--- /dev/null
+/* $OpenBSD: vmm_machdep.c,v 1.1 2023/04/26 15:11:21 mlarkin Exp $ */
+/*
+ * Copyright (c) 2014 Mike Larkin <mlarkin@openbsd.org>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/signalvar.h>
+#include <sys/malloc.h>
+#include <sys/device.h>
+#include <sys/pool.h>
+#include <sys/proc.h>
+#include <sys/user.h>
+#include <sys/ioctl.h>
+#include <sys/queue.h>
+#include <sys/refcnt.h>
+#include <sys/rwlock.h>
+#include <sys/pledge.h>
+#include <sys/memrange.h>
+#include <sys/tracepoint.h>
+
+#include <uvm/uvm_extern.h>
+
+#include <machine/fpu.h>
+#include <machine/pmap.h>
+#include <machine/biosvar.h>
+#include <machine/segments.h>
+#include <machine/cpufunc.h>
+#include <machine/vmmvar.h>
+
+#include <dev/isa/isareg.h>
+#include <dev/pv/pvreg.h>
+
+#include <dev/vmm/vmm.h>
+
+#ifdef MP_LOCKDEBUG
+#include <ddb/db_output.h>
+extern int __mp_lock_spinout;
+#endif /* MP_LOCKDEBUG */
+
+void *l1tf_flush_region;
+
+#define DEVNAME(s) ((s)->sc_dev.dv_xname)
+
+#define CTRL_DUMP(x,y,z) printf(" %s: Can set:%s Can clear:%s\n", #z , \
+ vcpu_vmx_check_cap(x, IA32_VMX_##y ##_CTLS, \
+ IA32_VMX_##z, 1) ? "Yes" : "No", \
+ vcpu_vmx_check_cap(x, IA32_VMX_##y ##_CTLS, \
+ IA32_VMX_##z, 0) ? "Yes" : "No");
+
+#define VMX_EXIT_INFO_HAVE_RIP 0x1
+#define VMX_EXIT_INFO_HAVE_REASON 0x2
+#define VMX_EXIT_INFO_COMPLETE \
+ (VMX_EXIT_INFO_HAVE_RIP | VMX_EXIT_INFO_HAVE_REASON)
+
+void vmx_dump_vmcs_field(uint16_t, const char *);
+int vmm_enabled(void);
+void vmm_activate_machdep(struct device *, int);
+int vmmioctl_machdep(dev_t, u_long, caddr_t, int, struct proc *);
+int vmm_quiesce_vmx(void);
+int vm_run(struct vm_run_params *);
+int vm_intr_pending(struct vm_intr_params *);
+int vm_rwregs(struct vm_rwregs_params *, int);
+int vm_mprotect_ept(struct vm_mprotect_ept_params *);
+int vm_rwvmparams(struct vm_rwvmparams_params *, int);
+int vcpu_readregs_vmx(struct vcpu *, uint64_t, int, struct vcpu_reg_state *);
+int vcpu_readregs_svm(struct vcpu *, uint64_t, struct vcpu_reg_state *);
+int vcpu_writeregs_vmx(struct vcpu *, uint64_t, int, struct vcpu_reg_state *);
+int vcpu_writeregs_svm(struct vcpu *, uint64_t, struct vcpu_reg_state *);
+int vcpu_reset_regs(struct vcpu *, struct vcpu_reg_state *);
+int vcpu_reset_regs_vmx(struct vcpu *, struct vcpu_reg_state *);
+int vcpu_reset_regs_svm(struct vcpu *, struct vcpu_reg_state *);
+int vcpu_reload_vmcs_vmx(struct vcpu *);
+int vcpu_init(struct vcpu *);
+int vcpu_init_vmx(struct vcpu *);
+int vcpu_init_svm(struct vcpu *);
+int vcpu_run_vmx(struct vcpu *, struct vm_run_params *);
+int vcpu_run_svm(struct vcpu *, struct vm_run_params *);
+void vcpu_deinit(struct vcpu *);
+void vcpu_deinit_svm(struct vcpu *);
+void vcpu_deinit_vmx(struct vcpu *);
+int vm_impl_init(struct vm *, struct proc *);
+int vm_impl_init_vmx(struct vm *, struct proc *);
+int vm_impl_init_svm(struct vm *, struct proc *);
+void vm_impl_deinit(struct vm *);
+int vcpu_vmx_check_cap(struct vcpu *, uint32_t, uint32_t, int);
+int vcpu_vmx_compute_ctrl(uint64_t, uint16_t, uint32_t, uint32_t, uint32_t *);
+int vmx_get_exit_info(uint64_t *, uint64_t *);
+int vmx_load_pdptes(struct vcpu *);
+int vmx_handle_exit(struct vcpu *);
+int svm_handle_exit(struct vcpu *);
+int svm_handle_msr(struct vcpu *);
+int vmm_handle_xsetbv(struct vcpu *, uint64_t *);
+int vmx_handle_xsetbv(struct vcpu *);
+int svm_handle_xsetbv(struct vcpu *);
+int vmm_handle_cpuid(struct vcpu *);
+int vmx_handle_rdmsr(struct vcpu *);
+int vmx_handle_wrmsr(struct vcpu *);
+int vmx_handle_cr0_write(struct vcpu *, uint64_t);
+int vmx_handle_cr4_write(struct vcpu *, uint64_t);
+int vmx_handle_cr(struct vcpu *);
+int svm_handle_inout(struct vcpu *);
+int vmx_handle_inout(struct vcpu *);
+int svm_handle_hlt(struct vcpu *);
+int vmx_handle_hlt(struct vcpu *);
+int vmm_inject_ud(struct vcpu *);
+int vmm_inject_gp(struct vcpu *);
+int vmm_inject_db(struct vcpu *);
+void vmx_handle_intr(struct vcpu *);
+void vmx_handle_intwin(struct vcpu *);
+void vmx_handle_misc_enable_msr(struct vcpu *);
+int vmm_get_guest_memtype(struct vm *, paddr_t);
+int vmx_get_guest_faulttype(void);
+int svm_get_guest_faulttype(struct vmcb *);
+int vmx_get_exit_qualification(uint64_t *);
+int vmm_get_guest_cpu_cpl(struct vcpu *);
+int vmm_get_guest_cpu_mode(struct vcpu *);
+int svm_fault_page(struct vcpu *, paddr_t);
+int vmx_fault_page(struct vcpu *, paddr_t);
+int vmx_handle_np_fault(struct vcpu *);
+int svm_handle_np_fault(struct vcpu *);
+int vmx_mprotect_ept(vm_map_t, paddr_t, paddr_t, int);
+pt_entry_t *vmx_pmap_find_pte_ept(pmap_t, paddr_t);
+int vmm_alloc_vpid(uint16_t *);
+void vmm_free_vpid(uint16_t);
+const char *vcpu_state_decode(u_int);
+const char *vmx_exit_reason_decode(uint32_t);
+const char *svm_exit_reason_decode(uint32_t);
+const char *vmx_instruction_error_decode(uint32_t);
+void svm_setmsrbr(struct vcpu *, uint32_t);
+void svm_setmsrbw(struct vcpu *, uint32_t);
+void svm_setmsrbrw(struct vcpu *, uint32_t);
+void vmx_setmsrbr(struct vcpu *, uint32_t);
+void vmx_setmsrbw(struct vcpu *, uint32_t);
+void vmx_setmsrbrw(struct vcpu *, uint32_t);
+void svm_set_clean(struct vcpu *, uint32_t);
+void svm_set_dirty(struct vcpu *, uint32_t);
+
+int vmm_gpa_is_valid(struct vcpu *vcpu, paddr_t gpa, size_t obj_size);
+void vmm_init_pvclock(struct vcpu *, paddr_t);
+int vmm_update_pvclock(struct vcpu *);
+int vmm_pat_is_valid(uint64_t);
+
+#ifdef MULTIPROCESSOR
+static int vmx_remote_vmclear(struct cpu_info*, struct vcpu *);
+#endif
+
+#ifdef VMM_DEBUG
+void dump_vcpu(struct vcpu *);
+void vmx_vcpu_dump_regs(struct vcpu *);
+void vmx_dump_vmcs(struct vcpu *);
+const char *msr_name_decode(uint32_t);
+void vmm_segment_desc_decode(uint64_t);
+void vmm_decode_cr0(uint64_t);
+void vmm_decode_cr3(uint64_t);
+void vmm_decode_cr4(uint64_t);
+void vmm_decode_msr_value(uint64_t, uint64_t);
+void vmm_decode_apicbase_msr_value(uint64_t);
+void vmm_decode_ia32_fc_value(uint64_t);
+void vmm_decode_mtrrcap_value(uint64_t);
+void vmm_decode_perf_status_value(uint64_t);
+void vmm_decode_perf_ctl_value(uint64_t);
+void vmm_decode_mtrrdeftype_value(uint64_t);
+void vmm_decode_efer_value(uint64_t);
+void vmm_decode_rflags(uint64_t);
+void vmm_decode_misc_enable_value(uint64_t);
+const char *vmm_decode_cpu_mode(struct vcpu *);
+
+extern int mtrr2mrt(int);
+
+struct vmm_reg_debug_info {
+ uint64_t vrdi_bit;
+ const char *vrdi_present;
+ const char *vrdi_absent;
+};
+#endif /* VMM_DEBUG */
+
+extern uint64_t tsc_frequency;
+extern int tsc_is_invariant;
+
+const char *vmm_hv_signature = VMM_HV_SIGNATURE;
+
+const struct kmem_pa_mode vmm_kp_contig = {
+ .kp_constraint = &no_constraint,
+ .kp_maxseg = 1,
+ .kp_align = 4096,
+ .kp_zero = 1,
+};
+
+extern struct cfdriver vmm_cd;
+extern const struct cfattach vmm_ca;
+
+/*
+ * Helper struct to easily get the VMCS field IDs needed in vmread/vmwrite
+ * to access the individual fields of the guest segment registers. This
+ * struct is indexed by VCPU_REGS_* id.
+ */
+const struct {
+ uint64_t selid;
+ uint64_t limitid;
+ uint64_t arid;
+ uint64_t baseid;
+} vmm_vmx_sreg_vmcs_fields[] = {
+ { VMCS_GUEST_IA32_CS_SEL, VMCS_GUEST_IA32_CS_LIMIT,
+ VMCS_GUEST_IA32_CS_AR, VMCS_GUEST_IA32_CS_BASE },
+ { VMCS_GUEST_IA32_DS_SEL, VMCS_GUEST_IA32_DS_LIMIT,
+ VMCS_GUEST_IA32_DS_AR, VMCS_GUEST_IA32_DS_BASE },
+ { VMCS_GUEST_IA32_ES_SEL, VMCS_GUEST_IA32_ES_LIMIT,
+ VMCS_GUEST_IA32_ES_AR, VMCS_GUEST_IA32_ES_BASE },
+ { VMCS_GUEST_IA32_FS_SEL, VMCS_GUEST_IA32_FS_LIMIT,
+ VMCS_GUEST_IA32_FS_AR, VMCS_GUEST_IA32_FS_BASE },
+ { VMCS_GUEST_IA32_GS_SEL, VMCS_GUEST_IA32_GS_LIMIT,
+ VMCS_GUEST_IA32_GS_AR, VMCS_GUEST_IA32_GS_BASE },
+ { VMCS_GUEST_IA32_SS_SEL, VMCS_GUEST_IA32_SS_LIMIT,
+ VMCS_GUEST_IA32_SS_AR, VMCS_GUEST_IA32_SS_BASE },
+ { VMCS_GUEST_IA32_LDTR_SEL, VMCS_GUEST_IA32_LDTR_LIMIT,
+ VMCS_GUEST_IA32_LDTR_AR, VMCS_GUEST_IA32_LDTR_BASE },
+ { VMCS_GUEST_IA32_TR_SEL, VMCS_GUEST_IA32_TR_LIMIT,
+ VMCS_GUEST_IA32_TR_AR, VMCS_GUEST_IA32_TR_BASE }
+};
+
+/* Pools for VMs and VCPUs */
+extern struct pool vm_pool;
+extern struct pool vcpu_pool;
+
+extern struct vmm_softc *vmm_softc;
+
+/* IDT information used when populating host state area */
+extern vaddr_t idt_vaddr;
+extern struct gate_descriptor *idt;
+
+/* Constants used in "CR access exit" */
+#define CR_WRITE 0
+#define CR_READ 1
+#define CR_CLTS 2
+#define CR_LMSW 3
+
+/*
+ * vmm_enabled
+ *
+ * Checks if we have at least one CPU with either VMX or SVM.
+ * Returns 1 if we have at least one of either type, but not both, 0 otherwise.
+ */
+int
+vmm_enabled(void)
+{
+ struct cpu_info *ci;
+ CPU_INFO_ITERATOR cii;
+ int found_vmx = 0, found_svm = 0;
+
+ /* Check if we have at least one CPU with either VMX or SVM */
+ CPU_INFO_FOREACH(cii, ci) {
+ if (ci->ci_vmm_flags & CI_VMM_VMX)
+ found_vmx = 1;
+ if (ci->ci_vmm_flags & CI_VMM_SVM)
+ found_svm = 1;
+ }
+
+ /* Don't support both SVM and VMX at the same time */
+ if (found_vmx && found_svm)
+ return (0);
+
+ if (found_vmx || found_svm)
+ return 1;
+
+ return 0;
+}
+
+void
+vmm_attach_machdep(struct device *parent, struct device *self, void *aux)
+{
+ struct vmm_softc *sc = (struct vmm_softc *)self;
+ struct cpu_info *ci;
+ CPU_INFO_ITERATOR cii;
+
+ sc->sc_md.nr_rvi_cpus = 0;
+ sc->sc_md.nr_ept_cpus = 0;
+
+ /* Calculate CPU features */
+ CPU_INFO_FOREACH(cii, ci) {
+ if (ci->ci_vmm_flags & CI_VMM_RVI)
+ sc->sc_md.nr_rvi_cpus++;
+ if (ci->ci_vmm_flags & CI_VMM_EPT)
+ sc->sc_md.nr_ept_cpus++;
+ }
+
+ sc->sc_md.pkru_enabled = 0;
+ if (rcr4() & CR4_PKE)
+ sc->sc_md.pkru_enabled = 1;
+
+ if (sc->sc_md.nr_ept_cpus) {
+ printf(": VMX/EPT");
+ sc->mode = VMM_MODE_EPT;
+ } else if (sc->sc_md.nr_rvi_cpus) {
+ printf(": SVM/RVI");
+ sc->mode = VMM_MODE_RVI;
+ } else {
+ printf(": unknown");
+ sc->mode = VMM_MODE_UNKNOWN;
+ }
+
+ if (sc->mode == VMM_MODE_EPT) {
+ if (!(curcpu()->ci_vmm_cap.vcc_vmx.vmx_has_l1_flush_msr)) {
+ l1tf_flush_region = km_alloc(VMX_L1D_FLUSH_SIZE,
+ &kv_any, &vmm_kp_contig, &kd_waitok);
+ if (!l1tf_flush_region) {
+ printf(" (failing, no memory)");
+ sc->mode = VMM_MODE_UNKNOWN;
+ } else {
+ printf(" (using slow L1TF mitigation)");
+ memset(l1tf_flush_region, 0xcc,
+ VMX_L1D_FLUSH_SIZE);
+ }
+ }
+ }
+
+ if (sc->mode == VMM_MODE_RVI) {
+ sc->max_vpid = curcpu()->ci_vmm_cap.vcc_svm.svm_max_asid;
+ } else {
+ sc->max_vpid = 0xFFF;
+ }
+
+ bzero(&sc->vpids, sizeof(sc->vpids));
+ rw_init(&sc->vpid_lock, "vpid");
+}
+
+/*
+ * vmm_quiesce_vmx
+ *
+ * Prepare the host for suspend by flushing all VMCS states.
+ */
+int
+vmm_quiesce_vmx(void)
+{
+ struct vm *vm;
+ struct vcpu *vcpu;
+ int err;
+
+ /*
+ * We should be only called from a quiescing device state so we
+ * don't expect to sleep here. If we can't get all our locks,
+ * something is wrong.
+ */
+ if ((err = rw_enter(&vmm_softc->vm_lock, RW_WRITE | RW_NOSLEEP)))
+ return (err);
+
+ /* Iterate over each vm... */
+ SLIST_FOREACH(vm, &vmm_softc->vm_list, vm_link) {
+ /* Iterate over each vcpu... */
+ SLIST_FOREACH(vcpu, &vm->vm_vcpu_list, vc_vcpu_link) {
+ err = rw_enter(&vcpu->vc_lock, RW_WRITE | RW_NOSLEEP);
+ if (err)
+ break;
+
+ /* We can skip unlaunched VMCS. Nothing to flush. */
+ if (atomic_load_int(&vcpu->vc_vmx_vmcs_state)
+ != VMCS_LAUNCHED) {
+ DPRINTF("%s: skipping vcpu %d for vm %d\n",
+ __func__, vcpu->vc_id, vm->vm_id);
+ rw_exit_write(&vcpu->vc_lock);
+ continue;
+ }
+
+#ifdef MULTIPROCESSOR
+ if (vcpu->vc_last_pcpu != curcpu()) {
+ /* Remote cpu vmclear via ipi. */
+ err = vmx_remote_vmclear(vcpu->vc_last_pcpu,
+ vcpu);
+ if (err)
+ printf("%s: failed to remote vmclear "
+ "vcpu %d of vm %d\n", __func__,
+ vcpu->vc_id, vm->vm_id);
+ } else
+#endif
+ {
+ /* Local cpu vmclear instruction. */
+ if ((err = vmclear(&vcpu->vc_control_pa)))
+ printf("%s: failed to locally vmclear "
+ "vcpu %d of vm %d\n", __func__,
+ vcpu->vc_id, vm->vm_id);
+ atomic_swap_uint(&vcpu->vc_vmx_vmcs_state,
+ VMCS_CLEARED);
+ }
+
+ rw_exit_write(&vcpu->vc_lock);
+ if (err)
+ break;
+ DPRINTF("%s: cleared vcpu %d for vm %d\n", __func__,
+ vcpu->vc_id, vm->vm_id);
+ }
+ if (err)
+ break;
+ }
+ rw_exit_write(&vmm_softc->vm_lock);
+
+ if (err)
+ return (err);
+ return (0);
+}
+
+void
+vmm_activate_machdep(struct device *self, int act)
+{
+ struct cpu_info *ci = curcpu();
+
+ switch (act) {
+ case DVACT_QUIESCE:
+ /* If we're not in vmm mode, nothing to do. */
+ if ((ci->ci_flags & CPUF_VMM) == 0)
+ break;
+
+ /* Intel systems need extra steps to sync vcpu state. */
+ if (vmm_softc->mode == VMM_MODE_EPT)
+ if (vmm_quiesce_vmx())
+ DPRINTF("%s: vmx quiesce failed\n", __func__);
+
+ /* Stop virtualization mode on all cpus. */
+ vmm_stop();
+ break;
+
+ case DVACT_WAKEUP:
+ /* Restart virtualization mode on all cpu's. */
+ if (vmm_softc->vm_ct > 0)
+ vmm_start();
+ break;
+ }
+}
+
+int
+vmmioctl_machdep(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
+{
+ int ret;
+
+ switch (cmd) {
+ case VMM_IOC_INTR:
+ ret = vm_intr_pending((struct vm_intr_params *)data);
+ break;
+ case VMM_IOC_MPROTECT_EPT:
+ ret = vm_mprotect_ept((struct vm_mprotect_ept_params *)data);
+ break;
+ default:
+ DPRINTF("%s: unknown ioctl code 0x%lx\n", __func__, cmd);
+ ret = ENOTTY;
+ }
+
+ return (ret);
+}
+
+int
+pledge_ioctl_vmm_machdep(struct proc *p, long com)
+{
+ switch (com) {
+ case VMM_IOC_INTR:
+ case VMM_IOC_MPROTECT_EPT:
+ return (0);
+ }
+
+ return (EPERM);
+}
+
+/*
+ * vm_intr_pending
+ *
+ * IOCTL handler routine for VMM_IOC_INTR messages, sent from vmd when an
+ * interrupt is pending and needs acknowledgment
+ *
+ * Parameters:
+ * vip: Describes the vm/vcpu for which the interrupt is pending
+ *
+ * Return values:
+ * 0: if successful
+ * ENOENT: if the VM/VCPU defined by 'vip' cannot be found
+ */
+int
+vm_intr_pending(struct vm_intr_params *vip)
+{
+ struct vm *vm;
+ struct vcpu *vcpu;
+#ifdef MULTIPROCESSOR
+ struct cpu_info *ci;
+#endif
+ int error, ret = 0;
+
+ /* Find the desired VM */
+ error = vm_find(vip->vip_vm_id, &vm);
+
+ /* Not found? exit. */
+ if (error != 0)
+ return (error);
+
+ vcpu = vm_find_vcpu(vm, vip->vip_vcpu_id);
+
+ if (vcpu == NULL) {
+ ret = ENOENT;
+ goto out;
+ }
+
+ vcpu->vc_intr = vip->vip_intr;
+#ifdef MULTIPROCESSOR
+ ci = READ_ONCE(vcpu->vc_curcpu);
+ if (ci != NULL)
+ x86_send_ipi(ci, X86_IPI_NOP);
+#endif
+
+out:
+ refcnt_rele_wake(&vm->vm_refcnt);
+ return (ret);
+}
+
+/*
+ * vm_rwvmparams
+ *
+ * IOCTL handler to read/write the current vmm params like pvclock gpa, pvclock
+ * version, etc.
