t z[static 6], uint64_t k, uint64_t *x);
+
+// Reduce modulo group order, z := x mod n_384
+// Input x[6]; output z[6]
+extern void bignum_mod_n384_6 (uint64_t z[static 6], uint64_t x[static 6]);
+
+// Reduce modulo group order, z := x mod n_521
+// Input x[9]; output z[9]
+extern void bignum_mod_n521_9 (uint64_t z[static 9], uint64_t x[static 9]);
+extern void bignum_mod_n521_9_alt (uint64_t z[static 9], uint64_t x[static 9]);
+
+// Reduce modulo field characteristic, z := x mod p_25519
+// Input x[4]; output z[4]
+extern void bignum_mod_p25519_4 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Reduce modulo field characteristic, z := x mod p_256
+// Input x[k]; output z[4]
+extern void bignum_mod_p256 (uint64_t z[static 4], uint64_t k, uint64_t *x);
+extern void bignum_mod_p256_alt (uint64_t z[static 4], uint64_t k, uint64_t *x);
+
+// Reduce modulo field characteristic, z := x mod p_256
+// Input x[4]; output z[4]
+extern void bignum_mod_p256_4 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Reduce modulo field characteristic, z := x mod p_256k1
+// Input x[4]; output z[4]
+extern void bignum_mod_p256k1_4 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Reduce modulo field characteristic, z := x mod p_384
+// Input x[k]; output z[6]
+extern void bignum_mod_p384 (uint64_t z[static 6], uint64_t k, uint64_t *x);
+extern void bignum_mod_p384_alt (uint64_t z[static 6], uint64_t k, uint64_t *x);
+
+// Reduce modulo field characteristic, z := x mod p_384
+// Input x[6]; output z[6]
+extern void bignum_mod_p384_6 (uint64_t z[static 6], uint64_t x[static 6]);
+
+// Reduce modulo field characteristic, z := x mod p_521
+// Input x[9]; output z[9]
+extern void bignum_mod_p521_9 (uint64_t z[static 9], uint64_t x[static 9]);
+
+// Add modulo m, z := (x + y) mod m, assuming x and y reduced
+// Inputs x[k], y[k], m[k]; output z[k]
+extern void bignum_modadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m);
+
+// Double modulo m, z := (2 * x) mod m, assuming x reduced
+// Inputs x[k], m[k]; output z[k]
+extern void bignum_moddouble (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m);
+
+// Compute "modification" constant z := 2^{64k} mod m
+// Input m[k]; output z[k]; temporary buffer t[>=k]
+extern void bignum_modifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t);
+
+// Invert modulo m, z = (1/a) mod b, assuming b is an odd number > 1, a coprime to b
+// Inputs a[k], b[k]; output z[k]; temporary buffer t[>=3*k]
+extern void bignum_modinv (uint64_t k, uint64_t *z, uint64_t *a, uint64_t *b, uint64_t *t);
+
+// Optionally negate modulo m, z := (-x) mod m (if p nonzero) or z := x (if p zero), assuming x reduced
+// Inputs p, x[k], m[k]; output z[k]
+extern void bignum_modoptneg (uint64_t k, uint64_t *z, uint64_t p, uint64_t *x, uint64_t *m);
+
+// Subtract modulo m, z := (x - y) mod m, assuming x and y reduced
+// Inputs x[k], y[k], m[k]; output z[k]
+extern void bignum_modsub (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m);
+
+// Compute "montification" constant z := 2^{128k} mod m
+// Input m[k]; output z[k]; temporary buffer t[>=k]
+extern void bignum_montifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t);
+
+// Montgomery multiply, z := (x * y / 2^{64k}) mod m
+// Inputs x[k], y[k], m[k]; output z[k]
+extern void bignum_montmul (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m);
+
+// Montgomery multiply, z := (x * y / 2^256) mod p_256
+// Inputs x[4], y[4]; output z[4]
+extern void bignum_montmul_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+extern void bignum_montmul_p256_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+
+// Montgomery multiply, z := (x * y / 2^256) mod p_256k1
+// Inputs x[4], y[4]; output z[4]
+extern void bignum_montmul_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+extern void bignum_montmul_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+
+// Montgomery multiply, z := (x * y / 2^384) mod p_384
+// Inputs x[6], y[6]; output z[6]
+extern void bignum_montmul_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]);
+extern void bignum_montmul_p384_alt (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]);
+
+// Montgomery multiply, z := (x * y / 2^576) mod p_521
+// Inputs x[9], y[9]; output z[9]
+extern void bignum_montmul_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]);
+extern void bignum_montmul_p521_alt (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]);
+
+// Montgomery reduce, z := (x' / 2^{64p}) MOD m
+// Inputs x[n], m[k], p; output z[k]
+extern void bignum_montredc (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t *m, uint64_t p);
+
+// Montgomery square, z := (x^2 / 2^{64k}) mod m
+// Inputs x[k], m[k]; output z[k]
+extern void bignum_montsqr (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m);
+
+// Montgomery square, z := (x^2 / 2^256) mod p_256
+// Input x[4]; output z[4]
+extern void bignum_montsqr_p256 (uint64_t z[static 4], uint64_t x[static 4]);
+extern void bignum_montsqr_p256_alt (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Montgomery square, z := (x^2 / 2^256) mod p_256k1
+// Input x[4]; output z[4]
+extern void bignum_montsqr_p256k1 (uint64_t z[static 4], uint64_t x[static 4]);
+extern void bignum_montsqr_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Montgomery square, z := (x^2 / 2^384) mod p_384
+// Input x[6]; output z[6]
+extern void bignum_montsqr_p384 (uint64_t z[static 6], uint64_t x[static 6]);
+extern void bignum_montsqr_p384_alt (uint64_t z[static 6], uint64_t x[static 6]);
+
+// Montgomery square, z := (x^2 / 2^576) mod p_521
+// Input x[9]; output z[9]
+extern void bignum_montsqr_p521 (uint64_t z[static 9], uint64_t x[static 9]);
+extern void bignum_montsqr_p521_alt (uint64_t z[static 9], uint64_t x[static 9]);
+
+// Multiply z := x * y
+// Inputs x[m], y[n]; output z[k]
+extern void bignum_mul (uint64_t k, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y);
+
+// Multiply z := x * y
+// Inputs x[4], y[4]; output z[8]
+extern void bignum_mul_4_8 (uint64_t z[static 8], uint64_t x[static 4], uint64_t y[static 4]);
+extern void bignum_mul_4_8_alt (uint64_t z[static 8], uint64_t x[static 4], uint64_t y[static 4]);
+
+// Multiply z := x * y
+// Inputs x[6], y[6]; output z[12]
+extern void bignum_mul_6_12 (uint64_t z[static 12], uint64_t x[static 6], uint64_t y[static 6]);
+extern void bignum_mul_6_12_alt (uint64_t z[static 12], uint64_t x[static 6], uint64_t y[static 6]);
+
+// Multiply z := x * y
+// Inputs x[8], y[8]; output z[16]
+extern void bignum_mul_8_16 (uint64_t z[static 16], uint64_t x[static 8], uint64_t y[static 8]);
+extern void bignum_mul_8_16_alt (uint64_t z[static 16], uint64_t x[static 8], uint64_t y[static 8]);
+
+// Multiply modulo p_25519, z := (x * y) mod p_25519
+// Inputs x[4], y[4]; output z[4]
+extern void bignum_mul_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+extern void bignum_mul_p25519_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+
+// Multiply modulo p_256k1, z := (x * y) mod p_256k1
+// Inputs x[4], y[4]; output z[4]
+extern void bignum_mul_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+extern void bignum_mul_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+
+// Multiply modulo p_521, z := (x * y) mod p_521, assuming x and y reduced
+// Inputs x[9], y[9]; output z[9]
+extern void bignum_mul_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]);
+extern void bignum_mul_p521_alt (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]);
+
+// Multiply bignum by 10 and add word: z := 10 * z + d
+// Inputs z[k], d; outputs function return (carry) and z[k]
+extern uint64_t bignum_muladd10 (uint64_t k, uint64_t *z, uint64_t d);
+
+// Multiplex/select z := x (if p nonzero) or z := y (if p zero)
+// Inputs p, x[k], y[k]; output z[k]
+extern void bignum_mux (uint64_t p, uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y);
+
+// 256-bit multiplex/select z := x (if p nonzero) or z := y (if p zero)
+// Inputs p, x[4], y[4]; output z[4]