+ *
+ * Parameters:
+ * vrwp: Describes the VM and VCPU to get/set the params from
+ * dir: 0 for reading, 1 for writing
+ *
+ * Return values:
+ * 0: if successful
+ * ENOENT: if the VM/VCPU defined by 'vpp' cannot be found
+ * EINVAL: if an error occurred reading the registers of the guest
+ */
+int
+vm_rwvmparams(struct vm_rwvmparams_params *vpp, int dir)
+{
+ struct vm *vm;
+ struct vcpu *vcpu;
+ int error, ret = 0;
+
+ /* Find the desired VM */
+ error = vm_find(vpp->vpp_vm_id, &vm);
+
+ /* Not found? exit. */
+ if (error != 0)
+ return (error);
+
+ vcpu = vm_find_vcpu(vm, vpp->vpp_vcpu_id);
+
+ if (vcpu == NULL) {
+ ret = ENOENT;
+ goto out;
+ }
+
+ if (dir == 0) {
+ if (vpp->vpp_mask & VM_RWVMPARAMS_PVCLOCK_VERSION)
+ vpp->vpp_pvclock_version = vcpu->vc_pvclock_version;
+ if (vpp->vpp_mask & VM_RWVMPARAMS_PVCLOCK_SYSTEM_GPA)
+ vpp->vpp_pvclock_system_gpa = \
+ vcpu->vc_pvclock_system_gpa;
+ } else {
+ if (vpp->vpp_mask & VM_RWVMPARAMS_PVCLOCK_VERSION)
+ vcpu->vc_pvclock_version = vpp->vpp_pvclock_version;
+ if (vpp->vpp_mask & VM_RWVMPARAMS_PVCLOCK_SYSTEM_GPA) {
+ vmm_init_pvclock(vcpu, vpp->vpp_pvclock_system_gpa);
+ }
+ }
+out:
+ refcnt_rele_wake(&vm->vm_refcnt);
+ return (ret);
+}
+
+/*
+ * vm_readregs
+ *
+ * IOCTL handler to read/write the current register values of a guest VCPU.
+ * The VCPU must not be running.
+ *
+ * Parameters:
+ * vrwp: Describes the VM and VCPU to get/set the registers from. The
+ * register values are returned here as well.
+ * dir: 0 for reading, 1 for writing
+ *
+ * Return values:
+ * 0: if successful
+ * ENOENT: if the VM/VCPU defined by 'vrwp' cannot be found
+ * EINVAL: if an error occurred accessing the registers of the guest
+ * EPERM: if the vm cannot be accessed from the calling process
+ */
+int
+vm_rwregs(struct vm_rwregs_params *vrwp, int dir)
+{
+ struct vm *vm;
+ struct vcpu *vcpu;
+ struct vcpu_reg_state *vrs = &vrwp->vrwp_regs;
+ int error, ret = 0;
+
+ /* Find the desired VM */
+ error = vm_find(vrwp->vrwp_vm_id, &vm);
+
+ /* Not found? exit. */
+ if (error != 0)
+ return (error);
+
+ vcpu = vm_find_vcpu(vm, vrwp->vrwp_vcpu_id);
+
+ if (vcpu == NULL) {
+ ret = ENOENT;
+ goto out;
+ }
+
+ rw_enter_write(&vcpu->vc_lock);
+ if (vmm_softc->mode == VMM_MODE_EPT)
+ ret = (dir == 0) ?
+ vcpu_readregs_vmx(vcpu, vrwp->vrwp_mask, 1, vrs) :
+ vcpu_writeregs_vmx(vcpu, vrwp->vrwp_mask, 1, vrs);
+ else if (vmm_softc->mode == VMM_MODE_RVI)
+ ret = (dir == 0) ?
+ vcpu_readregs_svm(vcpu, vrwp->vrwp_mask, vrs) :
+ vcpu_writeregs_svm(vcpu, vrwp->vrwp_mask, vrs);
+ else {
+ DPRINTF("%s: unknown vmm mode", __func__);
+ ret = EINVAL;
+ }
+ rw_exit_write(&vcpu->vc_lock);
+out:
+ refcnt_rele_wake(&vm->vm_refcnt);
+ return (ret);
+}
+
+/*
+ * vm_mprotect_ept
+ *
+ * IOCTL handler to sets the access protections of the ept
+ *
+ * Parameters:
+ * vmep: describes the memory for which the protect will be applied..
+ *
+ * Return values:
+ * 0: if successful
+ * ENOENT: if the VM defined by 'vmep' cannot be found
+ * EINVAL: if the sgpa or size is not page aligned, the prot is invalid,
+ * size is too large (512GB), there is wraparound
+ * (like start = 512GB-1 and end = 512GB-2),
+ * the address specified is not within the vm's mem range
+ * or the address lies inside reserved (MMIO) memory
+ */
+int
+vm_mprotect_ept(struct vm_mprotect_ept_params *vmep)
+{
+ struct vm *vm;
+ struct vcpu *vcpu;
+ vaddr_t sgpa;
+ size_t size;
+ vm_prot_t prot;
+ uint64_t msr;
+ int ret = 0, memtype;
+
+ /* If not EPT or RVI, nothing to do here */
+ if (!(vmm_softc->mode == VMM_MODE_EPT
+ || vmm_softc->mode == VMM_MODE_RVI))
+ return (0);
+
+ /* Find the desired VM */
+ ret = vm_find(vmep->vmep_vm_id, &vm);
+
+ /* Not found? exit. */
+ if (ret != 0) {
+ DPRINTF("%s: vm id %u not found\n", __func__,
+ vmep->vmep_vm_id);
+ return (ret);
+ }
+
+ vcpu = vm_find_vcpu(vm, vmep->vmep_vcpu_id);
+
+ if (vcpu == NULL) {
+ DPRINTF("%s: vcpu id %u of vm %u not found\n", __func__,
+ vmep->vmep_vcpu_id, vmep->vmep_vm_id);
+ ret = ENOENT;
+ goto out_nolock;
+ }
+
+ rw_enter_write(&vcpu->vc_lock);
+
+ if (vcpu->vc_state != VCPU_STATE_STOPPED) {
+ DPRINTF("%s: mprotect_ept %u on vm %u attempted "
+ "while vcpu was in state %u (%s)\n", __func__,
+ vmep->vmep_vcpu_id, vmep->vmep_vm_id, vcpu->vc_state,
+ vcpu_state_decode(vcpu->vc_state));
+ ret = EBUSY;
+ goto out;
+ }
+
+ /* Only proceed if the pmap is in the correct mode */
+ KASSERT((vmm_softc->mode == VMM_MODE_EPT &&
+ vm->vm_map->pmap->pm_type == PMAP_TYPE_EPT) ||
+ (vmm_softc->mode == VMM_MODE_RVI &&
+ vm->vm_map->pmap->pm_type == PMAP_TYPE_RVI));
+
+ sgpa = vmep->vmep_sgpa;
+ size = vmep->vmep_size;
+ prot = vmep->vmep_prot;
+
+ /* No W^X permissions */
+ if ((prot & PROT_MASK) != prot &&
+ (prot & (PROT_WRITE | PROT_EXEC)) == (PROT_WRITE | PROT_EXEC)) {
+ DPRINTF("%s: W+X permission requested\n", __func__);
+ ret = EINVAL;
+ goto out;
+ }
+
+ /* No Write only permissions */
+ if ((prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) == PROT_WRITE) {
+ DPRINTF("%s: No Write only permissions\n", __func__);
+ ret = EINVAL;
+ goto out;
+ }
+
+ /* No empty permissions */
+ if (prot == 0) {
+ DPRINTF("%s: No empty permissions\n", __func__);
+ ret = EINVAL;
+ goto out;
+ }
+
+ /* No execute only on EPT CPUs that don't have that capability */
+ if (vmm_softc->mode == VMM_MODE_EPT) {
+ msr = rdmsr(IA32_VMX_EPT_VPID_CAP);
+ if (prot == PROT_EXEC &&
+ (msr & IA32_EPT_VPID_CAP_XO_TRANSLATIONS) == 0) {
+ DPRINTF("%s: Execute only permissions unsupported,"
+ " adding read permission\n", __func__);
+
+ prot |= PROT_READ;
+ }
+ }
+
+ /* Must be page aligned */
+ if ((sgpa & PAGE_MASK) || (size & PAGE_MASK) || size == 0) {
+ ret = EINVAL;
+ goto out;
+ }
+
+ /* size must be less then 512GB */
+ if (size >= NBPD_L4) {
+ ret = EINVAL;
+ goto out;
+ }
+
+ /* no wraparound */
+ if (sgpa + size < sgpa) {
+ ret = EINVAL;
+ goto out;
+ }
+
+ /*
+ * Specifying addresses within the PCI MMIO space is forbidden.
+ * Disallow addresses that start inside the MMIO space:
+ * [VMM_PCI_MMIO_BAR_BASE .. VMM_PCI_MMIO_BAR_END]
+ */
+ if (sgpa >= VMM_PCI_MMIO_BAR_BASE && sgpa <= VMM_PCI_MMIO_BAR_END) {
+ ret = EINVAL;
+ goto out;
+ }
+
+ /*
+ * ... and disallow addresses that end inside the MMIO space:
+ * (VMM_PCI_MMIO_BAR_BASE .. VMM_PCI_MMIO_BAR_END]
+ */
+ if (sgpa + size > VMM_PCI_MMIO_BAR_BASE &&
+ sgpa + size <= VMM_PCI_MMIO_BAR_END) {
+ ret = EINVAL;
+ goto out;
+ }
+
+ memtype = vmm_get_guest_memtype(vm, sgpa);
+ if (memtype == VMM_MEM_TYPE_UNKNOWN) {
+ ret = EINVAL;
+ goto out;
+ }
+
+ if (vmm_softc->mode == VMM_MODE_EPT)
+ ret = vmx_mprotect_ept(vm->vm_map, sgpa, sgpa + size, prot);
+ else if (vmm_softc->mode == VMM_MODE_RVI) {
+ pmap_write_protect(vm->vm_map->pmap, sgpa, sgpa + size, prot);
+ /* XXX requires a invlpga */
+ ret = 0;
+ } else
+ ret = EINVAL;
+out:
+ if (vcpu != NULL)
+ rw_exit_write(&vcpu->vc_lock);
+out_nolock:
+ refcnt_rele_wake(&vm->vm_refcnt);
+ return (ret);
+}
+
+/*
+ * vmx_mprotect_ept
+ *
+ * apply the ept protections to the requested pages, faulting in the page if
+ * required.
+ */
+int
+vmx_mprotect_ept(vm_map_t vm_map, paddr_t sgpa, paddr_t egpa, int prot)
+{
+ struct vmx_invept_descriptor vid;
+ pmap_t pmap;
+ pt_entry_t *pte;
+ paddr_t addr;
+ int ret = 0;
+
+ pmap = vm_map->pmap;
+
+ KERNEL_LOCK();
+
+ for (addr = sgpa; addr < egpa; addr += PAGE_SIZE) {
+ pte = vmx_pmap_find_pte_ept(pmap, addr);
+ if (pte == NULL) {
+ ret = uvm_fault(vm_map, addr, VM_FAULT_WIRE,
+ PROT_READ | PROT_WRITE | PROT_EXEC);
+ if (ret)
+ printf("%s: uvm_fault returns %d, GPA=0x%llx\n",
+ __func__, ret, (uint64_t)addr);
+
+ pte = vmx_pmap_find_pte_ept(pmap, addr);
+ if (pte == NULL) {
+ KERNEL_UNLOCK();
+ return EFAULT;
+ }
+ }
+
+ if (prot & PROT_READ)
+ *pte |= EPT_R;
+ else
+ *pte &= ~EPT_R;
+
+ if (prot & PROT_WRITE)
+ *pte |= EPT_W;
+ else
+ *pte &= ~EPT_W;
+
+ if (prot & PROT_EXEC)
+ *pte |= EPT_X;
+ else
+ *pte &= ~EPT_X;
+ }
+
+ /*
+ * SDM 3C: 28.3.3.4 Guidelines for Use of the INVEPT Instruction
+ * the first bullet point seems to say we should call invept.
+ *
+ * Software should use the INVEPT instruction with the “single-context”
+ * INVEPT type after making any of the following changes to an EPT
+ * paging-structure entry (the INVEPT descriptor should contain an
+ * EPTP value that references — directly or indirectly
+ * — the modified EPT paging structure):
+ * — Changing any of the privilege bits 2:0 from 1 to 0.
+ * */
+ if (pmap->eptp != 0) {
+ memset(&vid, 0, sizeof(vid));
+ vid.vid_eptp = pmap->eptp;
+ DPRINTF("%s: flushing EPT TLB for EPTP 0x%llx\n", __func__,
+ vid.vid_eptp);
+ invept(IA32_VMX_INVEPT_SINGLE_CTX, &vid);
+ }
+
+ KERNEL_UNLOCK();
+
+ return ret;
+}
+
+/*
+ * vmx_pmap_find_pte_ept
+ *
+ * find the page table entry specified by addr in the pmap supplied.
+ */
+pt_entry_t *
+vmx_pmap_find_pte_ept(pmap_t pmap, paddr_t addr)
+{
+ int l4idx, l3idx, l2idx, l1idx;
+ pd_entry_t *pd;
+ paddr_t pdppa;
+ pt_entry_t *ptes, *pte;
+
+ l4idx = (addr & L4_MASK) >> L4_SHIFT; /* PML4E idx */
+ l3idx = (addr & L3_MASK) >> L3_SHIFT; /* PDPTE idx */
+ l2idx = (addr & L2_MASK) >> L2_SHIFT; /* PDE idx */
+ l1idx = (addr & L1_MASK) >> L1_SHIFT; /* PTE idx */
+
+ pd = (pd_entry_t *)pmap->pm_pdir;
+ if (pd == NULL)
+ return NULL;
+
+ /*
+ * l4idx should always be 0 since we don't support more than 512GB
+ * guest physical memory.
+ */
+ if (l4idx > 0)
+ return NULL;
+
+ /*
+ * l3idx should always be < MAXDSIZ/1GB because we don't support more
+ * than MAXDSIZ guest phys mem.
+ */
+ if (l3idx >= MAXDSIZ / ((paddr_t)1024 * 1024 * 1024))
+ return NULL;
+
+ pdppa = pd[l4idx] & PG_FRAME;
+ if (pdppa == 0)
+ return NULL;
+
+ ptes = (pt_entry_t *)PMAP_DIRECT_MAP(pdppa);
+
+ pdppa = ptes[l3idx] & PG_FRAME;
+ if (pdppa == 0)
+ return NULL;
+
+ ptes = (pt_entry_t *)PMAP_DIRECT_MAP(pdppa);
+
+ pdppa = ptes[l2idx] & PG_FRAME;
+ if (pdppa == 0)
+ return NULL;
+
+ ptes = (pt_entry_t *)PMAP_DIRECT_MAP(pdppa);
+
+ pte = &ptes[l1idx];
+ if (*pte == 0)
+ return NULL;
+
+ return pte;
+}
+
+/*
+ * vmm_start
+ *
+ * Starts VMM mode on the system
+ */
+int
+vmm_start(void)
+{
+ struct cpu_info *self = curcpu();
+#ifdef MULTIPROCESSOR
+ struct cpu_info *ci;
+ CPU_INFO_ITERATOR cii;
+#ifdef MP_LOCKDEBUG
+ int nticks;
+#endif /* MP_LOCKDEBUG */
+#endif /* MULTIPROCESSOR */
+
+ /* VMM is already running */
+ if (self->ci_flags & CPUF_VMM)
+ return (0);
+
+ /* Start VMM on this CPU */
+ start_vmm_on_cpu(self);
+ if (!(self->ci_flags & CPUF_VMM)) {
+ printf("%s: failed to enter VMM mode\n",
+ self->ci_dev->dv_xname);
+ return (EIO);
+ }
+
+#ifdef MULTIPROCESSOR
+ /* Broadcast start VMM IPI */
+ x86_broadcast_ipi(X86_IPI_START_VMM);
+
+ CPU_INFO_FOREACH(cii, ci) {
+ if (ci == self)
+ continue;
+#ifdef MP_LOCKDEBUG
+ nticks = __mp_lock_spinout;
+#endif /* MP_LOCKDEBUG */
+ while (!(ci->ci_flags & CPUF_VMM)) {
+ CPU_BUSY_CYCLE();
+#ifdef MP_LOCKDEBUG
+ if (--nticks <= 0) {
+ db_printf("%s: spun out", __func__);
+ db_enter();
+ nticks = __mp_lock_spinout;
+ }
+#endif /* MP_LOCKDEBUG */
+ }
+ }
+#endif /* MULTIPROCESSOR */
+
+ return (0);
+}
+
+/*
+ * vmm_stop
+ *
+ * Stops VMM mode on the system
+ */
+int
+vmm_stop(void)
+{
+ struct cpu_info *self = curcpu();
+#ifdef MULTIPROCESSOR
+ struct cpu_info *ci;
+ CPU_INFO_ITERATOR cii;
+#ifdef MP_LOCKDEBUG
+ int nticks;
+#endif /* MP_LOCKDEBUG */
+#endif /* MULTIPROCESSOR */
+
+ /* VMM is not running */
+ if (!(self->ci_flags & CPUF_VMM))
+ return (0);
+
+ /* Stop VMM on this CPU */
+ stop_vmm_on_cpu(self);
+ if (self->ci_flags & CPUF_VMM) {
+ printf("%s: failed to exit VMM mode\n",
+ self->ci_dev->dv_xname);
+ return (EIO);
+ }
+
+#ifdef MULTIPROCESSOR
+ /* Stop VMM on other CPUs */
+ x86_broadcast_ipi(X86_IPI_STOP_VMM);
+
+ CPU_INFO_FOREACH(cii, ci) {
+ if (ci == self)
+ continue;
+#ifdef MP_LOCKDEBUG
+ nticks = __mp_lock_spinout;
+#endif /* MP_LOCKDEBUG */
+ while ((ci->ci_flags & CPUF_VMM)) {
+ CPU_BUSY_CYCLE();
+#ifdef MP_LOCKDEBUG
+ if (--nticks <= 0) {
+ db_printf("%s: spunout", __func__);
+ db_enter();
+ nticks = __mp_lock_spinout;
+ }
+#endif /* MP_LOCKDEBUG */
+ }
+ }
+#endif /* MULTIPROCESSOR */
+
+ return (0);
+}
+
+/*
+ * start_vmm_on_cpu
+ *
+ * Starts VMM mode on 'ci' by executing the appropriate CPU-specific insn
+ * sequence to enter VMM mode (eg, VMXON)
+ */
+void
+start_vmm_on_cpu(struct cpu_info *ci)
+{
+ uint64_t msr;
+ uint32_t cr4;
+
+ /* No VMM mode? exit. */
+ if ((ci->ci_vmm_flags & CI_VMM_VMX) == 0 &&
+ (ci->ci_vmm_flags & CI_VMM_SVM) == 0)
+ return;
+
+ /*
+ * AMD SVM
+ */
+ if (ci->ci_vmm_flags & CI_VMM_SVM) {
+ msr = rdmsr(MSR_EFER);
+ msr |= EFER_SVME;
+ wrmsr(MSR_EFER, msr);
+ }
+
+ /*
+ * Intel VMX
+ */
+ if (ci->ci_vmm_flags & CI_VMM_VMX) {
+ if (ci->ci_vmxon_region == 0)
+ return;
+ else {
+ bzero(ci->ci_vmxon_region, PAGE_SIZE);
+ ci->ci_vmxon_region->vr_revision =
+ ci->ci_vmm_cap.vcc_vmx.vmx_vmxon_revision;
+
+ /* Set CR4.VMXE */
+ cr4 = rcr4();
+ cr4 |= CR4_VMXE;
+ lcr4(cr4);
+
+ /* Enable VMX */
+ msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
+ if (msr & IA32_FEATURE_CONTROL_LOCK) {
+ if (!(msr & IA32_FEATURE_CONTROL_VMX_EN))
+ return;
+ } else {
+ msr |= IA32_FEATURE_CONTROL_VMX_EN |
+ IA32_FEATURE_CONTROL_LOCK;
+ wrmsr(MSR_IA32_FEATURE_CONTROL, msr);
+ }
+
+ /* Enter VMX mode */
+ if (vmxon((uint64_t *)&ci->ci_vmxon_region_pa))
+ return;
+ }
+ }
+
+ atomic_setbits_int(&ci->ci_flags, CPUF_VMM);
+}
+
+/*
+ * stop_vmm_on_cpu
+ *
+ * Stops VMM mode on 'ci' by executing the appropriate CPU-specific insn
+ * sequence to exit VMM mode (eg, VMXOFF)
+ */
+void
+stop_vmm_on_cpu(struct cpu_info *ci)
+{
+ uint64_t msr;
+ uint32_t cr4;
+
+ if (!(ci->ci_flags & CPUF_VMM))
+ return;
+
+ /*
+ * AMD SVM
+ */
+ if (ci->ci_vmm_flags & CI_VMM_SVM) {
+ msr = rdmsr(MSR_EFER);
+ msr &= ~EFER_SVME;
+ wrmsr(MSR_EFER, msr);
+ }
+
+ /*
+ * Intel VMX
+ */
+ if (ci->ci_vmm_flags & CI_VMM_VMX) {
+ if (vmxoff())
+ panic("VMXOFF failed");
+
+ cr4 = rcr4();
+ cr4 &= ~CR4_VMXE;
+ lcr4(cr4);
+ }
+
+ atomic_clearbits_int(&ci->ci_flags, CPUF_VMM);
+}
+
+/*
+ * vmclear_on_cpu
+ *
+ * Flush and clear VMCS on 'ci' by executing vmclear.