+extern void bignum_mux_4 (uint64_t p, uint64_t z[static 4],uint64_t x[static 4], uint64_t y[static 4]);
+
+// 384-bit multiplex/select z := x (if p nonzero) or z := y (if p zero)
+// Inputs p, x[6], y[6]; output z[6]
+extern void bignum_mux_6 (uint64_t p, uint64_t z[static 6],uint64_t x[static 6], uint64_t y[static 6]);
+
+// Select element from 16-element table, z := xs[k*i]
+// Inputs xs[16*k], i; output z[k]
+extern void bignum_mux16 (uint64_t k, uint64_t *z, uint64_t *xs, uint64_t i);
+
+// Negate modulo p_25519, z := (-x) mod p_25519, assuming x reduced
+// Input x[4]; output z[4]
+extern void bignum_neg_p25519 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Negate modulo p_256, z := (-x) mod p_256, assuming x reduced
+// Input x[4]; output z[4]
+extern void bignum_neg_p256 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Negate modulo p_256k1, z := (-x) mod p_256k1, assuming x reduced
+// Input x[4]; output z[4]
+extern void bignum_neg_p256k1 (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Negate modulo p_384, z := (-x) mod p_384, assuming x reduced
+// Input x[6]; output z[6]
+extern void bignum_neg_p384 (uint64_t z[static 6], uint64_t x[static 6]);
+
+// Negate modulo p_521, z := (-x) mod p_521, assuming x reduced
+// Input x[9]; output z[9]
+extern void bignum_neg_p521 (uint64_t z[static 9], uint64_t x[static 9]);
+
+// Negated modular inverse, z := (-1/x) mod 2^{64k}
+// Input x[k]; output z[k]
+extern void bignum_negmodinv (uint64_t k, uint64_t *z, uint64_t *x);
+
+// Test bignum for nonzero-ness x =/= 0
+// Input x[k]; output function return
+extern uint64_t bignum_nonzero (uint64_t k, uint64_t *x);
+
+// Test 256-bit bignum for nonzero-ness x =/= 0
+// Input x[4]; output function return
+extern uint64_t bignum_nonzero_4(uint64_t x[static 4]);
+
+// Test 384-bit bignum for nonzero-ness x =/= 0
+// Input x[6]; output function return
+extern uint64_t bignum_nonzero_6(uint64_t x[static 6]);
+
+// Normalize bignum in-place by shifting left till top bit is 1
+// Input z[k]; outputs function return (bits shifted left) and z[k]
+extern uint64_t bignum_normalize (uint64_t k, uint64_t *z);
+
+// Test bignum for odd-ness
+// Input x[k]; output function return
+extern uint64_t bignum_odd (uint64_t k, uint64_t *x);
+
+// Convert single digit to bignum, z := n
+// Input n; output z[k]
+extern void bignum_of_word (uint64_t k, uint64_t *z, uint64_t n);
+
+// Optionally add, z := x + y (if p nonzero) or z := x (if p zero)
+// Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k]
+extern uint64_t bignum_optadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y);
+
+// Optionally negate, z := -x (if p nonzero) or z := x (if p zero)
+// Inputs p, x[k]; outputs function return (nonzero input) and z[k]
+extern uint64_t bignum_optneg (uint64_t k, uint64_t *z, uint64_t p, uint64_t *x);
+
+// Optionally negate modulo p_25519, z := (-x) mod p_25519 (if p nonzero) or z := x (if p zero), assuming x reduced
+// Inputs p, x[4]; output z[4]
+extern void bignum_optneg_p25519 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]);
+
+// Optionally negate modulo p_256, z := (-x) mod p_256 (if p nonzero) or z := x (if p zero), assuming x reduced
+// Inputs p, x[4]; output z[4]
+extern void bignum_optneg_p256 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]);
+
+// Optionally negate modulo p_256k1, z := (-x) mod p_256k1 (if p nonzero) or z := x (if p zero), assuming x reduced
+// Inputs p, x[4]; output z[4]
+extern void bignum_optneg_p256k1 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]);
+
+// Optionally negate modulo p_384, z := (-x) mod p_384 (if p nonzero) or z := x (if p zero), assuming x reduced
+// Inputs p, x[6]; output z[6]
+extern void bignum_optneg_p384 (uint64_t z[static 6], uint64_t p, uint64_t x[static 6]);
+
+// Optionally negate modulo p_521, z := (-x) mod p_521 (if p nonzero) or z := x (if p zero), assuming x reduced
+// Inputs p, x[9]; output z[9]
+extern void bignum_optneg_p521 (uint64_t z[static 9], uint64_t p, uint64_t x[static 9]);