+ *
+ */
+void
+vmclear_on_cpu(struct cpu_info *ci)
+{
+ if ((ci->ci_flags & CPUF_VMM) && (ci->ci_vmm_flags & CI_VMM_VMX)) {
+ if (vmclear(&ci->ci_vmcs_pa))
+ panic("VMCLEAR ipi failed");
+ atomic_swap_ulong(&ci->ci_vmcs_pa, VMX_VMCS_PA_CLEAR);
+ }
+}
+
+#ifdef MULTIPROCESSOR
+static int
+vmx_remote_vmclear(struct cpu_info *ci, struct vcpu *vcpu)
+{
+#ifdef MP_LOCKDEBUG
+ int nticks = __mp_lock_spinout;
+#endif /* MP_LOCKDEBUG */
+
+ rw_enter_write(&ci->ci_vmcs_lock);
+ atomic_swap_ulong(&ci->ci_vmcs_pa, vcpu->vc_control_pa);
+ x86_send_ipi(ci, X86_IPI_VMCLEAR_VMM);
+
+ while (ci->ci_vmcs_pa != VMX_VMCS_PA_CLEAR) {
+ CPU_BUSY_CYCLE();
+#ifdef MP_LOCKDEBUG
+ if (--nticks <= 0) {
+ db_printf("%s: spun out\n", __func__);
+ db_enter();
+ nticks = __mp_lock_spinout;
+ }
+#endif /* MP_LOCKDEBUG */
+ }
+ atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_CLEARED);
+ rw_exit_write(&ci->ci_vmcs_lock);
+
+ return (0);
+}
+#endif /* MULTIPROCESSOR */
+
+/*
+ * vm_impl_init_vmx
+ *
+ * Intel VMX specific VM initialization routine
+ *
+ * Parameters:
+ * vm: the VM being initialized
+ * p: vmd process owning the VM
+ *
+ * Return values:
+ * 0: the initialization was successful
+ * ENOMEM: the initialization failed (lack of resources)
+ */
+int
+vm_impl_init_vmx(struct vm *vm, struct proc *p)
+{
+ int i, ret;
+ vaddr_t mingpa, maxgpa;
+ struct vm_mem_range *vmr;
+
+ /* If not EPT, nothing to do here */
+ if (vmm_softc->mode != VMM_MODE_EPT)
+ return (0);
+
+ vmr = &vm->vm_memranges[0];
+ mingpa = vmr->vmr_gpa;
+ vmr = &vm->vm_memranges[vm->vm_nmemranges - 1];
+ maxgpa = vmr->vmr_gpa + vmr->vmr_size;
+
+ /*
+ * uvmspace_alloc (currently) always returns a valid vmspace
+ */
+ vm->vm_vmspace = uvmspace_alloc(mingpa, maxgpa, TRUE, FALSE);
+ vm->vm_map = &vm->vm_vmspace->vm_map;
+
+ /* Map the new map with an anon */
+ DPRINTF("%s: created vm_map @ %p\n", __func__, vm->vm_map);
+ for (i = 0; i < vm->vm_nmemranges; i++) {
+ vmr = &vm->vm_memranges[i];
+ ret = uvm_share(vm->vm_map, vmr->vmr_gpa,
+ PROT_READ | PROT_WRITE | PROT_EXEC,
+ &p->p_vmspace->vm_map, vmr->vmr_va, vmr->vmr_size);
+ if (ret) {
+ printf("%s: uvm_share failed (%d)\n", __func__, ret);
+ /* uvmspace_free calls pmap_destroy for us */
+ uvmspace_free(vm->vm_vmspace);
+ vm->vm_vmspace = NULL;
+ return (ENOMEM);
+ }
+ }
+
+ pmap_convert(vm->vm_map->pmap, PMAP_TYPE_EPT);
+
+ return (0);
+}
+
+/*
+ * vm_impl_init_svm
+ *
+ * AMD SVM specific VM initialization routine
+ *
+ * Parameters:
+ * vm: the VM being initialized
+ * p: vmd process owning the VM
+ *
+ * Return values:
+ * 0: the initialization was successful
+ * ENOMEM: the initialization failed (lack of resources)
+ */
+int
+vm_impl_init_svm(struct vm *vm, struct proc *p)
+{
+ int i, ret;
+ vaddr_t mingpa, maxgpa;
+ struct vm_mem_range *vmr;
+
+ /* If not RVI, nothing to do here */
+ if (vmm_softc->mode != VMM_MODE_RVI)
+ return (0);
+
+ vmr = &vm->vm_memranges[0];
+ mingpa = vmr->vmr_gpa;
+ vmr = &vm->vm_memranges[vm->vm_nmemranges - 1];
+ maxgpa = vmr->vmr_gpa + vmr->vmr_size;
+
+ /*
+ * uvmspace_alloc (currently) always returns a valid vmspace
+ */
+ vm->vm_vmspace = uvmspace_alloc(mingpa, maxgpa, TRUE, FALSE);
+ vm->vm_map = &vm->vm_vmspace->vm_map;
+
+ /* Map the new map with an anon */
+ DPRINTF("%s: created vm_map @ %p\n", __func__, vm->vm_map);
+ for (i = 0; i < vm->vm_nmemranges; i++) {
+ vmr = &vm->vm_memranges[i];
+ ret = uvm_share(vm->vm_map, vmr->vmr_gpa,
+ PROT_READ | PROT_WRITE | PROT_EXEC,
+ &p->p_vmspace->vm_map, vmr->vmr_va, vmr->vmr_size);
+ if (ret) {
+ printf("%s: uvm_share failed (%d)\n", __func__, ret);
+ /* uvmspace_free calls pmap_destroy for us */
+ uvmspace_free(vm->vm_vmspace);
+ vm->vm_vmspace = NULL;
+ return (ENOMEM);
+ }
+ }
+
+ /* Convert pmap to RVI */
+ pmap_convert(vm->vm_map->pmap, PMAP_TYPE_RVI);
+
+ return (0);
+}
+
+/*
+ * vm_impl_init
+ *
+ * Calls the architecture-specific VM init routine
+ *
+ * Parameters:
+ * vm: the VM being initialized
+ * p: vmd process owning the VM
+ *
+ * Return values (from architecture-specific init routines):
+ * 0: the initialization was successful
+ * ENOMEM: the initialization failed (lack of resources)
+ */
+int
+vm_impl_init(struct vm *vm, struct proc *p)
+{
+ int ret;
+
+ KERNEL_LOCK();
+ if (vmm_softc->mode == VMM_MODE_EPT)
+ ret = vm_impl_init_vmx(vm, p);
+ else if (vmm_softc->mode == VMM_MODE_RVI)
+ ret = vm_impl_init_svm(vm, p);
+ else
+ panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
+ KERNEL_UNLOCK();
+
+ return (ret);
+}
+
+void
+vm_impl_deinit(struct vm *vm)
+{
+ /* unused */
+}
+
+/*
+ * vcpu_reload_vmcs_vmx
+ *
+ * (Re)load the VMCS on the current cpu. Must be called with the VMCS write
+ * lock acquired. If the VMCS is determined to be loaded on a remote cpu, an
+ * ipi will be used to remotely flush it before loading the VMCS locally.
+ *
+ * Parameters:
+ * vcpu: Pointer to the vcpu needing its VMCS
+ *
+ * Return values:
+ * 0: if successful
+ * EINVAL: an error occurred during flush or reload
+ */
+int
+vcpu_reload_vmcs_vmx(struct vcpu *vcpu)
+{
+ struct cpu_info *ci, *last_ci;
+
+ rw_assert_wrlock(&vcpu->vc_lock);
+
+ ci = curcpu();
+ last_ci = vcpu->vc_last_pcpu;
+
+ if (last_ci == NULL) {
+ /* First launch */
+ if (vmclear(&vcpu->vc_control_pa))
+ return (EINVAL);
+ atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_CLEARED);
+#ifdef MULTIPROCESSOR
+ } else if (last_ci != ci) {
+ /* We've moved CPUs at some point, so remote VMCLEAR */
+ if (vmx_remote_vmclear(last_ci, vcpu))
+ return (EINVAL);
+ KASSERT(vcpu->vc_vmx_vmcs_state == VMCS_CLEARED);
+#endif /* MULTIPROCESSOR */
+ }
+
+ if (vmptrld(&vcpu->vc_control_pa)) {
+ printf("%s: vmptrld\n", __func__);
+ return (EINVAL);
+ }
+
+ return (0);
+}
+
+/*
+ * vcpu_readregs_vmx
+ *
+ * Reads 'vcpu's registers
+ *
+ * Parameters:
+ * vcpu: the vcpu to read register values from
+ * regmask: the types of registers to read
+ * loadvmcs: bit to indicate whether the VMCS has to be loaded first
+ * vrs: output parameter where register values are stored
+ *
+ * Return values:
+ * 0: if successful
+ * EINVAL: an error reading registers occurred
+ */
+int
+vcpu_readregs_vmx(struct vcpu *vcpu, uint64_t regmask, int loadvmcs,
+ struct vcpu_reg_state *vrs)
+{
+ int i, ret = 0;
+ uint64_t sel, limit, ar;
+ uint64_t *gprs = vrs->vrs_gprs;
+ uint64_t *crs = vrs->vrs_crs;
+ uint64_t *msrs = vrs->vrs_msrs;
+ uint64_t *drs = vrs->vrs_drs;
+ struct vcpu_segment_info *sregs = vrs->vrs_sregs;
+ struct vmx_msr_store *msr_store;
+
+ if (loadvmcs) {
+ if (vcpu_reload_vmcs_vmx(vcpu))
+ return (EINVAL);
+ }
+
+#ifdef VMM_DEBUG
+ /* VMCS should be loaded... */
+ paddr_t pa = 0ULL;
+ if (vmptrst(&pa))
+ panic("%s: vmptrst", __func__);
+ KASSERT(pa == vcpu->vc_control_pa);
+#endif /* VMM_DEBUG */
+
+ if (regmask & VM_RWREGS_GPRS) {
+ gprs[VCPU_REGS_RAX] = vcpu->vc_gueststate.vg_rax;
+ gprs[VCPU_REGS_RBX] = vcpu->vc_gueststate.vg_rbx;
+ gprs[VCPU_REGS_RCX] = vcpu->vc_gueststate.vg_rcx;
+ gprs[VCPU_REGS_RDX] = vcpu->vc_gueststate.vg_rdx;
+ gprs[VCPU_REGS_RSI] = vcpu->vc_gueststate.vg_rsi;
+ gprs[VCPU_REGS_RDI] = vcpu->vc_gueststate.vg_rdi;
+ gprs[VCPU_REGS_R8] = vcpu->vc_gueststate.vg_r8;
+ gprs[VCPU_REGS_R9] = vcpu->vc_gueststate.vg_r9;
+ gprs[VCPU_REGS_R10] = vcpu->vc_gueststate.vg_r10;
+ gprs[VCPU_REGS_R11] = vcpu->vc_gueststate.vg_r11;
+ gprs[VCPU_REGS_R12] = vcpu->vc_gueststate.vg_r12;
+ gprs[VCPU_REGS_R13] = vcpu->vc_gueststate.vg_r13;
+ gprs[VCPU_REGS_R14] = vcpu->vc_gueststate.vg_r14;
+ gprs[VCPU_REGS_R15] = vcpu->vc_gueststate.vg_r15;
+ gprs[VCPU_REGS_RBP] = vcpu->vc_gueststate.vg_rbp;
+ gprs[VCPU_REGS_RIP] = vcpu->vc_gueststate.vg_rip;
+ if (vmread(VMCS_GUEST_IA32_RSP, &gprs[VCPU_REGS_RSP]))
+ goto errout;
+ if (vmread(VMCS_GUEST_IA32_RFLAGS, &gprs[VCPU_REGS_RFLAGS]))
+ goto errout;
+ }
+
+ if (regmask & VM_RWREGS_SREGS) {
+ for (i = 0; i < nitems(vmm_vmx_sreg_vmcs_fields); i++) {
+ if (vmread(vmm_vmx_sreg_vmcs_fields[i].selid, &sel))
+ goto errout;
+ if (vmread(vmm_vmx_sreg_vmcs_fields[i].limitid, &limit))
+ goto errout;
+ if (vmread(vmm_vmx_sreg_vmcs_fields[i].arid, &ar))
+ goto errout;
+ if (vmread(vmm_vmx_sreg_vmcs_fields[i].baseid,
+ &sregs[i].vsi_base))
+ goto errout;
+
+ sregs[i].vsi_sel = sel;
+ sregs[i].vsi_limit = limit;
+ sregs[i].vsi_ar = ar;
+ }
+
+ if (vmread(VMCS_GUEST_IA32_GDTR_LIMIT, &limit))
+ goto errout;
+ if (vmread(VMCS_GUEST_IA32_GDTR_BASE,
+ &vrs->vrs_gdtr.vsi_base))
+ goto errout;
+ vrs->vrs_gdtr.vsi_limit = limit;
+
+ if (vmread(VMCS_GUEST_IA32_IDTR_LIMIT, &limit))
+ goto errout;
+ if (vmread(VMCS_GUEST_IA32_IDTR_BASE,
+ &vrs->vrs_idtr.vsi_base))
+ goto errout;
+ vrs->vrs_idtr.vsi_limit = limit;
+ }
+
+ if (regmask & VM_RWREGS_CRS) {
+ crs[VCPU_REGS_CR2] = vcpu->vc_gueststate.vg_cr2;
+ crs[VCPU_REGS_XCR0] = vcpu->vc_gueststate.vg_xcr0;
+ if (vmread(VMCS_GUEST_IA32_CR0, &crs[VCPU_REGS_CR0]))
+ goto errout;
+ if (vmread(VMCS_GUEST_IA32_CR3, &crs[VCPU_REGS_CR3]))
+ goto errout;
+ if (vmread(VMCS_GUEST_IA32_CR4, &crs[VCPU_REGS_CR4]))
+ goto errout;
+ if (vmread(VMCS_GUEST_PDPTE0, &crs[VCPU_REGS_PDPTE0]))
+ goto errout;
+ if (vmread(VMCS_GUEST_PDPTE1, &crs[VCPU_REGS_PDPTE1]))
+ goto errout;
+ if (vmread(VMCS_GUEST_PDPTE2, &crs[VCPU_REGS_PDPTE2]))
+ goto errout;
+ if (vmread(VMCS_GUEST_PDPTE3, &crs[VCPU_REGS_PDPTE3]))
+ goto errout;
+ }
+
+ msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
+
+ if (regmask & VM_RWREGS_MSRS) {
+ for (i = 0; i < VCPU_REGS_NMSRS; i++) {
+ msrs[i] = msr_store[i].vms_data;
+ }
+ }
+
+ if (regmask & VM_RWREGS_DRS) {
+ drs[VCPU_REGS_DR0] = vcpu->vc_gueststate.vg_dr0;
+ drs[VCPU_REGS_DR1] = vcpu->vc_gueststate.vg_dr1;
+ drs[VCPU_REGS_DR2] = vcpu->vc_gueststate.vg_dr2;
+ drs[VCPU_REGS_DR3] = vcpu->vc_gueststate.vg_dr3;
+ drs[VCPU_REGS_DR6] = vcpu->vc_gueststate.vg_dr6;
+ if (vmread(VMCS_GUEST_IA32_DR7, &drs[VCPU_REGS_DR7]))
+ goto errout;
+ }
+
+ goto out;
+
+errout:
+ ret = EINVAL;
+out:
+ return (ret);
+}
+
+/*
+ * vcpu_readregs_svm
+ *
+ * Reads 'vcpu's registers
+ *
+ * Parameters:
+ * vcpu: the vcpu to read register values from
+ * regmask: the types of registers to read
+ * vrs: output parameter where register values are stored
+ *
+ * Return values:
+ * 0: if successful
+ */
+int
+vcpu_readregs_svm(struct vcpu *vcpu, uint64_t regmask,
+ struct vcpu_reg_state *vrs)
+{
+ uint64_t *gprs = vrs->vrs_gprs;
+ uint64_t *crs = vrs->vrs_crs;
+ uint64_t *msrs = vrs->vrs_msrs;
+ uint64_t *drs = vrs->vrs_drs;
+ uint32_t attr;
+ struct vcpu_segment_info *sregs = vrs->vrs_sregs;
+ struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
+
+ if (regmask & VM_RWREGS_GPRS) {
+ gprs[VCPU_REGS_RAX] = vmcb->v_rax;
+ gprs[VCPU_REGS_RBX] = vcpu->vc_gueststate.vg_rbx;
+ gprs[VCPU_REGS_RCX] = vcpu->vc_gueststate.vg_rcx;
+ gprs[VCPU_REGS_RDX] = vcpu->vc_gueststate.vg_rdx;
+ gprs[VCPU_REGS_RSI] = vcpu->vc_gueststate.vg_rsi;
+ gprs[VCPU_REGS_RDI] = vcpu->vc_gueststate.vg_rdi;
+ gprs[VCPU_REGS_R8] = vcpu->vc_gueststate.vg_r8;
+ gprs[VCPU_REGS_R9] = vcpu->vc_gueststate.vg_r9;
+ gprs[VCPU_REGS_R10] = vcpu->vc_gueststate.vg_r10;
+ gprs[VCPU_REGS_R11] = vcpu->vc_gueststate.vg_r11;
+ gprs[VCPU_REGS_R12] = vcpu->vc_gueststate.vg_r12;
+ gprs[VCPU_REGS_R13] = vcpu->vc_gueststate.vg_r13;
+ gprs[VCPU_REGS_R14] = vcpu->vc_gueststate.vg_r14;
+ gprs[VCPU_REGS_R15] = vcpu->vc_gueststate.vg_r15;
+ gprs[VCPU_REGS_RBP] = vcpu->vc_gueststate.vg_rbp;
+ gprs[VCPU_REGS_RIP] = vmcb->v_rip;
+ gprs[VCPU_REGS_RSP] = vmcb->v_rsp;
+ gprs[VCPU_REGS_RFLAGS] = vmcb->v_rflags;
+ }
+
+ if (regmask & VM_RWREGS_SREGS) {
+ sregs[VCPU_REGS_CS].vsi_sel = vmcb->v_cs.vs_sel;
+ sregs[VCPU_REGS_CS].vsi_limit = vmcb->v_cs.vs_lim;
+ attr = vmcb->v_cs.vs_attr;
+ sregs[VCPU_REGS_CS].vsi_ar = (attr & 0xff) | ((attr << 4) &
+ 0xf000);
+ sregs[VCPU_REGS_CS].vsi_base = vmcb->v_cs.vs_base;
+
+ sregs[VCPU_REGS_DS].vsi_sel = vmcb->v_ds.vs_sel;
+ sregs[VCPU_REGS_DS].vsi_limit = vmcb->v_ds.vs_lim;
+ attr = vmcb->v_ds.vs_attr;
+ sregs[VCPU_REGS_DS].vsi_ar = (attr & 0xff) | ((attr << 4) &
+ 0xf000);
+ sregs[VCPU_REGS_DS].vsi_base = vmcb->v_ds.vs_base;
+
+ sregs[VCPU_REGS_ES].vsi_sel = vmcb->v_es.vs_sel;
+ sregs[VCPU_REGS_ES].vsi_limit = vmcb->v_es.vs_lim;
+ attr = vmcb->v_es.vs_attr;
+ sregs[VCPU_REGS_ES].vsi_ar = (attr & 0xff) | ((attr << 4) &
+ 0xf000);
+ sregs[VCPU_REGS_ES].vsi_base = vmcb->v_es.vs_base;
+
+ sregs[VCPU_REGS_FS].vsi_sel = vmcb->v_fs.vs_sel;
+ sregs[VCPU_REGS_FS].vsi_limit = vmcb->v_fs.vs_lim;
+ attr = vmcb->v_fs.vs_attr;
+ sregs[VCPU_REGS_FS].vsi_ar = (attr & 0xff) | ((attr << 4) &
+ 0xf000);
+ sregs[VCPU_REGS_FS].vsi_base = vmcb->v_fs.vs_base;
+
+ sregs[VCPU_REGS_GS].vsi_sel = vmcb->v_gs.vs_sel;
+ sregs[VCPU_REGS_GS].vsi_limit = vmcb->v_gs.vs_lim;
+ attr = vmcb->v_gs.vs_attr;
+ sregs[VCPU_REGS_GS].vsi_ar = (attr & 0xff) | ((attr << 4) &
+ 0xf000);
+ sregs[VCPU_REGS_GS].vsi_base = vmcb->v_gs.vs_base;
+
+ sregs[VCPU_REGS_SS].vsi_sel = vmcb->v_ss.vs_sel;
+ sregs[VCPU_REGS_SS].vsi_limit = vmcb->v_ss.vs_lim;
+ attr = vmcb->v_ss.vs_attr;
+ sregs[VCPU_REGS_SS].vsi_ar = (attr & 0xff) | ((attr << 4) &
+ 0xf000);
+ sregs[VCPU_REGS_SS].vsi_base = vmcb->v_ss.vs_base;
+
+ sregs[VCPU_REGS_LDTR].vsi_sel = vmcb->v_ldtr.vs_sel;
+ sregs[VCPU_REGS_LDTR].vsi_limit = vmcb->v_ldtr.vs_lim;
+ attr = vmcb->v_ldtr.vs_attr;
+ sregs[VCPU_REGS_LDTR].vsi_ar = (attr & 0xff) | ((attr << 4)
+ & 0xf000);
+ sregs[VCPU_REGS_LDTR].vsi_base = vmcb->v_ldtr.vs_base;
+
+ sregs[VCPU_REGS_TR].vsi_sel = vmcb->v_tr.vs_sel;
+ sregs[VCPU_REGS_TR].vsi_limit = vmcb->v_tr.vs_lim;
+ attr = vmcb->v_tr.vs_attr;
+ sregs[VCPU_REGS_TR].vsi_ar = (attr & 0xff) | ((attr << 4) &
+ 0xf000);
+ sregs[VCPU_REGS_TR].vsi_base = vmcb->v_tr.vs_base;
+
+ vrs->vrs_gdtr.vsi_limit = vmcb->v_gdtr.vs_lim;
+ vrs->vrs_gdtr.vsi_base = vmcb->v_gdtr.vs_base;
+ vrs->vrs_idtr.vsi_limit = vmcb->v_idtr.vs_lim;
+ vrs->vrs_idtr.vsi_base = vmcb->v_idtr.vs_base;
+ }
+
+ if (regmask & VM_RWREGS_CRS) {
+ crs[VCPU_REGS_CR0] = vmcb->v_cr0;
+ crs[VCPU_REGS_CR3] = vmcb->v_cr3;
+ crs[VCPU_REGS_CR4] = vmcb->v_cr4;
+ crs[VCPU_REGS_CR2] = vcpu->vc_gueststate.vg_cr2;
+ crs[VCPU_REGS_XCR0] = vcpu->vc_gueststate.vg_xcr0;
+ }
+
+ if (regmask & VM_RWREGS_MSRS) {
+ msrs[VCPU_REGS_EFER] = vmcb->v_efer;
+ msrs[VCPU_REGS_STAR] = vmcb->v_star;
+ msrs[VCPU_REGS_LSTAR] = vmcb->v_lstar;
+ msrs[VCPU_REGS_CSTAR] = vmcb->v_cstar;
+ msrs[VCPU_REGS_SFMASK] = vmcb->v_sfmask;
+ msrs[VCPU_REGS_KGSBASE] = vmcb->v_kgsbase;
+ }
+
+ if (regmask & VM_RWREGS_DRS) {
+ drs[VCPU_REGS_DR0] = vcpu->vc_gueststate.vg_dr0;
+ drs[VCPU_REGS_DR1] = vcpu->vc_gueststate.vg_dr1;
+ drs[VCPU_REGS_DR2] = vcpu->vc_gueststate.vg_dr2;
+ drs[VCPU_REGS_DR3] = vcpu->vc_gueststate.vg_dr3;
+ drs[VCPU_REGS_DR6] = vmcb->v_dr6;
+ drs[VCPU_REGS_DR7] = vmcb->v_dr7;
+ }
+
+ return (0);
+}
+
+/*
+ * vcpu_writeregs_vmx
+ *
+ * Writes VCPU registers
+ *
+ * Parameters:
+ * vcpu: the vcpu that has to get its registers written to
+ * regmask: the types of registers to write
+ * loadvmcs: bit to indicate whether the VMCS has to be loaded first
+ * vrs: the register values to write
+ *
+ * Return values:
+ * 0: if successful
+ * EINVAL an error writing registers occurred
+ */
+int
+vcpu_writeregs_vmx(struct vcpu *vcpu, uint64_t regmask, int loadvmcs,
+ struct vcpu_reg_state *vrs)
+{
+ int i, ret = 0;
+ uint16_t sel;
+ uint64_t limit, ar;
+ uint64_t *gprs = vrs->vrs_gprs;
+ uint64_t *crs = vrs->vrs_crs;
+ uint64_t *msrs = vrs->vrs_msrs;
+ uint64_t *drs = vrs->vrs_drs;
+ struct vcpu_segment_info *sregs = vrs->vrs_sregs;
+ struct vmx_msr_store *msr_store;
+
+ if (loadvmcs) {
+ if (vcpu_reload_vmcs_vmx(vcpu))
+ return (EINVAL);
+ }
+
+#ifdef VMM_DEBUG
+ /* VMCS should be loaded... */
+ paddr_t pa = 0ULL;
+ if (vmptrst(&pa))
+ panic("%s: vmptrst", __func__);
+ KASSERT(pa == vcpu->vc_control_pa);
+#endif /* VMM_DEBUG */
+
+ if (regmask & VM_RWREGS_GPRS) {
+ vcpu->vc_gueststate.vg_rax = gprs[VCPU_REGS_RAX];
+ vcpu->vc_gueststate.vg_rbx = gprs[VCPU_REGS_RBX];
+ vcpu->vc_gueststate.vg_rcx = gprs[VCPU_REGS_RCX];
+ vcpu->vc_gueststate.vg_rdx = gprs[VCPU_REGS_RDX];
+ vcpu->vc_gueststate.vg_rsi = gprs[VCPU_REGS_RSI];
+ vcpu->vc_gueststate.vg_rdi = gprs[VCPU_REGS_RDI];
+ vcpu->vc_gueststate.vg_r8 = gprs[VCPU_REGS_R8];
+ vcpu->vc_gueststate.vg_r9 = gprs[VCPU_REGS_R9];
+ vcpu->vc_gueststate.vg_r10 = gprs[VCPU_REGS_R10];
+ vcpu->vc_gueststate.vg_r11 = gprs[VCPU_REGS_R11];
+ vcpu->vc_gueststate.vg_r12 = gprs[VCPU_REGS_R12];
+ vcpu->vc_gueststate.vg_r13 = gprs[VCPU_REGS_R13];
+ vcpu->vc_gueststate.vg_r14 = gprs[VCPU_REGS_R14];
+ vcpu->vc_gueststate.vg_r15 = gprs[VCPU_REGS_R15];
+ vcpu->vc_gueststate.vg_rbp = gprs[VCPU_REGS_RBP];
+ vcpu->vc_gueststate.vg_rip = gprs[VCPU_REGS_RIP];
+ if (vmwrite(VMCS_GUEST_IA32_RIP, gprs[VCPU_REGS_RIP]))
+ goto errout;
+ if (vmwrite(VMCS_GUEST_IA32_RSP, gprs[VCPU_REGS_RSP]))
+ goto errout;
+ if (vmwrite(VMCS_GUEST_IA32_RFLAGS, gprs[VCPU_REGS_RFLAGS]))
+ goto errout;
+ }
+
+ if (regmask & VM_RWREGS_SREGS) {
+ for (i = 0; i < nitems(vmm_vmx_sreg_vmcs_fields); i++) {
+ sel = sregs[i].vsi_sel;
+ limit = sregs[i].vsi_limit;
+ ar = sregs[i].vsi_ar;
+
+ if (vmwrite(vmm_vmx_sreg_vmcs_fields[i].selid, sel))
+ goto errout;
+ if (vmwrite(vmm_vmx_sreg_vmcs_fields[i].limitid, limit))
+ goto errout;
+ if (vmwrite(vmm_vmx_sreg_vmcs_fields[i].arid, ar))
+ goto errout;
+ if (vmwrite(vmm_vmx_sreg_vmcs_fields[i].baseid,
+ sregs[i].vsi_base))
+ goto errout;
+ }
+
+ if (vmwrite(VMCS_GUEST_IA32_GDTR_LIMIT,
+ vrs->vrs_gdtr.vsi_limit))
+ goto errout;
+ if (vmwrite(VMCS_GUEST_IA32_GDTR_BASE,
+ vrs->vrs_gdtr.vsi_base))
+ goto errout;
+ if (vmwrite(VMCS_GUEST_IA32_IDTR_LIMIT,
+ vrs->vrs_idtr.vsi_limit))
+ goto errout;
+ if (vmwrite(VMCS_GUEST_IA32_IDTR_BASE,
+ vrs->vrs_idtr.vsi_base))
+ goto errout;
+ }
+
+ if (regmask & VM_RWREGS_CRS) {
+ vcpu->vc_gueststate.vg_xcr0 = crs[VCPU_REGS_XCR0];
+ if (vmwrite(VMCS_GUEST_IA32_CR0, crs[VCPU_REGS_CR0]))
+ goto errout;
+ if (vmwrite(VMCS_GUEST_IA32_CR3, crs[VCPU_REGS_CR3]))
+ goto errout;
+ if (vmwrite(VMCS_GUEST_IA32_CR4, crs[VCPU_REGS_CR4]))
+ goto errout;
+ if (vmwrite(VMCS_GUEST_PDPTE0, crs[VCPU_REGS_PDPTE0]))
+ goto errout;
+ if (vmwrite(VMCS_GUEST_PDPTE1, crs[VCPU_REGS_PDPTE1]))
+ goto errout;
+ if (vmwrite(VMCS_GUEST_PDPTE2, crs[VCPU_REGS_PDPTE2]))
+ goto errout;
+ if (vmwrite(VMCS_GUEST_PDPTE3, crs[VCPU_REGS_PDPTE3]))
+ goto errout;
+ }
+
+ msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
+
+ if (regmask & VM_RWREGS_MSRS) {
+ for (i = 0; i < VCPU_REGS_NMSRS; i++) {
+ msr_store[i].vms_data = msrs[i];
+ }
+ }
+
+ if (regmask & VM_RWREGS_DRS) {
+ vcpu->vc_gueststate.vg_dr0 = drs[VCPU_REGS_DR0];
+ vcpu->vc_gueststate.vg_dr1 = drs[VCPU_REGS_DR1];
+ vcpu->vc_gueststate.vg_dr2 = drs[VCPU_REGS_DR2];
+ vcpu->vc_gueststate.vg_dr3 = drs[VCPU_REGS_DR3];
+ vcpu->vc_gueststate.vg_dr6 = drs[VCPU_REGS_DR6];
+ if (vmwrite(VMCS_GUEST_IA32_DR7, drs[VCPU_REGS_DR7]))
+ goto errout;
+ }
+
+ goto out;
+
+errout:
+ ret = EINVAL;
+out:
+ if (loadvmcs) {
+ if (vmclear(&vcpu->vc_control_pa))
+ ret = EINVAL;
+ atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_CLEARED);
+ }
+ return (ret);
+}
+
+/*
+ * vcpu_writeregs_svm
+ *
+ * Writes 'vcpu's registers
+ *
+ * Parameters:
+ * vcpu: the vcpu that has to get its registers written to
+ * regmask: the types of registers to write
+ * vrs: the register values to write
+ *
+ * Return values:
+ * 0: if successful
+ * EINVAL an error writing registers occurred
+ */
+int
+vcpu_writeregs_svm(struct vcpu *vcpu, uint64_t regmask,
+ struct vcpu_reg_state *vrs)
+{
+ uint64_t *gprs = vrs->vrs_gprs;
+ uint64_t *crs = vrs->vrs_crs;
+ uint16_t attr;
+ uint64_t *msrs = vrs->vrs_msrs;
+ uint64_t *drs = vrs->vrs_drs;
+ struct vcpu_segment_info *sregs = vrs->vrs_sregs;
+ struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
+
+ if (regmask & VM_RWREGS_GPRS) {
+ vcpu->vc_gueststate.vg_rax = gprs[VCPU_REGS_RAX];
+ vcpu->vc_gueststate.vg_rbx = gprs[VCPU_REGS_RBX];
+ vcpu->vc_gueststate.vg_rcx = gprs[VCPU_REGS_RCX];
+ vcpu->vc_gueststate.vg_rdx = gprs[VCPU_REGS_RDX];
+ vcpu->vc_gueststate.vg_rsi = gprs[VCPU_REGS_RSI];
+ vcpu->vc_gueststate.vg_rdi = gprs[VCPU_REGS_RDI];
+ vcpu->vc_gueststate.vg_r8 = gprs[VCPU_REGS_R8];
+ vcpu->vc_gueststate.vg_r9 = gprs[VCPU_REGS_R9];
+ vcpu->vc_gueststate.vg_r10 = gprs[VCPU_REGS_R10];
+ vcpu->vc_gueststate.vg_r11 = gprs[VCPU_REGS_R11];
+ vcpu->vc_gueststate.vg_r12 = gprs[VCPU_REGS_R12];
+ vcpu->vc_gueststate.vg_r13 = gprs[VCPU_REGS_R13];
+ vcpu->vc_gueststate.vg_r14 = gprs[VCPU_REGS_R14];
+ vcpu->vc_gueststate.vg_r15 = gprs[VCPU_REGS_R15];
+ vcpu->vc_gueststate.vg_rbp = gprs[VCPU_REGS_RBP];
+ vcpu->vc_gueststate.vg_rip = gprs[VCPU_REGS_RIP];
+
+ vmcb->v_rax = gprs[VCPU_REGS_RAX];
+ vmcb->v_rip = gprs[VCPU_REGS_RIP];
+ vmcb->v_rsp = gprs[VCPU_REGS_RSP];
+ vmcb->v_rflags = gprs[VCPU_REGS_RFLAGS];
+ }
+
+ if (regmask & VM_RWREGS_SREGS) {
+ vmcb->v_cs.vs_sel = sregs[VCPU_REGS_CS].vsi_sel;
+ vmcb->v_cs.vs_lim = sregs[VCPU_REGS_CS].vsi_limit;
+ attr = sregs[VCPU_REGS_CS].vsi_ar;
+ vmcb->v_cs.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
+ vmcb->v_cs.vs_base = sregs[VCPU_REGS_CS].vsi_base;
+ vmcb->v_ds.vs_sel = sregs[VCPU_REGS_DS].vsi_sel;
+ vmcb->v_ds.vs_lim = sregs[VCPU_REGS_DS].vsi_limit;
+ attr = sregs[VCPU_REGS_DS].vsi_ar;
+ vmcb->v_ds.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
+ vmcb->v_ds.vs_base = sregs[VCPU_REGS_DS].vsi_base;
+ vmcb->v_es.vs_sel = sregs[VCPU_REGS_ES].vsi_sel;
+ vmcb->v_es.vs_lim = sregs[VCPU_REGS_ES].vsi_limit;
+ attr = sregs[VCPU_REGS_ES].vsi_ar;
+ vmcb->v_es.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
+ vmcb->v_es.vs_base = sregs[VCPU_REGS_ES].vsi_base;
+ vmcb->v_fs.vs_sel = sregs[VCPU_REGS_FS].vsi_sel;
+ vmcb->v_fs.vs_lim = sregs[VCPU_REGS_FS].vsi_limit;
+ attr = sregs[VCPU_REGS_FS].vsi_ar;
+ vmcb->v_fs.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
+ vmcb->v_fs.vs_base = sregs[VCPU_REGS_FS].vsi_base;
+ vmcb->v_gs.vs_sel = sregs[VCPU_REGS_GS].vsi_sel;
+ vmcb->v_gs.vs_lim = sregs[VCPU_REGS_GS].vsi_limit;
+ attr = sregs[VCPU_REGS_GS].vsi_ar;
+ vmcb->v_gs.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
+ vmcb->v_gs.vs_base = sregs[VCPU_REGS_GS].vsi_base;
+ vmcb->v_ss.vs_sel = sregs[VCPU_REGS_SS].vsi_sel;
+ vmcb->v_ss.vs_lim = sregs[VCPU_REGS_SS].vsi_limit;
+ attr = sregs[VCPU_REGS_SS].vsi_ar;
+ vmcb->v_ss.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
+ vmcb->v_ss.vs_base = sregs[VCPU_REGS_SS].vsi_base;
+ vmcb->v_ldtr.vs_sel = sregs[VCPU_REGS_LDTR].vsi_sel;
+ vmcb->v_ldtr.vs_lim = sregs[VCPU_REGS_LDTR].vsi_limit;
+ attr = sregs[VCPU_REGS_LDTR].vsi_ar;