+
+// Optionally subtract, z := x - y (if p nonzero) or z := x (if p zero)
+// Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k]
+extern uint64_t bignum_optsub (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y);
+
+// Optionally subtract or add, z := x + sgn(p) * y interpreting p as signed
+// Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k]
+extern uint64_t bignum_optsubadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y);
+
+// Return bignum of power of 2, z := 2^n
+// Input n; output z[k]
+extern void bignum_pow2 (uint64_t k, uint64_t *z, uint64_t n);
+
+// Shift bignum left by c < 64 bits z := x * 2^c
+// Inputs x[n], c; outputs function return (carry-out) and z[k]
+extern uint64_t bignum_shl_small (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t c);
+
+// Shift bignum right by c < 64 bits z := floor(x / 2^c)
+// Inputs x[n], c; outputs function return (bits shifted out) and z[k]
+extern uint64_t bignum_shr_small (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t c);
+
+// Square, z := x^2
+// Input x[n]; output z[k]
+extern void bignum_sqr (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x);
+
+// Square, z := x^2
+// Input x[4]; output z[8]
+extern void bignum_sqr_4_8 (uint64_t z[static 8], uint64_t x[static 4]);
+extern void bignum_sqr_4_8_alt (uint64_t z[static 8], uint64_t x[static 4]);
+
+// Square, z := x^2
+// Input x[6]; output z[12]
+extern void bignum_sqr_6_12 (uint64_t z[static 12], uint64_t x[static 6]);
+extern void bignum_sqr_6_12_alt (uint64_t z[static 12], uint64_t x[static 6]);
+
+// Square, z := x^2
+// Input x[8]; output z[16]
+extern void bignum_sqr_8_16 (uint64_t z[static 16], uint64_t x[static 8]);
+extern void bignum_sqr_8_16_alt (uint64_t z[static 16], uint64_t x[static 8]);
+
+// Square modulo p_25519, z := (x^2) mod p_25519
+// Input x[4]; output z[4]
+extern void bignum_sqr_p25519 (uint64_t z[static 4], uint64_t x[static 4]);
+extern void bignum_sqr_p25519_alt (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Square modulo p_256k1, z := (x^2) mod p_256k1
+// Input x[4]; output z[4]
+extern void bignum_sqr_p256k1 (uint64_t z[static 4], uint64_t x[static 4]);
+extern void bignum_sqr_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Square modulo p_521, z := (x^2) mod p_521, assuming x reduced
+// Input x[9]; output z[9]
+extern void bignum_sqr_p521 (uint64_t z[static 9], uint64_t x[static 9]);
+extern void bignum_sqr_p521_alt (uint64_t z[static 9], uint64_t x[static 9]);
+
+// Subtract, z := x - y
+// Inputs x[m], y[n]; outputs function return (carry-out) and z[p]
+extern uint64_t bignum_sub (uint64_t p, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y);
+
+// Subtract modulo p_25519, z := (x - y) mod p_25519, assuming x and y reduced
+// Inputs x[4], y[4]; output z[4]
+extern void bignum_sub_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+
+// Subtract modulo p_256, z := (x - y) mod p_256, assuming x and y reduced
+// Inputs x[4], y[4]; output z[4]
+extern void bignum_sub_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+
+// Subtract modulo p_256k1, z := (x - y) mod p_256k1, assuming x and y reduced
+// Inputs x[4], y[4]; output z[4]
+extern void bignum_sub_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]);
+
+// Subtract modulo p_384, z := (x - y) mod p_384, assuming x and y reduced
+// Inputs x[6], y[6]; output z[6]
+extern void bignum_sub_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]);
+
+// Subtract modulo p_521, z := (x - y) mod p_521, assuming x and y reduced
+// Inputs x[9], y[9]; output z[9]
+extern void bignum_sub_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]);
+
+// Convert 4-digit (256-bit) bignum to big-endian bytes
+// Input x[4]; output z[32] (bytes)
+extern void bignum_tobebytes_4 (uint8_t z[static 32], uint64_t x[static 4]);
+
+// Convert 6-digit (384-bit) bignum to big-endian bytes
+// Input x[6]; output z[48] (bytes)
+extern void bignum_tobebytes_6 (uint8_t z[static 48], uint64_t x[static 6]);
+