+ vmcb->v_ldtr.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
+ vmcb->v_ldtr.vs_base = sregs[VCPU_REGS_LDTR].vsi_base;
+ vmcb->v_tr.vs_sel = sregs[VCPU_REGS_TR].vsi_sel;
+ vmcb->v_tr.vs_lim = sregs[VCPU_REGS_TR].vsi_limit;
+ attr = sregs[VCPU_REGS_TR].vsi_ar;
+ vmcb->v_tr.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
+ vmcb->v_tr.vs_base = sregs[VCPU_REGS_TR].vsi_base;
+ vmcb->v_gdtr.vs_lim = vrs->vrs_gdtr.vsi_limit;
+ vmcb->v_gdtr.vs_base = vrs->vrs_gdtr.vsi_base;
+ vmcb->v_idtr.vs_lim = vrs->vrs_idtr.vsi_limit;
+ vmcb->v_idtr.vs_base = vrs->vrs_idtr.vsi_base;
+ }
+
+ if (regmask & VM_RWREGS_CRS) {
+ vmcb->v_cr0 = crs[VCPU_REGS_CR0];
+ vmcb->v_cr3 = crs[VCPU_REGS_CR3];
+ vmcb->v_cr4 = crs[VCPU_REGS_CR4];
+ vcpu->vc_gueststate.vg_cr2 = crs[VCPU_REGS_CR2];
+ vcpu->vc_gueststate.vg_xcr0 = crs[VCPU_REGS_XCR0];
+ }
+
+ if (regmask & VM_RWREGS_MSRS) {
+ vmcb->v_efer |= msrs[VCPU_REGS_EFER];
+ vmcb->v_star = msrs[VCPU_REGS_STAR];
+ vmcb->v_lstar = msrs[VCPU_REGS_LSTAR];
+ vmcb->v_cstar = msrs[VCPU_REGS_CSTAR];
+ vmcb->v_sfmask = msrs[VCPU_REGS_SFMASK];
+ vmcb->v_kgsbase = msrs[VCPU_REGS_KGSBASE];
+ }
+
+ if (regmask & VM_RWREGS_DRS) {
+ vcpu->vc_gueststate.vg_dr0 = drs[VCPU_REGS_DR0];
+ vcpu->vc_gueststate.vg_dr1 = drs[VCPU_REGS_DR1];
+ vcpu->vc_gueststate.vg_dr2 = drs[VCPU_REGS_DR2];
+ vcpu->vc_gueststate.vg_dr3 = drs[VCPU_REGS_DR3];
+ vmcb->v_dr6 = drs[VCPU_REGS_DR6];
+ vmcb->v_dr7 = drs[VCPU_REGS_DR7];
+ }
+
+ return (0);
+}
+
+/*
+ * vcpu_reset_regs_svm
+ *
+ * Initializes 'vcpu's registers to supplied state
+ *
+ * Parameters:
+ * vcpu: the vcpu whose register state is to be initialized
+ * vrs: the register state to set
+ *
+ * Return values:
+ * 0: registers init'ed successfully
+ * EINVAL: an error occurred setting register state
+ */
+int
+vcpu_reset_regs_svm(struct vcpu *vcpu, struct vcpu_reg_state *vrs)
+{
+ struct vmcb *vmcb;
+ int ret;
+ uint16_t asid;
+
+ vmcb = (struct vmcb *)vcpu->vc_control_va;
+
+ /*
+ * Intercept controls
+ *
+ * External Interrupt exiting (SVM_INTERCEPT_INTR)
+ * External NMI exiting (SVM_INTERCEPT_NMI)
+ * CPUID instruction (SVM_INTERCEPT_CPUID)
+ * HLT instruction (SVM_INTERCEPT_HLT)
+ * I/O instructions (SVM_INTERCEPT_INOUT)
+ * MSR access (SVM_INTERCEPT_MSR)
+ * shutdown events (SVM_INTERCEPT_SHUTDOWN)
+ *
+ * VMRUN instruction (SVM_INTERCEPT_VMRUN)
+ * VMMCALL instruction (SVM_INTERCEPT_VMMCALL)
+ * VMLOAD instruction (SVM_INTERCEPT_VMLOAD)
+ * VMSAVE instruction (SVM_INTERCEPT_VMSAVE)
+ * STGI instruction (SVM_INTERCEPT_STGI)
+ * CLGI instruction (SVM_INTERCEPT_CLGI)
+ * SKINIT instruction (SVM_INTERCEPT_SKINIT)
+ * ICEBP instruction (SVM_INTERCEPT_ICEBP)
+ * MWAIT instruction (SVM_INTERCEPT_MWAIT_UNCOND)
+ * MWAIT instruction (SVM_INTERCEPT_MWAIT_COND)
+ * MONITOR instruction (SVM_INTERCEPT_MONITOR)
+ * RDTSCP instruction (SVM_INTERCEPT_RDTSCP)
+ * INVLPGA instruction (SVM_INTERCEPT_INVLPGA)
+ * XSETBV instruction (SVM_INTERCEPT_XSETBV) (if available)
+ */
+ vmcb->v_intercept1 = SVM_INTERCEPT_INTR | SVM_INTERCEPT_NMI |
+ SVM_INTERCEPT_CPUID | SVM_INTERCEPT_HLT | SVM_INTERCEPT_INOUT |
+ SVM_INTERCEPT_MSR | SVM_INTERCEPT_SHUTDOWN;
+
+ vmcb->v_intercept2 = SVM_INTERCEPT_VMRUN | SVM_INTERCEPT_VMMCALL |
+ SVM_INTERCEPT_VMLOAD | SVM_INTERCEPT_VMSAVE | SVM_INTERCEPT_STGI |
+ SVM_INTERCEPT_CLGI | SVM_INTERCEPT_SKINIT | SVM_INTERCEPT_ICEBP |
+ SVM_INTERCEPT_MWAIT_UNCOND | SVM_INTERCEPT_MONITOR |
+ SVM_INTERCEPT_MWAIT_COND | SVM_INTERCEPT_RDTSCP |
+ SVM_INTERCEPT_INVLPGA;
+
+ if (xsave_mask)
+ vmcb->v_intercept2 |= SVM_INTERCEPT_XSETBV;
+
+ /* Setup I/O bitmap */
+ memset((uint8_t *)vcpu->vc_svm_ioio_va, 0xFF, 3 * PAGE_SIZE);
+ vmcb->v_iopm_pa = (uint64_t)(vcpu->vc_svm_ioio_pa);
+
+ /* Setup MSR bitmap */
+ memset((uint8_t *)vcpu->vc_msr_bitmap_va, 0xFF, 2 * PAGE_SIZE);
+ vmcb->v_msrpm_pa = (uint64_t)(vcpu->vc_msr_bitmap_pa);
+ svm_setmsrbrw(vcpu, MSR_IA32_FEATURE_CONTROL);
+ svm_setmsrbrw(vcpu, MSR_SYSENTER_CS);
+ svm_setmsrbrw(vcpu, MSR_SYSENTER_ESP);
+ svm_setmsrbrw(vcpu, MSR_SYSENTER_EIP);
+ svm_setmsrbrw(vcpu, MSR_STAR);
+ svm_setmsrbrw(vcpu, MSR_LSTAR);
+ svm_setmsrbrw(vcpu, MSR_CSTAR);
+ svm_setmsrbrw(vcpu, MSR_SFMASK);
+ svm_setmsrbrw(vcpu, MSR_FSBASE);
+ svm_setmsrbrw(vcpu, MSR_GSBASE);
+ svm_setmsrbrw(vcpu, MSR_KERNELGSBASE);
+
+ /* EFER is R/O so we can ensure the guest always has SVME */
+ svm_setmsrbr(vcpu, MSR_EFER);
+
+ /* allow reading TSC */
+ svm_setmsrbr(vcpu, MSR_TSC);
+
+ /* allow reading HWCR and PSTATEDEF to determine TSC frequency */
+ svm_setmsrbr(vcpu, MSR_HWCR);
+ svm_setmsrbr(vcpu, MSR_PSTATEDEF(0));
+
+ /* Guest VCPU ASID */
+ if (vmm_alloc_vpid(&asid)) {
+ DPRINTF("%s: could not allocate asid\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ vmcb->v_asid = asid;
+ vcpu->vc_vpid = asid;
+
+ /* TLB Control - First time in, flush all*/
+ vmcb->v_tlb_control = SVM_TLB_CONTROL_FLUSH_ALL;
+
+ /* INTR masking */
+ vmcb->v_intr_masking = 1;
+
+ /* PAT */
+ vmcb->v_g_pat = PATENTRY(0, PAT_WB) | PATENTRY(1, PAT_WC) |
+ PATENTRY(2, PAT_UCMINUS) | PATENTRY(3, PAT_UC) |
+ PATENTRY(4, PAT_WB) | PATENTRY(5, PAT_WC) |
+ PATENTRY(6, PAT_UCMINUS) | PATENTRY(7, PAT_UC);
+
+ /* NPT */
+ if (vmm_softc->mode == VMM_MODE_RVI) {
+ vmcb->v_np_enable = 1;
+ vmcb->v_n_cr3 = vcpu->vc_parent->vm_map->pmap->pm_pdirpa;
+ }
+
+ /* Enable SVME in EFER (must always be set) */
+ vmcb->v_efer |= EFER_SVME;
+
+ ret = vcpu_writeregs_svm(vcpu, VM_RWREGS_ALL, vrs);
+
+ /* xcr0 power on default sets bit 0 (x87 state) */
+ vcpu->vc_gueststate.vg_xcr0 = XCR0_X87 & xsave_mask;
+
+ vcpu->vc_parent->vm_map->pmap->eptp = 0;
+
+exit:
+ return ret;
+}
+
+/*
+ * svm_setmsrbr
+ *
+ * Allow read access to the specified msr on the supplied vcpu.
+ *
+ * Parameters:
+ * vcpu: the VCPU to allow access
+ * msr: the MSR number to allow access to
+ */
+void
+svm_setmsrbr(struct vcpu *vcpu, uint32_t msr)
+{
+ uint8_t *msrs;
+ uint16_t idx;
+
+ msrs = (uint8_t *)vcpu->vc_msr_bitmap_va;
+
+ /*
+ * MSR Read bitmap layout:
+ * Pentium MSRs (0x0 - 0x1fff) @ 0x0
+ * Gen6 and Syscall MSRs (0xc0000000 - 0xc0001fff) @ 0x800
+ * Gen7 and Gen8 MSRs (0xc0010000 - 0xc0011fff) @ 0x1000
+ *
+ * Read enable bit is low order bit of 2-bit pair
+ * per MSR (eg, MSR 0x0 write bit is at bit 0 @ 0x0)
+ */
+ if (msr <= 0x1fff) {
+ idx = SVM_MSRIDX(msr);
+ msrs[idx] &= ~(SVM_MSRBIT_R(msr));
+ } else if (msr >= 0xc0000000 && msr <= 0xc0001fff) {
+ idx = SVM_MSRIDX(msr - 0xc0000000) + 0x800;
+ msrs[idx] &= ~(SVM_MSRBIT_R(msr - 0xc0000000));
+ } else if (msr >= 0xc0010000 && msr <= 0xc0011fff) {
+ idx = SVM_MSRIDX(msr - 0xc0010000) + 0x1000;
+ msrs[idx] &= ~(SVM_MSRBIT_R(msr - 0xc0010000));
+ } else {
+ printf("%s: invalid msr 0x%x\n", __func__, msr);
+ return;
+ }
+}
+
+/*
+ * svm_setmsrbw
+ *
+ * Allow write access to the specified msr on the supplied vcpu
+ *
+ * Parameters:
+ * vcpu: the VCPU to allow access
+ * msr: the MSR number to allow access to
+ */
+void
+svm_setmsrbw(struct vcpu *vcpu, uint32_t msr)
+{
+ uint8_t *msrs;
+ uint16_t idx;
+
+ msrs = (uint8_t *)vcpu->vc_msr_bitmap_va;
+
+ /*
+ * MSR Write bitmap layout:
+ * Pentium MSRs (0x0 - 0x1fff) @ 0x0
+ * Gen6 and Syscall MSRs (0xc0000000 - 0xc0001fff) @ 0x800
+ * Gen7 and Gen8 MSRs (0xc0010000 - 0xc0011fff) @ 0x1000
+ *
+ * Write enable bit is high order bit of 2-bit pair
+ * per MSR (eg, MSR 0x0 write bit is at bit 1 @ 0x0)
+ */
+ if (msr <= 0x1fff) {
+ idx = SVM_MSRIDX(msr);
+ msrs[idx] &= ~(SVM_MSRBIT_W(msr));
+ } else if (msr >= 0xc0000000 && msr <= 0xc0001fff) {
+ idx = SVM_MSRIDX(msr - 0xc0000000) + 0x800;
+ msrs[idx] &= ~(SVM_MSRBIT_W(msr - 0xc0000000));
+ } else if (msr >= 0xc0010000 && msr <= 0xc0011fff) {
+ idx = SVM_MSRIDX(msr - 0xc0010000) + 0x1000;
+ msrs[idx] &= ~(SVM_MSRBIT_W(msr - 0xc0010000));
+ } else {
+ printf("%s: invalid msr 0x%x\n", __func__, msr);
+ return;
+ }
+}
+
+/*
+ * svm_setmsrbrw
+ *
+ * Allow read/write access to the specified msr on the supplied vcpu
+ *
+ * Parameters:
+ * vcpu: the VCPU to allow access
+ * msr: the MSR number to allow access to
+ */
+void
+svm_setmsrbrw(struct vcpu *vcpu, uint32_t msr)
+{
+ svm_setmsrbr(vcpu, msr);
+ svm_setmsrbw(vcpu, msr);
+}
+
+/*
+ * vmx_setmsrbr
+ *
+ * Allow read access to the specified msr on the supplied vcpu.
+ *
+ * Parameters:
+ * vcpu: the VCPU to allow access
+ * msr: the MSR number to allow access to
+ */
+void
+vmx_setmsrbr(struct vcpu *vcpu, uint32_t msr)
+{
+ uint8_t *msrs;
+ uint16_t idx;
+
+ msrs = (uint8_t *)vcpu->vc_msr_bitmap_va;
+
+ /*
+ * MSR Read bitmap layout:
+ * "Low" MSRs (0x0 - 0x1fff) @ 0x0
+ * "High" MSRs (0xc0000000 - 0xc0001fff) @ 0x400
+ */
+ if (msr <= 0x1fff) {
+ idx = VMX_MSRIDX(msr);
+ msrs[idx] &= ~(VMX_MSRBIT(msr));
+ } else if (msr >= 0xc0000000 && msr <= 0xc0001fff) {
+ idx = VMX_MSRIDX(msr - 0xc0000000) + 0x400;
+ msrs[idx] &= ~(VMX_MSRBIT(msr - 0xc0000000));
+ } else
+ printf("%s: invalid msr 0x%x\n", __func__, msr);
+}
+
+/*
+ * vmx_setmsrbw
+ *
+ * Allow write access to the specified msr on the supplied vcpu
+ *
+ * Parameters:
+ * vcpu: the VCPU to allow access
+ * msr: the MSR number to allow access to
+ */
+void
+vmx_setmsrbw(struct vcpu *vcpu, uint32_t msr)
+{
+ uint8_t *msrs;
+ uint16_t idx;
+
+ msrs = (uint8_t *)vcpu->vc_msr_bitmap_va;
+
+ /*
+ * MSR Write bitmap layout:
+ * "Low" MSRs (0x0 - 0x1fff) @ 0x800
+ * "High" MSRs (0xc0000000 - 0xc0001fff) @ 0xc00
+ */
+ if (msr <= 0x1fff) {
+ idx = VMX_MSRIDX(msr) + 0x800;
+ msrs[idx] &= ~(VMX_MSRBIT(msr));
+ } else if (msr >= 0xc0000000 && msr <= 0xc0001fff) {
+ idx = VMX_MSRIDX(msr - 0xc0000000) + 0xc00;
+ msrs[idx] &= ~(VMX_MSRBIT(msr - 0xc0000000));
+ } else
+ printf("%s: invalid msr 0x%x\n", __func__, msr);
+}
+
+/*
+ * vmx_setmsrbrw
+ *
+ * Allow read/write access to the specified msr on the supplied vcpu
+ *
+ * Parameters:
+ * vcpu: the VCPU to allow access
+ * msr: the MSR number to allow access to
+ */
+void
+vmx_setmsrbrw(struct vcpu *vcpu, uint32_t msr)
+{
+ vmx_setmsrbr(vcpu, msr);
+ vmx_setmsrbw(vcpu, msr);
+}
+
+/*
+ * svm_set_clean
+ *
+ * Sets (mark as unmodified) the VMCB clean bit set in 'value'.
+ * For example, to set the clean bit for the VMCB intercepts (bit position 0),
+ * the caller provides 'SVM_CLEANBITS_I' (0x1) for the 'value' argument.
+ * Multiple cleanbits can be provided in 'value' at the same time (eg,
+ * "SVM_CLEANBITS_I | SVM_CLEANBITS_TPR").
+ *
+ * Note that this function does not clear any bits; to clear bits in the
+ * vmcb cleanbits bitfield, use 'svm_set_dirty'.
+ *
+ * Parameters:
+ * vmcs: the VCPU whose VMCB clean value should be set
+ * value: the value(s) to enable in the cleanbits mask
+ */
+void
+svm_set_clean(struct vcpu *vcpu, uint32_t value)
+{
+ struct vmcb *vmcb;
+
+ /* If no cleanbits support, do nothing */
+ if (!curcpu()->ci_vmm_cap.vcc_svm.svm_vmcb_clean)
+ return;
+
+ vmcb = (struct vmcb *)vcpu->vc_control_va;
+
+ vmcb->v_vmcb_clean_bits |= value;
+}
+
+/*
+ * svm_set_dirty
+ *
+ * Clears (mark as modified) the VMCB clean bit set in 'value'.
+ * For example, to clear the bit for the VMCB intercepts (bit position 0)
+ * the caller provides 'SVM_CLEANBITS_I' (0x1) for the 'value' argument.
+ * Multiple dirty bits can be provided in 'value' at the same time (eg,
+ * "SVM_CLEANBITS_I | SVM_CLEANBITS_TPR").
+ *
+ * Parameters:
+ * vmcs: the VCPU whose VMCB dirty value should be set
+ * value: the value(s) to dirty in the cleanbits mask
+ */
+void
+svm_set_dirty(struct vcpu *vcpu, uint32_t value)
+{
+ struct vmcb *vmcb;
+
+ /* If no cleanbits support, do nothing */
+ if (!curcpu()->ci_vmm_cap.vcc_svm.svm_vmcb_clean)
+ return;
+
+ vmcb = (struct vmcb *)vcpu->vc_control_va;
+
+ vmcb->v_vmcb_clean_bits &= ~value;
+}
+
+/*
+ * vcpu_reset_regs_vmx
+ *
+ * Initializes 'vcpu's registers to supplied state
+ *
+ * Parameters:
+ * vcpu: the vcpu whose register state is to be initialized
+ * vrs: the register state to set
+ *
+ * Return values:
+ * 0: registers init'ed successfully
+ * EINVAL: an error occurred setting register state
+ */
+int
+vcpu_reset_regs_vmx(struct vcpu *vcpu, struct vcpu_reg_state *vrs)
+{
+ int ret = 0, ug = 0;
+ uint32_t cr0, cr4;
+ uint32_t pinbased, procbased, procbased2, exit, entry;
+ uint32_t want1, want0;
+ uint64_t ctrlval, cr3;
+ uint16_t ctrl, vpid;
+ struct vmx_msr_store *msr_store;
+
+ rw_assert_wrlock(&vcpu->vc_lock);
+
+ cr0 = vrs->vrs_crs[VCPU_REGS_CR0];
+
+ if (vcpu_reload_vmcs_vmx(vcpu)) {
+ DPRINTF("%s: error reloading VMCS\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+#ifdef VMM_DEBUG
+ /* VMCS should be loaded... */
+ paddr_t pa = 0ULL;
+ if (vmptrst(&pa))
+ panic("%s: vmptrst", __func__);
+ KASSERT(pa == vcpu->vc_control_pa);
+#endif /* VMM_DEBUG */
+
+ /* Compute Basic Entry / Exit Controls */
+ vcpu->vc_vmx_basic = rdmsr(IA32_VMX_BASIC);
+ vcpu->vc_vmx_entry_ctls = rdmsr(IA32_VMX_ENTRY_CTLS);
+ vcpu->vc_vmx_exit_ctls = rdmsr(IA32_VMX_EXIT_CTLS);
+ vcpu->vc_vmx_pinbased_ctls = rdmsr(IA32_VMX_PINBASED_CTLS);
+ vcpu->vc_vmx_procbased_ctls = rdmsr(IA32_VMX_PROCBASED_CTLS);
+
+ /* Compute True Entry / Exit Controls (if applicable) */
+ if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
+ vcpu->vc_vmx_true_entry_ctls = rdmsr(IA32_VMX_TRUE_ENTRY_CTLS);
+ vcpu->vc_vmx_true_exit_ctls = rdmsr(IA32_VMX_TRUE_EXIT_CTLS);
+ vcpu->vc_vmx_true_pinbased_ctls =
+ rdmsr(IA32_VMX_TRUE_PINBASED_CTLS);
+ vcpu->vc_vmx_true_procbased_ctls =
+ rdmsr(IA32_VMX_TRUE_PROCBASED_CTLS);
+ }
+
+ /* Compute Secondary Procbased Controls (if applicable) */
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
+ IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1))
+ vcpu->vc_vmx_procbased2_ctls = rdmsr(IA32_VMX_PROCBASED2_CTLS);
+
+ /*
+ * Pinbased ctrls
+ *
+ * We must be able to set the following:
+ * IA32_VMX_EXTERNAL_INT_EXITING - exit on host interrupt
+ * IA32_VMX_NMI_EXITING - exit on host NMI
+ */
+ want1 = IA32_VMX_EXTERNAL_INT_EXITING |
+ IA32_VMX_NMI_EXITING;
+ want0 = 0;
+
+ if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
+ ctrl = IA32_VMX_TRUE_PINBASED_CTLS;
+ ctrlval = vcpu->vc_vmx_true_pinbased_ctls;
+ } else {
+ ctrl = IA32_VMX_PINBASED_CTLS;
+ ctrlval = vcpu->vc_vmx_pinbased_ctls;
+ }
+
+ if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &pinbased)) {
+ DPRINTF("%s: error computing pinbased controls\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_PINBASED_CTLS, pinbased)) {
+ DPRINTF("%s: error setting pinbased controls\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ /*
+ * Procbased ctrls
+ *
+ * We must be able to set the following:
+ * IA32_VMX_HLT_EXITING - exit on HLT instruction
+ * IA32_VMX_MWAIT_EXITING - exit on MWAIT instruction
+ * IA32_VMX_UNCONDITIONAL_IO_EXITING - exit on I/O instructions
+ * IA32_VMX_USE_MSR_BITMAPS - exit on various MSR accesses
+ * IA32_VMX_CR8_LOAD_EXITING - guest TPR access
+ * IA32_VMX_CR8_STORE_EXITING - guest TPR access
+ * IA32_VMX_USE_TPR_SHADOW - guest TPR access (shadow)
+ * IA32_VMX_MONITOR_EXITING - exit on MONITOR instruction
+ *
+ * If we have EPT, we must be able to clear the following
+ * IA32_VMX_CR3_LOAD_EXITING - don't care about guest CR3 accesses
+ * IA32_VMX_CR3_STORE_EXITING - don't care about guest CR3 accesses
+ */
+ want1 = IA32_VMX_HLT_EXITING |
+ IA32_VMX_MWAIT_EXITING |
+ IA32_VMX_UNCONDITIONAL_IO_EXITING |
+ IA32_VMX_USE_MSR_BITMAPS |
+ IA32_VMX_CR8_LOAD_EXITING |
+ IA32_VMX_CR8_STORE_EXITING |
+ IA32_VMX_MONITOR_EXITING |
+ IA32_VMX_USE_TPR_SHADOW;
+ want0 = 0;
+
+ if (vmm_softc->mode == VMM_MODE_EPT) {
+ want1 |= IA32_VMX_ACTIVATE_SECONDARY_CONTROLS;
+ want0 |= IA32_VMX_CR3_LOAD_EXITING |
+ IA32_VMX_CR3_STORE_EXITING;
+ }
+
+ if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
+ ctrl = IA32_VMX_TRUE_PROCBASED_CTLS;
+ ctrlval = vcpu->vc_vmx_true_procbased_ctls;
+ } else {
+ ctrl = IA32_VMX_PROCBASED_CTLS;
+ ctrlval = vcpu->vc_vmx_procbased_ctls;
+ }
+
+ if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &procbased)) {
+ DPRINTF("%s: error computing procbased controls\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_PROCBASED_CTLS, procbased)) {
+ DPRINTF("%s: error setting procbased controls\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ /*
+ * Secondary Procbased ctrls
+ *
+ * We want to be able to set the following, if available:
+ * IA32_VMX_ENABLE_VPID - use VPIDs where available
+ *
+ * If we have EPT, we must be able to set the following:
+ * IA32_VMX_ENABLE_EPT - enable EPT
+ *
+ * If we have unrestricted guest capability, we must be able to set
+ * the following:
+ * IA32_VMX_UNRESTRICTED_GUEST - enable unrestricted guest (if caller
+ * specified CR0_PG | CR0_PE in %cr0 in the 'vrs' parameter)
+ */
+ want1 = 0;
+
+ /* XXX checking for 2ndary controls can be combined here */
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
+ IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1)) {
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_VPID, 1)) {
+ want1 |= IA32_VMX_ENABLE_VPID;
+ vcpu->vc_vmx_vpid_enabled = 1;
+ }
+ }
+
+ if (vmm_softc->mode == VMM_MODE_EPT)
+ want1 |= IA32_VMX_ENABLE_EPT;
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
+ IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1)) {
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_UNRESTRICTED_GUEST, 1)) {
+ if ((cr0 & (CR0_PE | CR0_PG)) == 0) {
+ want1 |= IA32_VMX_UNRESTRICTED_GUEST;
+ ug = 1;
+ }
+ }
+ }
+
+ want0 = ~want1;
+ ctrlval = vcpu->vc_vmx_procbased2_ctls;
+ ctrl = IA32_VMX_PROCBASED2_CTLS;
+
+ if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &procbased2)) {
+ DPRINTF("%s: error computing secondary procbased controls\n",
+ __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_PROCBASED2_CTLS, procbased2)) {
+ DPRINTF("%s: error setting secondary procbased controls\n",
+ __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ /*
+ * Exit ctrls
+ *
+ * We must be able to set the following:
+ * IA32_VMX_SAVE_DEBUG_CONTROLS
+ * IA32_VMX_HOST_SPACE_ADDRESS_SIZE - exit to long mode
+ * IA32_VMX_ACKNOWLEDGE_INTERRUPT_ON_EXIT - ack interrupt on exit
+ */
+ want1 = IA32_VMX_HOST_SPACE_ADDRESS_SIZE |
+ IA32_VMX_ACKNOWLEDGE_INTERRUPT_ON_EXIT |
+ IA32_VMX_SAVE_DEBUG_CONTROLS;
+ want0 = 0;
+
+ if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
+ ctrl = IA32_VMX_TRUE_EXIT_CTLS;
+ ctrlval = vcpu->vc_vmx_true_exit_ctls;
+ } else {
+ ctrl = IA32_VMX_EXIT_CTLS;
+ ctrlval = vcpu->vc_vmx_exit_ctls;
+ }
+
+ if (rcr4() & CR4_CET)
+ want1 |= IA32_VMX_LOAD_HOST_CET_STATE;
+ else
+ want0 |= IA32_VMX_LOAD_HOST_CET_STATE;
+
+ if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &exit)) {
+ DPRINTF("%s: error computing exit controls\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_EXIT_CTLS, exit)) {
+ DPRINTF("%s: error setting exit controls\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ /*
+ * Entry ctrls
+ *
+ * We must be able to set the following:
+ * IA32_VMX_IA32E_MODE_GUEST (if no unrestricted guest)
+ * IA32_VMX_LOAD_DEBUG_CONTROLS
+ * We must be able to clear the following:
+ * IA32_VMX_ENTRY_TO_SMM - enter to SMM
+ * IA32_VMX_DEACTIVATE_DUAL_MONITOR_TREATMENT
+ * IA32_VMX_LOAD_IA32_PERF_GLOBAL_CTRL_ON_ENTRY
+ */
+ want1 = IA32_VMX_LOAD_DEBUG_CONTROLS;
+ if (vrs->vrs_msrs[VCPU_REGS_EFER] & EFER_LMA)
+ want1 |= IA32_VMX_IA32E_MODE_GUEST;
+
+ want0 = IA32_VMX_ENTRY_TO_SMM |
+ IA32_VMX_DEACTIVATE_DUAL_MONITOR_TREATMENT |
+ IA32_VMX_LOAD_IA32_PERF_GLOBAL_CTRL_ON_ENTRY;
+
+ if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
+ ctrl = IA32_VMX_TRUE_ENTRY_CTLS;
+ ctrlval = vcpu->vc_vmx_true_entry_ctls;
+ } else {
+ ctrl = IA32_VMX_ENTRY_CTLS;
+ ctrlval = vcpu->vc_vmx_entry_ctls;
+ }
+
+ if (rcr4() & CR4_CET)
+ want1 |= IA32_VMX_LOAD_GUEST_CET_STATE;
+ else
+ want0 |= IA32_VMX_LOAD_GUEST_CET_STATE;
+
+ if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &entry)) {
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_ENTRY_CTLS, entry)) {
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
+ IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1)) {
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_VPID, 1)) {
+
+ /* We may sleep during allocation, so reload VMCS. */
+ vcpu->vc_last_pcpu = curcpu();
+ ret = vmm_alloc_vpid(&vpid);
+ if (vcpu_reload_vmcs_vmx(vcpu)) {
+ printf("%s: failed to reload vmcs\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+ if (ret) {
+ DPRINTF("%s: could not allocate VPID\n",
+ __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_GUEST_VPID, vpid)) {
+ DPRINTF("%s: error setting guest VPID\n",
+ __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ vcpu->vc_vpid = vpid;
+ }
+ }
+
+ /*
+ * Determine which bits in CR0 have to be set to a fixed
+ * value as per Intel SDM A.7.
+ * CR0 bits in the vrs parameter must match these.
+ */
+ want1 = (curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed0) &
+ (curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed1);
+ want0 = ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed0) &
+ ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed1);
+
+ /*
+ * CR0_FIXED0 and CR0_FIXED1 may report the CR0_PG and CR0_PE bits as
+ * fixed to 1 even if the CPU supports the unrestricted guest
+ * feature. Update want1 and want0 accordingly to allow
+ * any value for CR0_PG and CR0_PE in vrs->vrs_crs[VCPU_REGS_CR0] if
+ * the CPU has the unrestricted guest capability.
+ */
+ if (ug) {
+ want1 &= ~(CR0_PG | CR0_PE);
+ want0 &= ~(CR0_PG | CR0_PE);
+ }
+
+ /*
+ * VMX may require some bits to be set that userland should not have
+ * to care about. Set those here.
+ */
+ if (want1 & CR0_NE)
+ cr0 |= CR0_NE;
+
+ if ((cr0 & want1) != want1) {
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if ((~cr0 & want0) != want0) {
+ ret = EINVAL;
+ goto exit;
+ }
+
+ vcpu->vc_vmx_cr0_fixed1 = want1;
+ vcpu->vc_vmx_cr0_fixed0 = want0;
+ /*
+ * Determine which bits in CR4 have to be set to a fixed
+ * value as per Intel SDM A.8.
+ * CR4 bits in the vrs parameter must match these, except
+ * CR4_VMXE - we add that here since it must always be set.
+ */
+ want1 = (curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0) &
+ (curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1);
+ want0 = ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0) &
+ ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1);
+
+ cr4 = vrs->vrs_crs[VCPU_REGS_CR4] | CR4_VMXE;
+
+ if ((cr4 & want1) != want1) {
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if ((~cr4 & want0) != want0) {
+ ret = EINVAL;
+ goto exit;
+ }
+
+ cr3 = vrs->vrs_crs[VCPU_REGS_CR3];
+
+ /* Restore PDPTEs if 32-bit PAE paging is being used */
+ if (cr3 && (cr4 & CR4_PAE) &&
+ !(vrs->vrs_msrs[VCPU_REGS_EFER] & EFER_LMA)) {
+ if (vmwrite(VMCS_GUEST_PDPTE0,
+ vrs->vrs_crs[VCPU_REGS_PDPTE0])) {
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_GUEST_PDPTE1,
+ vrs->vrs_crs[VCPU_REGS_PDPTE1])) {
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_GUEST_PDPTE2,
+ vrs->vrs_crs[VCPU_REGS_PDPTE2])) {
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_GUEST_PDPTE3,
+ vrs->vrs_crs[VCPU_REGS_PDPTE3])) {
+ ret = EINVAL;
+ goto exit;
+ }
+ }
+
+ vrs->vrs_crs[VCPU_REGS_CR0] = cr0;
+ vrs->vrs_crs[VCPU_REGS_CR4] = cr4;
+
+ /*
+ * Select host MSRs to be loaded on exit
+ */
+ msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_load_va;
+ msr_store[0].vms_index = MSR_EFER;
+ msr_store[0].vms_data = rdmsr(MSR_EFER);
+ msr_store[1].vms_index = MSR_STAR;
+ msr_store[1].vms_data = rdmsr(MSR_STAR);
+ msr_store[2].vms_index = MSR_LSTAR;
+ msr_store[2].vms_data = rdmsr(MSR_LSTAR);
+ msr_store[3].vms_index = MSR_CSTAR;
+ msr_store[3].vms_data = rdmsr(MSR_CSTAR);
+ msr_store[4].vms_index = MSR_SFMASK;
+ msr_store[4].vms_data = rdmsr(MSR_SFMASK);
+ msr_store[5].vms_index = MSR_KERNELGSBASE;
+ msr_store[5].vms_data = rdmsr(MSR_KERNELGSBASE);
+ msr_store[6].vms_index = MSR_MISC_ENABLE;
+ msr_store[6].vms_data = rdmsr(MSR_MISC_ENABLE);
+
+ /*
+ * Select guest MSRs to be loaded on entry / saved on exit
+ */
+ msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
+
+ msr_store[VCPU_REGS_EFER].vms_index = MSR_EFER;
+ msr_store[VCPU_REGS_STAR].vms_index = MSR_STAR;
+ msr_store[VCPU_REGS_LSTAR].vms_index = MSR_LSTAR;
+ msr_store[VCPU_REGS_CSTAR].vms_index = MSR_CSTAR;
+ msr_store[VCPU_REGS_SFMASK].vms_index = MSR_SFMASK;
+ msr_store[VCPU_REGS_KGSBASE].vms_index = MSR_KERNELGSBASE;
+ msr_store[VCPU_REGS_MISC_ENABLE].vms_index = MSR_MISC_ENABLE;
+
+ /*
+ * Initialize MSR_MISC_ENABLE as it can't be read and populated from vmd
+ * and some of the content is based on the host.
+ */
+ msr_store[VCPU_REGS_MISC_ENABLE].vms_data = rdmsr(MSR_MISC_ENABLE);
+ msr_store[VCPU_REGS_MISC_ENABLE].vms_data &=
+ ~(MISC_ENABLE_TCC | MISC_ENABLE_PERF_MON_AVAILABLE |
+ MISC_ENABLE_EIST_ENABLED | MISC_ENABLE_ENABLE_MONITOR_FSM |
+ MISC_ENABLE_xTPR_MESSAGE_DISABLE);
+ msr_store[VCPU_REGS_MISC_ENABLE].vms_data |=
+ MISC_ENABLE_BTS_UNAVAILABLE | MISC_ENABLE_PEBS_UNAVAILABLE;
+
+ /*
+ * Currently we have the same count of entry/exit MSRs loads/stores
+ * but this is not an architectural requirement.
+ */
+ if (vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_NUM_MSR_STORE)) {
+ DPRINTF("%s: error setting guest MSR exit store count\n",
+ __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_EXIT_MSR_LOAD_COUNT, VMX_NUM_MSR_STORE)) {
+ DPRINTF("%s: error setting guest MSR exit load count\n",
+ __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, VMX_NUM_MSR_STORE)) {
+ DPRINTF("%s: error setting guest MSR entry load count\n",
+ __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_EXIT_STORE_MSR_ADDRESS,
+ vcpu->vc_vmx_msr_exit_save_pa)) {
+ DPRINTF("%s: error setting guest MSR exit store address\n",
+ __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_EXIT_LOAD_MSR_ADDRESS,
+ vcpu->vc_vmx_msr_exit_load_pa)) {
+ DPRINTF("%s: error setting guest MSR exit load address\n",
+ __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_ENTRY_LOAD_MSR_ADDRESS,
+ vcpu->vc_vmx_msr_exit_save_pa)) {
+ DPRINTF("%s: error setting guest MSR entry load address\n",
+ __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_MSR_BITMAP_ADDRESS,
+ vcpu->vc_msr_bitmap_pa)) {
+ DPRINTF("%s: error setting guest MSR bitmap address\n",
+ __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_CR4_MASK, CR4_VMXE)) {
+ DPRINTF("%s: error setting guest CR4 mask\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_CR0_MASK, CR0_NE)) {
+ DPRINTF("%s: error setting guest CR0 mask\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ /*
+ * Set up the VMCS for the register state we want during VCPU start.
+ * This matches what the CPU state would be after a bootloader
+ * transition to 'start'.
+ */
+ ret = vcpu_writeregs_vmx(vcpu, VM_RWREGS_ALL, 0, vrs);
+
+ /*
+ * Set up the MSR bitmap
+ */
+ memset((uint8_t *)vcpu->vc_msr_bitmap_va, 0xFF, PAGE_SIZE);
+ vmx_setmsrbrw(vcpu, MSR_IA32_FEATURE_CONTROL);
+ vmx_setmsrbrw(vcpu, MSR_SYSENTER_CS);
+ vmx_setmsrbrw(vcpu, MSR_SYSENTER_ESP);
+ vmx_setmsrbrw(vcpu, MSR_SYSENTER_EIP);
+ vmx_setmsrbrw(vcpu, MSR_EFER);
+ vmx_setmsrbrw(vcpu, MSR_STAR);
+ vmx_setmsrbrw(vcpu, MSR_LSTAR);
+ vmx_setmsrbrw(vcpu, MSR_CSTAR);
+ vmx_setmsrbrw(vcpu, MSR_SFMASK);
+ vmx_setmsrbrw(vcpu, MSR_FSBASE);
+ vmx_setmsrbrw(vcpu, MSR_GSBASE);
+ vmx_setmsrbrw(vcpu, MSR_KERNELGSBASE);
+
+ vmx_setmsrbr(vcpu, MSR_MISC_ENABLE);
+ vmx_setmsrbr(vcpu, MSR_TSC);
+
+ /* XXX CR0 shadow */
+ /* XXX CR4 shadow */
+
+ /* xcr0 power on default sets bit 0 (x87 state) */
+ vcpu->vc_gueststate.vg_xcr0 = XCR0_X87 & xsave_mask;
+
+ /* XXX PAT shadow */
+ vcpu->vc_shadow_pat = rdmsr(MSR_CR_PAT);
+
+ /* Flush the VMCS */
+ if (vmclear(&vcpu->vc_control_pa)) {
+ DPRINTF("%s: vmclear failed\n", __func__);
+ ret = EINVAL;
+ }
+ atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_CLEARED);
+
+exit:
+ return (ret);
+}
+
+/*
+ * vcpu_init_vmx
+ *
+ * Intel VMX specific VCPU initialization routine.
+ *
+ * This function allocates various per-VCPU memory regions, sets up initial
+ * VCPU VMCS controls, and sets initial register values.
+ *
+ * Parameters:
+ * vcpu: the VCPU structure being initialized
+ *
+ * Return values:
+ * 0: the VCPU was initialized successfully
+ * ENOMEM: insufficient resources
+ * EINVAL: an error occurred during VCPU initialization
+ */
+int
+vcpu_init_vmx(struct vcpu *vcpu)
+{
+ struct vmcs *vmcs;
+ uint64_t msr, eptp;
+ uint32_t cr0, cr4;
+ int ret = 0;
+
+ /* Allocate VMCS VA */
+ vcpu->vc_control_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page, &kp_zero,
+ &kd_waitok);
+ vcpu->vc_vmx_vmcs_state = VMCS_CLEARED;
+
+ if (!vcpu->vc_control_va)
+ return (ENOMEM);
+
+ /* Compute VMCS PA */
+ if (!pmap_extract(pmap_kernel(), vcpu->vc_control_va,
+ (paddr_t *)&vcpu->vc_control_pa)) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ /* Allocate MSR bitmap VA */
+ vcpu->vc_msr_bitmap_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page, &kp_zero,
+ &kd_waitok);
+
+ if (!vcpu->vc_msr_bitmap_va) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ /* Compute MSR bitmap PA */
+ if (!pmap_extract(pmap_kernel(), vcpu->vc_msr_bitmap_va,
+ (paddr_t *)&vcpu->vc_msr_bitmap_pa)) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ /* Allocate MSR exit load area VA */
+ vcpu->vc_vmx_msr_exit_load_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page,
+ &kp_zero, &kd_waitok);
+
+ if (!vcpu->vc_vmx_msr_exit_load_va) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ /* Compute MSR exit load area PA */
+ if (!pmap_extract(pmap_kernel(), vcpu->vc_vmx_msr_exit_load_va,
+ &vcpu->vc_vmx_msr_exit_load_pa)) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ /* Allocate MSR exit save area VA */
+ vcpu->vc_vmx_msr_exit_save_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page,
+ &kp_zero, &kd_waitok);
+
+ if (!vcpu->vc_vmx_msr_exit_save_va) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ /* Compute MSR exit save area PA */
+ if (!pmap_extract(pmap_kernel(), vcpu->vc_vmx_msr_exit_save_va,
+ &vcpu->vc_vmx_msr_exit_save_pa)) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ /* Allocate MSR entry load area VA */
+ vcpu->vc_vmx_msr_entry_load_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page,
+ &kp_zero, &kd_waitok);
+
+ if (!vcpu->vc_vmx_msr_entry_load_va) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ /* Compute MSR entry load area PA */
+ if (!pmap_extract(pmap_kernel(), vcpu->vc_vmx_msr_entry_load_va,
+ &vcpu->vc_vmx_msr_entry_load_pa)) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ vmcs = (struct vmcs *)vcpu->vc_control_va;
+ vmcs->vmcs_revision = curcpu()->ci_vmm_cap.vcc_vmx.vmx_vmxon_revision;
+
+ /*
+ * Load the VMCS onto this PCPU so we can write registers
+ */
+ if (vmptrld(&vcpu->vc_control_pa)) {
+ ret = EINVAL;
+ goto exit;
+ }
+
+ /* Configure EPT Pointer */
+ eptp = vcpu->vc_parent->vm_map->pmap->pm_pdirpa;
+ msr = rdmsr(IA32_VMX_EPT_VPID_CAP);
+ if (msr & IA32_EPT_VPID_CAP_PAGE_WALK_4) {
+ /* Page walk length 4 supported */
+ eptp |= ((IA32_EPT_PAGE_WALK_LENGTH - 1) << 3);
+ } else {
+ DPRINTF("EPT page walk length 4 not supported\n");
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (msr & IA32_EPT_VPID_CAP_WB) {
+ /* WB cache type supported */
+ eptp |= IA32_EPT_PAGING_CACHE_TYPE_WB;
+ } else
+ DPRINTF("%s: no WB cache type available, guest VM will run "
+ "uncached\n", __func__);
+
+ DPRINTF("Guest EPTP = 0x%llx\n", eptp);
+ if (vmwrite(VMCS_GUEST_IA32_EPTP, eptp)) {
+ DPRINTF("%s: error setting guest EPTP\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ vcpu->vc_parent->vm_map->pmap->eptp = eptp;
+
+ /* Host CR0 */
+ cr0 = rcr0() & ~CR0_TS;
+ if (vmwrite(VMCS_HOST_IA32_CR0, cr0)) {
+ DPRINTF("%s: error writing host CR0\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ /* Host CR4 */
+ cr4 = rcr4();
+ if (vmwrite(VMCS_HOST_IA32_CR4, cr4)) {
+ DPRINTF("%s: error writing host CR4\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ /* Host Segment Selectors */
+ if (vmwrite(VMCS_HOST_IA32_CS_SEL, GSEL(GCODE_SEL, SEL_KPL))) {
+ DPRINTF("%s: error writing host CS selector\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_HOST_IA32_DS_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
+ DPRINTF("%s: error writing host DS selector\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_HOST_IA32_ES_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
+ DPRINTF("%s: error writing host ES selector\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_HOST_IA32_FS_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
+ DPRINTF("%s: error writing host FS selector\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_HOST_IA32_GS_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
+ DPRINTF("%s: error writing host GS selector\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_HOST_IA32_SS_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
+ DPRINTF("%s: error writing host SS selector\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_HOST_IA32_TR_SEL, GSYSSEL(GPROC0_SEL, SEL_KPL))) {
+ DPRINTF("%s: error writing host TR selector\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ /* Host IDTR base */
+ if (vmwrite(VMCS_HOST_IA32_IDTR_BASE, idt_vaddr)) {
+ DPRINTF("%s: error writing host IDTR base\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ /* VMCS link */
+ if (vmwrite(VMCS_LINK_POINTER, VMX_VMCS_PA_CLEAR)) {
+ DPRINTF("%s: error writing VMCS link pointer\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ /* Flush the initial VMCS */
+ if (vmclear(&vcpu->vc_control_pa)) {
+ DPRINTF("%s: vmclear failed\n", __func__);
+ ret = EINVAL;
+ }
+
+exit:
+ if (ret)
+ vcpu_deinit_vmx(vcpu);
+
+ return (ret);
+}
+
+/*
+ * vcpu_reset_regs
+ *
+ * Resets a vcpu's registers to the provided state
+ *
+ * Parameters:
+ * vcpu: the vcpu whose registers shall be reset
+ * vrs: the desired register state
+ *
+ * Return values:
+ * 0: the vcpu's registers were successfully reset
+ * !0: the vcpu's registers could not be reset (see arch-specific reset
+ * function for various values that can be returned here)
+ */
+int
+vcpu_reset_regs(struct vcpu *vcpu, struct vcpu_reg_state *vrs)
+{
+ int ret;
+
+ if (vmm_softc->mode == VMM_MODE_EPT)
+ ret = vcpu_reset_regs_vmx(vcpu, vrs);
+ else if (vmm_softc->mode == VMM_MODE_RVI)
+ ret = vcpu_reset_regs_svm(vcpu, vrs);
+ else
+ panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
+
+ return (ret);
+}
+
+/*
+ * vcpu_init_svm
+ *
+ * AMD SVM specific VCPU initialization routine.