+// Convert 4-digit (256-bit) bignum to little-endian bytes
+// Input x[4]; output z[32] (bytes)
+extern void bignum_tolebytes_4 (uint8_t z[static 32], uint64_t x[static 4]);
+
+// Convert 6-digit (384-bit) bignum to little-endian bytes
+// Input x[6]; output z[48] (bytes)
+extern void bignum_tolebytes_6 (uint8_t z[static 48], uint64_t x[static 6]);
+
+// Convert 9-digit 528-bit bignum to little-endian bytes
+// Input x[6]; output z[66] (bytes)
+extern void bignum_tolebytes_p521 (uint8_t z[static 66], uint64_t x[static 9]);
+
+// Convert to Montgomery form z := (2^256 * x) mod p_256
+// Input x[4]; output z[4]
+extern void bignum_tomont_p256 (uint64_t z[static 4], uint64_t x[static 4]);
+extern void bignum_tomont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Convert to Montgomery form z := (2^256 * x) mod p_256k1
+// Input x[4]; output z[4]
+extern void bignum_tomont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]);
+extern void bignum_tomont_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Convert to Montgomery form z := (2^384 * x) mod p_384
+// Input x[6]; output z[6]
+extern void bignum_tomont_p384 (uint64_t z[static 6], uint64_t x[static 6]);
+extern void bignum_tomont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]);
+
+// Convert to Montgomery form z := (2^576 * x) mod p_521
+// Input x[9]; output z[9]
+extern void bignum_tomont_p521 (uint64_t z[static 9], uint64_t x[static 9]);
+
+// Triple modulo p_256, z := (3 * x) mod p_256
+// Input x[4]; output z[4]
+extern void bignum_triple_p256 (uint64_t z[static 4], uint64_t x[static 4]);
+extern void bignum_triple_p256_alt (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Triple modulo p_256k1, z := (3 * x) mod p_256k1
+// Input x[4]; output z[4]
+extern void bignum_triple_p256k1 (uint64_t z[static 4], uint64_t x[static 4]);
+extern void bignum_triple_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]);
+
+// Triple modulo p_384, z := (3 * x) mod p_384
+// Input x[6]; output z[6]
+extern void bignum_triple_p384 (uint64_t z[static 6], uint64_t x[static 6]);
+extern void bignum_triple_p384_alt (uint64_t z[static 6], uint64_t x[static 6]);
+
+// Triple modulo p_521, z := (3 * x) mod p_521, assuming x reduced
+// Input x[9]; output z[9]
+extern void bignum_triple_p521 (uint64_t z[static 9], uint64_t x[static 9]);
+extern void bignum_triple_p521_alt (uint64_t z[static 9], uint64_t x[static 9]);
+
+// Montgomery ladder step for curve25519
+// Inputs point[8], pp[16], b; output rr[16]
+extern void curve25519_ladderstep(uint64_t rr[16],uint64_t point[8],uint64_t pp[16],uint64_t b);
+extern void curve25519_ladderstep_alt(uint64_t rr[16],uint64_t point[8],uint64_t pp[16],uint64_t b);
+
+// Projective scalar multiplication, x coordinate only, for curve25519
+// Inputs scalar[4], point[4]; output res[8]
+extern void curve25519_pxscalarmul(uint64_t res[static 8],uint64_t scalar[static 4],uint64_t point[static 4]);
+extern void curve25519_pxscalarmul_alt(uint64_t res[static 8],uint64_t scalar[static 4],uint64_t point[static 4]);
+
+// x25519 function for curve25519
+// Inputs scalar[4], point[4]; output res[4]
+extern void curve25519_x25519(uint64_t res[static 4],uint64_t scalar[static 4],uint64_t point[static 4]);
+extern void curve25519_x25519_alt(uint64_t res[static 4],uint64_t scalar[static 4],uint64_t point[static 4]);
+
+// x25519 function for curve25519 on base element 9
+// Input scalar[4]; output res[4]
+extern void curve25519_x25519base(uint64_t res[static 4],uint64_t scalar[static 4]);
+extern void curve25519_x25519base_alt(uint64_t res[static 4],uint64_t scalar[static 4]);
+
+// Extended projective addition for edwards25519
+// Inputs p1[16], p2[16]; output p3[16]
+extern void edwards25519_epadd(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 16]);
+extern void edwards25519_epadd_alt(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 16]);
+
+// Extended projective doubling for edwards25519
+// Inputs p1[12]; output p3[16]