+ *
+ * This function allocates various per-VCPU memory regions, sets up initial
+ * VCPU VMCB controls, and sets initial register values.
+ *
+ * Parameters:
+ * vcpu: the VCPU structure being initialized
+ *
+ * Return values:
+ * 0: the VCPU was initialized successfully
+ * ENOMEM: insufficient resources
+ * EINVAL: an error occurred during VCPU initialization
+ */
+int
+vcpu_init_svm(struct vcpu *vcpu)
+{
+ int ret = 0;
+
+ /* Allocate VMCB VA */
+ vcpu->vc_control_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page, &kp_zero,
+ &kd_waitok);
+
+ if (!vcpu->vc_control_va)
+ return (ENOMEM);
+
+ /* Compute VMCB PA */
+ if (!pmap_extract(pmap_kernel(), vcpu->vc_control_va,
+ (paddr_t *)&vcpu->vc_control_pa)) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ DPRINTF("%s: VMCB va @ 0x%llx, pa @ 0x%llx\n", __func__,
+ (uint64_t)vcpu->vc_control_va,
+ (uint64_t)vcpu->vc_control_pa);
+
+
+ /* Allocate MSR bitmap VA (2 pages) */
+ vcpu->vc_msr_bitmap_va = (vaddr_t)km_alloc(2 * PAGE_SIZE, &kv_any,
+ &vmm_kp_contig, &kd_waitok);
+
+ if (!vcpu->vc_msr_bitmap_va) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ /* Compute MSR bitmap PA */
+ if (!pmap_extract(pmap_kernel(), vcpu->vc_msr_bitmap_va,
+ (paddr_t *)&vcpu->vc_msr_bitmap_pa)) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ DPRINTF("%s: MSR bitmap va @ 0x%llx, pa @ 0x%llx\n", __func__,
+ (uint64_t)vcpu->vc_msr_bitmap_va,
+ (uint64_t)vcpu->vc_msr_bitmap_pa);
+
+ /* Allocate host state area VA */
+ vcpu->vc_svm_hsa_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page,
+ &kp_zero, &kd_waitok);
+
+ if (!vcpu->vc_svm_hsa_va) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ /* Compute host state area PA */
+ if (!pmap_extract(pmap_kernel(), vcpu->vc_svm_hsa_va,
+ &vcpu->vc_svm_hsa_pa)) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ DPRINTF("%s: HSA va @ 0x%llx, pa @ 0x%llx\n", __func__,
+ (uint64_t)vcpu->vc_svm_hsa_va,
+ (uint64_t)vcpu->vc_svm_hsa_pa);
+
+ /* Allocate IOIO area VA (3 pages) */
+ vcpu->vc_svm_ioio_va = (vaddr_t)km_alloc(3 * PAGE_SIZE, &kv_any,
+ &vmm_kp_contig, &kd_waitok);
+
+ if (!vcpu->vc_svm_ioio_va) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ /* Compute IOIO area PA */
+ if (!pmap_extract(pmap_kernel(), vcpu->vc_svm_ioio_va,
+ &vcpu->vc_svm_ioio_pa)) {
+ ret = ENOMEM;
+ goto exit;
+ }
+
+ DPRINTF("%s: IOIO va @ 0x%llx, pa @ 0x%llx\n", __func__,
+ (uint64_t)vcpu->vc_svm_ioio_va,
+ (uint64_t)vcpu->vc_svm_ioio_pa);
+
+exit:
+ if (ret)
+ vcpu_deinit_svm(vcpu);
+
+ return (ret);
+}
+
+/*
+ * vcpu_init
+ *
+ * Calls the architecture-specific VCPU init routine
+ */
+int
+vcpu_init(struct vcpu *vcpu)
+{
+ int ret = 0;
+
+ vcpu->vc_virt_mode = vmm_softc->mode;
+ vcpu->vc_state = VCPU_STATE_STOPPED;
+ vcpu->vc_vpid = 0;
+ vcpu->vc_pvclock_system_gpa = 0;
+ vcpu->vc_last_pcpu = NULL;
+
+ rw_init(&vcpu->vc_lock, "vcpu");
+
+ /* Shadow PAT MSR, starting with host's value. */
+ vcpu->vc_shadow_pat = rdmsr(MSR_CR_PAT);
+
+ if (vmm_softc->mode == VMM_MODE_EPT)
+ ret = vcpu_init_vmx(vcpu);
+ else if (vmm_softc->mode == VMM_MODE_RVI)
+ ret = vcpu_init_svm(vcpu);
+ else
+ panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
+
+ return (ret);
+}
+
+/*
+ * vcpu_deinit_vmx
+ *
+ * Deinitializes the vcpu described by 'vcpu'
+ *
+ * Parameters:
+ * vcpu: the vcpu to be deinited
+ */
+void
+vcpu_deinit_vmx(struct vcpu *vcpu)
+{
+ if (vcpu->vc_control_va) {
+ km_free((void *)vcpu->vc_control_va, PAGE_SIZE,
+ &kv_page, &kp_zero);
+ vcpu->vc_control_va = 0;
+ }
+ if (vcpu->vc_vmx_msr_exit_save_va) {
+ km_free((void *)vcpu->vc_vmx_msr_exit_save_va,
+ PAGE_SIZE, &kv_page, &kp_zero);
+ vcpu->vc_vmx_msr_exit_save_va = 0;
+ }
+ if (vcpu->vc_vmx_msr_exit_load_va) {
+ km_free((void *)vcpu->vc_vmx_msr_exit_load_va,
+ PAGE_SIZE, &kv_page, &kp_zero);
+ vcpu->vc_vmx_msr_exit_load_va = 0;
+ }
+ if (vcpu->vc_vmx_msr_entry_load_va) {
+ km_free((void *)vcpu->vc_vmx_msr_entry_load_va,
+ PAGE_SIZE, &kv_page, &kp_zero);
+ vcpu->vc_vmx_msr_entry_load_va = 0;
+ }
+
+ if (vcpu->vc_vmx_vpid_enabled)
+ vmm_free_vpid(vcpu->vc_vpid);
+}
+
+/*
+ * vcpu_deinit_svm
+ *
+ * Deinitializes the vcpu described by 'vcpu'
+ *
+ * Parameters:
+ * vcpu: the vcpu to be deinited
+ */
+void
+vcpu_deinit_svm(struct vcpu *vcpu)
+{
+ if (vcpu->vc_control_va) {
+ km_free((void *)vcpu->vc_control_va, PAGE_SIZE, &kv_page,
+ &kp_zero);
+ vcpu->vc_control_va = 0;
+ }
+ if (vcpu->vc_msr_bitmap_va) {
+ km_free((void *)vcpu->vc_msr_bitmap_va, 2 * PAGE_SIZE, &kv_any,
+ &vmm_kp_contig);
+ vcpu->vc_msr_bitmap_va = 0;
+ }
+ if (vcpu->vc_svm_hsa_va) {
+ km_free((void *)vcpu->vc_svm_hsa_va, PAGE_SIZE, &kv_page,
+ &kp_zero);
+ vcpu->vc_svm_hsa_va = 0;
+ }
+ if (vcpu->vc_svm_ioio_va) {
+ km_free((void *)vcpu->vc_svm_ioio_va, 3 * PAGE_SIZE, &kv_any,
+ &vmm_kp_contig);
+ vcpu->vc_svm_ioio_va = 0;
+ }
+
+ vmm_free_vpid(vcpu->vc_vpid);
+}
+
+/*
+ * vcpu_deinit
+ *
+ * Calls the architecture-specific VCPU deinit routine
+ *
+ * Parameters:
+ * vcpu: the vcpu to be deinited
+ */
+void
+vcpu_deinit(struct vcpu *vcpu)
+{
+ if (vmm_softc->mode == VMM_MODE_EPT)
+ vcpu_deinit_vmx(vcpu);
+ else if (vmm_softc->mode == VMM_MODE_RVI)
+ vcpu_deinit_svm(vcpu);
+ else
+ panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
+}
+
+/*
+ * vcpu_vmx_check_cap
+ *
+ * Checks if the 'cap' bit in the 'msr' MSR can be set or cleared (set = 1
+ * or set = 0, respectively).
+ *
+ * When considering 'msr', we check to see if true controls are available,
+ * and use those if so.
+ *
+ * Returns 1 of 'cap' can be set/cleared as requested, 0 otherwise.
+ */
+int
+vcpu_vmx_check_cap(struct vcpu *vcpu, uint32_t msr, uint32_t cap, int set)
+{
+ uint64_t ctl;
+
+ if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
+ switch (msr) {
+ case IA32_VMX_PINBASED_CTLS:
+ ctl = vcpu->vc_vmx_true_pinbased_ctls;
+ break;
+ case IA32_VMX_PROCBASED_CTLS:
+ ctl = vcpu->vc_vmx_true_procbased_ctls;
+ break;
+ case IA32_VMX_PROCBASED2_CTLS:
+ ctl = vcpu->vc_vmx_procbased2_ctls;
+ break;
+ case IA32_VMX_ENTRY_CTLS:
+ ctl = vcpu->vc_vmx_true_entry_ctls;
+ break;
+ case IA32_VMX_EXIT_CTLS:
+ ctl = vcpu->vc_vmx_true_exit_ctls;
+ break;
+ default:
+ return (0);
+ }
+ } else {
+ switch (msr) {
+ case IA32_VMX_PINBASED_CTLS:
+ ctl = vcpu->vc_vmx_pinbased_ctls;
+ break;
+ case IA32_VMX_PROCBASED_CTLS:
+ ctl = vcpu->vc_vmx_procbased_ctls;
+ break;
+ case IA32_VMX_PROCBASED2_CTLS:
+ ctl = vcpu->vc_vmx_procbased2_ctls;
+ break;
+ case IA32_VMX_ENTRY_CTLS:
+ ctl = vcpu->vc_vmx_entry_ctls;
+ break;
+ case IA32_VMX_EXIT_CTLS:
+ ctl = vcpu->vc_vmx_exit_ctls;
+ break;
+ default:
+ return (0);
+ }
+ }
+
+ if (set) {
+ /* Check bit 'cap << 32', must be !0 */
+ return (ctl & ((uint64_t)cap << 32)) != 0;
+ } else {
+ /* Check bit 'cap', must be 0 */
+ return (ctl & cap) == 0;
+ }
+}
+
+/*
+ * vcpu_vmx_compute_ctrl
+ *
+ * Computes the appropriate control value, given the supplied parameters
+ * and CPU capabilities.
+ *
+ * Intel has made somewhat of a mess of this computation - it is described
+ * using no fewer than three different approaches, spread across many
+ * pages of the SDM. Further compounding the problem is the fact that now
+ * we have "true controls" for each type of "control", and each needs to
+ * be examined to get the calculation right, but only if "true" controls
+ * are present on the CPU we're on.
+ *
+ * Parameters:
+ * ctrlval: the control value, as read from the CPU MSR
+ * ctrl: which control is being set (eg, pinbased, procbased, etc)
+ * want0: the set of desired 0 bits
+ * want1: the set of desired 1 bits
+ * out: (out) the correct value to write into the VMCS for this VCPU,
+ * for the 'ctrl' desired.
+ *
+ * Returns 0 if successful, or EINVAL if the supplied parameters define
+ * an unworkable control setup.
+ */
+int
+vcpu_vmx_compute_ctrl(uint64_t ctrlval, uint16_t ctrl, uint32_t want1,
+ uint32_t want0, uint32_t *out)
+{
+ int i, set, clear;
+
+ *out = 0;
+
+ /*
+ * The Intel SDM gives three formulae for determining which bits to
+ * set/clear for a given control and desired functionality. Formula
+ * 1 is the simplest but disallows use of newer features that are
+ * enabled by functionality in later CPUs.
+ *
+ * Formulas 2 and 3 allow such extra functionality. We use formula
+ * 2 - this requires us to know the identity of controls in the
+ * "default1" class for each control register, but allows us to not
+ * have to pass along and/or query both sets of capability MSRs for
+ * each control lookup. This makes the code slightly longer,
+ * however.
+ */
+ for (i = 0; i < 32; i++) {
+ /* Figure out if we can set and / or clear this bit */
+ set = (ctrlval & (1ULL << (i + 32))) != 0;
+ clear = ((1ULL << i) & ((uint64_t)ctrlval)) == 0;
+
+ /* If the bit can't be set nor cleared, something's wrong */
+ if (!set && !clear)
+ return (EINVAL);
+
+ /*
+ * Formula 2.c.i - "If the relevant VMX capability MSR
+ * reports that a control has a single setting, use that
+ * setting."
+ */
+ if (set && !clear) {
+ if (want0 & (1ULL << i))
+ return (EINVAL);
+ else
+ *out |= (1ULL << i);
+ } else if (clear && !set) {
+ if (want1 & (1ULL << i))
+ return (EINVAL);
+ else
+ *out &= ~(1ULL << i);
+ } else {
+ /*
+ * 2.c.ii - "If the relevant VMX capability MSR
+ * reports that a control can be set to 0 or 1
+ * and that control's meaning is known to the VMM,
+ * set the control based on the functionality desired."
+ */
+ if (want1 & (1ULL << i))
+ *out |= (1ULL << i);
+ else if (want0 & (1 << i))
+ *out &= ~(1ULL << i);
+ else {
+ /*
+ * ... assuming the control's meaning is not
+ * known to the VMM ...
+ *
+ * 2.c.iii - "If the relevant VMX capability
+ * MSR reports that a control can be set to 0
+ * or 1 and the control is not in the default1
+ * class, set the control to 0."
+ *
+ * 2.c.iv - "If the relevant VMX capability
+ * MSR reports that a control can be set to 0
+ * or 1 and the control is in the default1
+ * class, set the control to 1."
+ */
+ switch (ctrl) {
+ case IA32_VMX_PINBASED_CTLS:
+ case IA32_VMX_TRUE_PINBASED_CTLS:
+ /*
+ * A.3.1 - default1 class of pinbased
+ * controls comprises bits 1,2,4
+ */
+ switch (i) {
+ case 1:
+ case 2:
+ case 4:
+ *out |= (1ULL << i);
+ break;
+ default:
+ *out &= ~(1ULL << i);
+ break;
+ }
+ break;
+ case IA32_VMX_PROCBASED_CTLS:
+ case IA32_VMX_TRUE_PROCBASED_CTLS:
+ /*
+ * A.3.2 - default1 class of procbased
+ * controls comprises bits 1, 4-6, 8,
+ * 13-16, 26
+ */
+ switch (i) {
+ case 1:
+ case 4 ... 6:
+ case 8:
+ case 13 ... 16:
+ case 26:
+ *out |= (1ULL << i);
+ break;
+ default:
+ *out &= ~(1ULL << i);
+ break;
+ }
+ break;
+ /*
+ * Unknown secondary procbased controls
+ * can always be set to 0
+ */
+ case IA32_VMX_PROCBASED2_CTLS:
+ *out &= ~(1ULL << i);
+ break;
+ case IA32_VMX_EXIT_CTLS:
+ case IA32_VMX_TRUE_EXIT_CTLS:
+ /*
+ * A.4 - default1 class of exit
+ * controls comprises bits 0-8, 10,
+ * 11, 13, 14, 16, 17
+ */
+ switch (i) {
+ case 0 ... 8:
+ case 10 ... 11:
+ case 13 ... 14:
+ case 16 ... 17:
+ *out |= (1ULL << i);
+ break;
+ default:
+ *out &= ~(1ULL << i);
+ break;
+ }
+ break;
+ case IA32_VMX_ENTRY_CTLS:
+ case IA32_VMX_TRUE_ENTRY_CTLS:
+ /*
+ * A.5 - default1 class of entry
+ * controls comprises bits 0-8, 12
+ */
+ switch (i) {
+ case 0 ... 8:
+ case 12:
+ *out |= (1ULL << i);
+ break;
+ default:
+ *out &= ~(1ULL << i);
+ break;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ return (0);
+}
+
+/*
+ * vm_run
+ *
+ * Run the vm / vcpu specified by 'vrp'
+ *
+ * Parameters:
+ * vrp: structure defining the VM to run
+ *
+ * Return value:
+ * ENOENT: the VM defined in 'vrp' could not be located
+ * EBUSY: the VM defined in 'vrp' is already running
+ * EFAULT: error copying data from userspace (vmd) on return from previous
+ * exit.
+ * EAGAIN: help is needed from vmd(8) (device I/O or exit vmm(4) cannot
+ * handle in-kernel.)
+ * 0: the run loop exited and no help is needed from vmd(8)
+ */
+int
+vm_run(struct vm_run_params *vrp)
+{
+ struct vm *vm;
+ struct vcpu *vcpu;
+ int ret = 0;
+ u_int old, next;
+
+ /*
+ * Find desired VM
+ */
+ ret = vm_find(vrp->vrp_vm_id, &vm);
+ if (ret)
+ return (ret);
+
+ vcpu = vm_find_vcpu(vm, vrp->vrp_vcpu_id);
+ if (vcpu == NULL) {
+ ret = ENOENT;
+ goto out;
+ }
+
+ /*
+ * Attempt to transition from VCPU_STATE_STOPPED -> VCPU_STATE_RUNNING.
+ * Failure to make the transition indicates the VCPU is busy.
+ */
+ rw_enter_write(&vcpu->vc_lock);
+ old = VCPU_STATE_STOPPED;
+ next = VCPU_STATE_RUNNING;
+ if (atomic_cas_uint(&vcpu->vc_state, old, next) != old) {
+ ret = EBUSY;
+ goto out_unlock;
+ }
+
+ /*
+ * We may be returning from userland helping us from the last exit.
+ * If so (vrp_continue == 1), copy in the exit data from vmd. The
+ * exit data will be consumed before the next entry (this typically
+ * comprises VCPU register changes as the result of vmd(8)'s actions).