+extern void edwards25519_epdouble(uint64_t p3[static 16],uint64_t p1[static 12]);
+extern void edwards25519_epdouble_alt(uint64_t p3[static 16],uint64_t p1[static 12]);
+
+// Projective doubling for edwards25519
+// Inputs p1[12]; output p3[12]
+extern void edwards25519_pdouble(uint64_t p3[static 12],uint64_t p1[static 12]);
+extern void edwards25519_pdouble_alt(uint64_t p3[static 12],uint64_t p1[static 12]);
+
+// Extended projective + precomputed mixed addition for edwards25519
+// Inputs p1[16], p2[12]; output p3[16]
+extern void edwards25519_pepadd(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 12]);
+extern void edwards25519_pepadd_alt(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 12]);
+
+// Point addition on NIST curve P-256 in Montgomery-Jacobian coordinates
+// Inputs p1[12], p2[12]; output p3[12]
+extern void p256_montjadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 12]);
+
+// Point doubling on NIST curve P-256 in Montgomery-Jacobian coordinates
+// Inputs p1[12]; output p3[12]
+extern void p256_montjdouble(uint64_t p3[static 12],uint64_t p1[static 12]);
+
+// Point mixed addition on NIST curve P-256 in Montgomery-Jacobian coordinates
+// Inputs p1[12], p2[8]; output p3[12]
+extern void p256_montjmixadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 8]);
+
+// Point addition on NIST curve P-384 in Montgomery-Jacobian coordinates
+// Inputs p1[18], p2[18]; output p3[18]
+extern void p384_montjadd(uint64_t p3[static 18],uint64_t p1[static 18],uint64_t p2[static 18]);
+
+// Point doubling on NIST curve P-384 in Montgomery-Jacobian coordinates
+// Inputs p1[18]; output p3[18]
+extern void p384_montjdouble(uint64_t p3[static 18],uint64_t p1[static 18]);
+
+// Point mixed addition on NIST curve P-384 in Montgomery-Jacobian coordinates
+// Inputs p1[18], p2[12]; output p3[18]
+extern void p384_montjmixadd(uint64_t p3[static 18],uint64_t p1[static 18],uint64_t p2[static 12]);
+
+// Point addition on NIST curve P-521 in Jacobian coordinates
+// Inputs p1[27], p2[27]; output p3[27]
+extern void p521_jadd(uint64_t p3[static 27],uint64_t p1[static 27],uint64_t p2[static 27]);
+
+// Point doubling on NIST curve P-521 in Jacobian coordinates
+// Input p1[27]; output p3[27]
+extern void p521_jdouble(uint64_t p3[static 27],uint64_t p1[static 27]);
+
+// Point mixed addition on NIST curve P-521 in Jacobian coordinates
+// Inputs p1[27], p2[18]; output p3[27]
+extern void p521_jmixadd(uint64_t p3[static 27],uint64_t p1[static 27],uint64_t p2[static 18]);
+
+// Point addition on SECG curve secp256k1 in Jacobian coordinates
+// Inputs p1[12], p2[12]; output p3[12]
+extern void secp256k1_jadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 12]);
+
+// Point doubling on SECG curve secp256k1 in Jacobian coordinates
+// Input p1[12]; output p3[12]
+extern void secp256k1_jdouble(uint64_t p3[static 12],uint64_t p1[static 12]);
+
+// Point mixed addition on SECG curve secp256k1 in Jacobian coordinates
+// Inputs p1[12], p2[8]; output p3[12]
+extern void secp256k1_jmixadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 8]);
+
+// Reverse the bytes in a single word
+// Input a; output function return
+extern uint64_t word_bytereverse (uint64_t a);
+
+// Count leading zero bits in a single word
+// Input a; output function return
+extern uint64_t word_clz (uint64_t a);
+
+// Count trailing zero bits in a single word
+// Input a; output function return
+extern uint64_t word_ctz (uint64_t a);
+
+// Return maximum of two unsigned 64-bit words
+// Inputs a, b; output function return
+extern uint64_t word_max (uint64_t a, uint64_t b);
+
+// Return minimum of two unsigned 64-bit words
+// Inputs a, b; output function return
+extern uint64_t word_min (uint64_t a, uint64_t b);
+
+// Single-word negated modular inverse (-1/a) mod 2^64
+// Input a; output function return
+extern uint64_t word_negmodinv (uint64_t a);
+
+// Single-word reciprocal, 2^64 + ret = ceil(2^128/a) - 1 if MSB of "a" is set
+// Input a; output function return
+extern uint64_t word_recip (uint64_t a);