+ */
+ if (vrp->vrp_continue) {
+ if (copyin(vrp->vrp_exit, &vcpu->vc_exit,
+ sizeof(struct vm_exit)) == EFAULT) {
+ ret = EFAULT;
+ goto out_unlock;
+ }
+ }
+
+ WRITE_ONCE(vcpu->vc_curcpu, curcpu());
+ /* Run the VCPU specified in vrp */
+ if (vcpu->vc_virt_mode == VMM_MODE_EPT) {
+ ret = vcpu_run_vmx(vcpu, vrp);
+ } else if (vcpu->vc_virt_mode == VMM_MODE_RVI) {
+ ret = vcpu_run_svm(vcpu, vrp);
+ }
+ WRITE_ONCE(vcpu->vc_curcpu, NULL);
+
+ if (ret == 0 || ret == EAGAIN) {
+ /* If we are exiting, populate exit data so vmd can help. */
+ vrp->vrp_exit_reason = (ret == 0) ? VM_EXIT_NONE
+ : vcpu->vc_gueststate.vg_exit_reason;
+ vrp->vrp_irqready = vcpu->vc_irqready;
+ vcpu->vc_state = VCPU_STATE_STOPPED;
+
+ if (copyout(&vcpu->vc_exit, vrp->vrp_exit,
+ sizeof(struct vm_exit)) == EFAULT) {
+ ret = EFAULT;
+ } else
+ ret = 0;
+ } else {
+ vrp->vrp_exit_reason = VM_EXIT_TERMINATED;
+ vcpu->vc_state = VCPU_STATE_TERMINATED;
+ }
+out_unlock:
+ rw_exit_write(&vcpu->vc_lock);
+out:
+ refcnt_rele_wake(&vm->vm_refcnt);
+ return (ret);
+}
+
+/*
+ * vmm_fpurestore
+ *
+ * Restore the guest's FPU state, saving the existing userland thread's
+ * FPU context if necessary. Must be called with interrupts disabled.
+ */
+int
+vmm_fpurestore(struct vcpu *vcpu)
+{
+ struct cpu_info *ci = curcpu();
+
+ rw_assert_wrlock(&vcpu->vc_lock);
+
+ /* save vmm's FPU state if we haven't already */
+ if (ci->ci_pflags & CPUPF_USERXSTATE) {
+ ci->ci_pflags &= ~CPUPF_USERXSTATE;
+ fpusavereset(&curproc->p_addr->u_pcb.pcb_savefpu);
+ }
+
+ if (vcpu->vc_fpuinited) {
+ if (xrstor_user(&vcpu->vc_g_fpu, xsave_mask)) {
+ DPRINTF("%s: guest attempted to set invalid %s\n",
+ __func__, "xsave/xrstor state");
+ return EINVAL;
+ }
+ }
+
+ if (xsave_mask) {
+ /* Restore guest %xcr0 */
+ if (xsetbv_user(0, vcpu->vc_gueststate.vg_xcr0)) {
+ DPRINTF("%s: guest attempted to set invalid bits in "
+ "xcr0 (guest %%xcr0=0x%llx, host %%xcr0=0x%llx)\n",
+ __func__, vcpu->vc_gueststate.vg_xcr0, xsave_mask);
+ return EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * vmm_fpusave
+ *
+ * Save the guest's FPU state. Must be called with interrupts disabled.
+ */
+void
+vmm_fpusave(struct vcpu *vcpu)
+{
+ rw_assert_wrlock(&vcpu->vc_lock);
+
+ if (xsave_mask) {
+ /* Save guest %xcr0 */
+ vcpu->vc_gueststate.vg_xcr0 = xgetbv(0);
+
+ /* Restore host %xcr0 */
+ xsetbv(0, xsave_mask);
+ }
+
+ /*
+ * Save full copy of FPU state - guest content is always
+ * a subset of host's save area (see xsetbv exit handler)
+ */
+ fpusavereset(&vcpu->vc_g_fpu);
+ vcpu->vc_fpuinited = 1;
+}
+
+/*
+ * vmm_translate_gva
+ *
+ * Translates a guest virtual address to a guest physical address by walking
+ * the currently active page table (if needed).
+ *
+ * Note - this function can possibly alter the supplied VCPU state.
+ * Specifically, it may inject exceptions depending on the current VCPU
+ * configuration, and may alter %cr2 on #PF. Consequently, this function
+ * should only be used as part of instruction emulation.
+ *
+ * Parameters:
+ * vcpu: The VCPU this translation should be performed for (guest MMU settings
+ * are gathered from this VCPU)
+ * va: virtual address to translate
+ * pa: pointer to paddr_t variable that will receive the translated physical
+ * address. 'pa' is unchanged on error.
+ * mode: one of PROT_READ, PROT_WRITE, PROT_EXEC indicating the mode in which
+ * the address should be translated
+ *
+ * Return values:
+ * 0: the address was successfully translated - 'pa' contains the physical
+ * address currently mapped by 'va'.
+ * EFAULT: the PTE for 'VA' is unmapped. A #PF will be injected in this case
+ * and %cr2 set in the vcpu structure.
+ * EINVAL: an error occurred reading paging table structures
+ */
+int
+vmm_translate_gva(struct vcpu *vcpu, uint64_t va, uint64_t *pa, int mode)
+{
+ int level, shift, pdidx;
+ uint64_t pte, pt_paddr, pte_paddr, mask, low_mask, high_mask;
+ uint64_t shift_width, pte_size, *hva;
+ paddr_t hpa;
+ struct vcpu_reg_state vrs;
+
+ level = 0;
+
+ if (vmm_softc->mode == VMM_MODE_EPT) {
+ if (vcpu_readregs_vmx(vcpu, VM_RWREGS_ALL, 1, &vrs))
+ return (EINVAL);
+ } else if (vmm_softc->mode == VMM_MODE_RVI) {
+ if (vcpu_readregs_svm(vcpu, VM_RWREGS_ALL, &vrs))
+ return (EINVAL);
+ } else {
+ printf("%s: unknown vmm mode", __func__);
+ return (EINVAL);
+ }
+
+ DPRINTF("%s: guest %%cr0=0x%llx, %%cr3=0x%llx\n", __func__,
+ vrs.vrs_crs[VCPU_REGS_CR0], vrs.vrs_crs[VCPU_REGS_CR3]);
+
+ if (!(vrs.vrs_crs[VCPU_REGS_CR0] & CR0_PG)) {
+ DPRINTF("%s: unpaged, va=pa=0x%llx\n", __func__,
+ va);
+ *pa = va;
+ return (0);
+ }
+
+ pt_paddr = vrs.vrs_crs[VCPU_REGS_CR3];
+
+ if (vrs.vrs_crs[VCPU_REGS_CR0] & CR0_PE) {
+ if (vrs.vrs_crs[VCPU_REGS_CR4] & CR4_PAE) {
+ pte_size = sizeof(uint64_t);
+ shift_width = 9;
+
+ if (vrs.vrs_msrs[VCPU_REGS_EFER] & EFER_LMA) {
+ level = 4;
+ mask = L4_MASK;
+ shift = L4_SHIFT;
+ } else {
+ level = 3;
+ mask = L3_MASK;
+ shift = L3_SHIFT;
+ }
+ } else {
+ level = 2;
+ shift_width = 10;
+ mask = 0xFFC00000;
+ shift = 22;
+ pte_size = sizeof(uint32_t);
+ }
+ } else {
+ return (EINVAL);
+ }
+
+ DPRINTF("%s: pte size=%lld level=%d mask=0x%llx, shift=%d, "
+ "shift_width=%lld\n", __func__, pte_size, level, mask, shift,
+ shift_width);
+
+ /* XXX: Check for R bit in segment selector and set A bit */
+
+ for (;level > 0; level--) {
+ pdidx = (va & mask) >> shift;
+ pte_paddr = (pt_paddr) + (pdidx * pte_size);
+
+ DPRINTF("%s: read pte level %d @ GPA 0x%llx\n", __func__,
+ level, pte_paddr);
+ if (!pmap_extract(vcpu->vc_parent->vm_map->pmap, pte_paddr,
+ &hpa)) {
+ DPRINTF("%s: cannot extract HPA for GPA 0x%llx\n",
+ __func__, pte_paddr);
+ return (EINVAL);
+ }
+
+ hpa = hpa | (pte_paddr & 0xFFF);
+ hva = (uint64_t *)PMAP_DIRECT_MAP(hpa);
+ DPRINTF("%s: GPA 0x%llx -> HPA 0x%llx -> HVA 0x%llx\n",
+ __func__, pte_paddr, (uint64_t)hpa, (uint64_t)hva);
+ if (pte_size == 8)
+ pte = *hva;
+ else
+ pte = *(uint32_t *)hva;
+
+ DPRINTF("%s: PTE @ 0x%llx = 0x%llx\n", __func__, pte_paddr,
+ pte);
+
+ /* XXX: Set CR2 */
+ if (!(pte & PG_V))
+ return (EFAULT);
+
+ /* XXX: Check for SMAP */
+ if ((mode == PROT_WRITE) && !(pte & PG_RW))
+ return (EPERM);
+
+ if ((vcpu->vc_exit.cpl > 0) && !(pte & PG_u))
+ return (EPERM);
+
+ pte = pte | PG_U;
+ if (mode == PROT_WRITE)
+ pte = pte | PG_M;
+ *hva = pte;
+
+ /* XXX: EINVAL if in 32bit and PG_PS is 1 but CR4.PSE is 0 */
+ if (pte & PG_PS)
+ break;
+
+ if (level > 1) {
+ pt_paddr = pte & PG_FRAME;
+ shift -= shift_width;
+ mask = mask >> shift_width;
+ }
+ }
+
+ low_mask = ((uint64_t)1ULL << shift) - 1;
+ high_mask = (((uint64_t)1ULL << ((pte_size * 8) - 1)) - 1) ^ low_mask;
+ *pa = (pte & high_mask) | (va & low_mask);
+
+ DPRINTF("%s: final GPA for GVA 0x%llx = 0x%llx\n", __func__,
+ va, *pa);
+
+ return (0);
+}
+
+
+/*
+ * vcpu_run_vmx
+ *
+ * VMX main loop used to run a VCPU.
+ *
+ * Parameters:
+ * vcpu: The VCPU to run
+ * vrp: run parameters
+ *
+ * Return values:
+ * 0: The run loop exited and no help is needed from vmd
+ * EAGAIN: The run loop exited and help from vmd is needed
+ * EINVAL: an error occurred
+ */
+int
+vcpu_run_vmx(struct vcpu *vcpu, struct vm_run_params *vrp)
+{
+ int ret = 0, exitinfo;
+ struct region_descriptor gdt;
+ struct cpu_info *ci = curcpu();
+ uint64_t exit_reason, cr3, insn_error;
+ struct schedstate_percpu *spc;
+ struct vmx_invvpid_descriptor vid;
+ uint64_t eii, procbased, int_st;
+ uint16_t irq, ldt_sel;
+ u_long s;
+ struct region_descriptor gdtr, idtr;
+
+ rw_assert_wrlock(&vcpu->vc_lock);
+
+ if (vcpu_reload_vmcs_vmx(vcpu)) {
+ printf("%s: failed (re)loading vmcs\n", __func__);
+ return (EINVAL);
+ }
+
+ /*
+ * If we are returning from userspace (vmd) because we exited
+ * last time, fix up any needed vcpu state first. Which state
+ * needs to be fixed up depends on what vmd populated in the
+ * exit data structure.
+ */
+ irq = vrp->vrp_irq;
+
+ if (vrp->vrp_continue) {
+ switch (vcpu->vc_gueststate.vg_exit_reason) {
+ case VMX_EXIT_IO:
+ if (vcpu->vc_exit.vei.vei_dir == VEI_DIR_IN)
+ vcpu->vc_gueststate.vg_rax =
+ vcpu->vc_exit.vei.vei_data;
+ break;
+ case VMX_EXIT_EPT_VIOLATION:
+ ret = vcpu_writeregs_vmx(vcpu, VM_RWREGS_GPRS, 0,
+ &vcpu->vc_exit.vrs);
+ if (ret) {
+ printf("%s: vm %d vcpu %d failed to update "
+ "registers\n", __func__,
+ vcpu->vc_parent->vm_id, vcpu->vc_id);
+ return (EINVAL);
+ }
+ break;
+ case VM_EXIT_NONE:
+ case VMX_EXIT_HLT:
+ case VMX_EXIT_INT_WINDOW:
+ case VMX_EXIT_EXTINT:
+ case VMX_EXIT_CPUID:
+ case VMX_EXIT_XSETBV:
+ break;
+#ifdef VMM_DEBUG
+ case VMX_EXIT_TRIPLE_FAULT:
+ DPRINTF("%s: vm %d vcpu %d triple fault\n",
+ __func__, vcpu->vc_parent->vm_id,
+ vcpu->vc_id);
+ vmx_vcpu_dump_regs(vcpu);
+ dump_vcpu(vcpu);
+ vmx_dump_vmcs(vcpu);
+ break;
+ case VMX_EXIT_ENTRY_FAILED_GUEST_STATE:
+ DPRINTF("%s: vm %d vcpu %d failed entry "
+ "due to invalid guest state\n",
+ __func__, vcpu->vc_parent->vm_id,
+ vcpu->vc_id);
+ vmx_vcpu_dump_regs(vcpu);
+ dump_vcpu(vcpu);
+ return (EINVAL);
+ default:
+ DPRINTF("%s: unimplemented exit type %d (%s)\n",
+ __func__,
+ vcpu->vc_gueststate.vg_exit_reason,
+ vmx_exit_reason_decode(
+ vcpu->vc_gueststate.vg_exit_reason));
+ vmx_vcpu_dump_regs(vcpu);
+ dump_vcpu(vcpu);
+ break;
+#endif /* VMM_DEBUG */
+ }
+ memset(&vcpu->vc_exit, 0, sizeof(vcpu->vc_exit));
+ }
+
+ setregion(&gdt, ci->ci_gdt, GDT_SIZE - 1);
+ if (gdt.rd_base == 0) {
+ printf("%s: setregion\n", __func__);
+ return (EINVAL);
+ }
+
+ /* Host GDTR base */
+ if (vmwrite(VMCS_HOST_IA32_GDTR_BASE, gdt.rd_base)) {
+ printf("%s: vmwrite(0x%04X, 0x%llx)\n", __func__,
+ VMCS_HOST_IA32_GDTR_BASE, gdt.rd_base);
+ return (EINVAL);
+ }
+
+ /* Host TR base */
+ if (vmwrite(VMCS_HOST_IA32_TR_BASE, (uint64_t)ci->ci_tss)) {
+ printf("%s: vmwrite(0x%04X, 0x%llx)\n", __func__,
+ VMCS_HOST_IA32_TR_BASE, (uint64_t)ci->ci_tss);
+ return (EINVAL);
+ }
+
+ /* Host CR3 */
+ cr3 = rcr3();
+ if (vmwrite(VMCS_HOST_IA32_CR3, cr3)) {
+ printf("%s: vmwrite(0x%04X, 0x%llx)\n", __func__,
+ VMCS_HOST_IA32_CR3, cr3);
+ return (EINVAL);
+ }
+
+ /* Handle vmd(8) injected interrupts */
+ /* Is there an interrupt pending injection? */
+ if (irq != 0xFFFF) {
+ if (vmread(VMCS_GUEST_INTERRUPTIBILITY_ST, &int_st)) {
+ printf("%s: can't get interruptibility state\n",
+ __func__);
+ return (EINVAL);
+ }
+
+ /* Interruptibility state 0x3 covers NMIs and STI */
+ if (!(int_st & 0x3) && vcpu->vc_irqready) {
+ eii = (irq & 0xFF);
+ eii |= (1ULL << 31); /* Valid */
+ eii |= (0ULL << 8); /* Hardware Interrupt */
+ if (vmwrite(VMCS_ENTRY_INTERRUPTION_INFO, eii)) {
+ printf("vcpu_run_vmx: can't vector "
+ "interrupt to guest\n");
+ return (EINVAL);
+ }
+
+ irq = 0xFFFF;
+ }
+ } else if (!vcpu->vc_intr) {
+ /*
+ * Disable window exiting
+ */
+ if (vmread(VMCS_PROCBASED_CTLS, &procbased)) {
+ printf("%s: can't read procbased ctls on exit\n",
+ __func__);
+ return (EINVAL);
+ } else {
+ procbased &= ~IA32_VMX_INTERRUPT_WINDOW_EXITING;
+ if (vmwrite(VMCS_PROCBASED_CTLS, procbased)) {
+ printf("%s: can't write procbased ctls "
+ "on exit\n", __func__);
+ return (EINVAL);
+ }
+ }
+ }
+
+ while (ret == 0) {
+#ifdef VMM_DEBUG
+ paddr_t pa = 0ULL;
+ vmptrst(&pa);
+ KASSERT(pa == vcpu->vc_control_pa);
+#endif /* VMM_DEBUG */
+
+ vmm_update_pvclock(vcpu);
+
+ /* Inject event if present */
+ if (vcpu->vc_event != 0) {
+ eii = (vcpu->vc_event & 0xFF);
+ eii |= (1ULL << 31); /* Valid */
+
+ /* Set the "Send error code" flag for certain vectors */
+ switch (vcpu->vc_event & 0xFF) {
+ case VMM_EX_DF:
+ case VMM_EX_TS:
+ case VMM_EX_NP:
+ case VMM_EX_SS:
+ case VMM_EX_GP:
+ case VMM_EX_PF:
+ case VMM_EX_AC:
+ eii |= (1ULL << 11);
+ }
+
+ eii |= (3ULL << 8); /* Hardware Exception */
+ if (vmwrite(VMCS_ENTRY_INTERRUPTION_INFO, eii)) {
+ printf("%s: can't vector event to guest\n",
+ __func__);
+ ret = EINVAL;
+ break;
+ }
+
+ if (vmwrite(VMCS_ENTRY_EXCEPTION_ERROR_CODE, 0)) {
+ printf("%s: can't write error code to guest\n",
+ __func__);
+ ret = EINVAL;
+ break;
+ }
+
+ vcpu->vc_event = 0;
+ }
+
+ if (vcpu->vc_vmx_vpid_enabled) {
+ /* Invalidate old TLB mappings */
+ vid.vid_vpid = vcpu->vc_parent->vm_id;
+ vid.vid_addr = 0;
+ invvpid(IA32_VMX_INVVPID_SINGLE_CTX_GLB, &vid);
+ }
+
+ /* Start / resume the VCPU */
+
+ /* Disable interrupts and save the current host FPU state. */
+ s = intr_disable();
+ if ((ret = vmm_fpurestore(vcpu))) {
+ intr_restore(s);
+ break;
+ }
+
+ sgdt(&gdtr);
+ sidt(&idtr);
+ sldt(&ldt_sel);
+
+ TRACEPOINT(vmm, guest_enter, vcpu, vrp);
+
+ /* Restore any guest PKRU state. */
+ if (vmm_softc->sc_md.pkru_enabled)
+ wrpkru(vcpu->vc_pkru);
+
+ ret = vmx_enter_guest(&vcpu->vc_control_pa,
+ &vcpu->vc_gueststate,
+ (vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED),
+ ci->ci_vmm_cap.vcc_vmx.vmx_has_l1_flush_msr);
+
+ /* Restore host PKRU state. */
+ if (vmm_softc->sc_md.pkru_enabled) {
+ vcpu->vc_pkru = rdpkru(0);
+ wrpkru(PGK_VALUE);
+ }
+
+ bare_lgdt(&gdtr);
+ lidt(&idtr);
+ lldt(ldt_sel);
+
+ /*
+ * On exit, interrupts are disabled, and we are running with
+ * the guest FPU state still possibly on the CPU. Save the FPU
+ * state before re-enabling interrupts.
+ */
+ vmm_fpusave(vcpu);
+ intr_restore(s);
+
+ atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_LAUNCHED);
+ exit_reason = VM_EXIT_NONE;
+
+ /* If we exited successfully ... */
+ if (ret == 0) {
+ exitinfo = vmx_get_exit_info(
+ &vcpu->vc_gueststate.vg_rip, &exit_reason);
+ if (!(exitinfo & VMX_EXIT_INFO_HAVE_RIP)) {
+ printf("%s: cannot read guest rip\n", __func__);
+ ret = EINVAL;
+ break;
+ }
+ if (!(exitinfo & VMX_EXIT_INFO_HAVE_REASON)) {
+ printf("%s: cant read exit reason\n", __func__);
+ ret = EINVAL;
+ break;
+ }
+ vcpu->vc_gueststate.vg_exit_reason = exit_reason;
+ TRACEPOINT(vmm, guest_exit, vcpu, vrp, exit_reason);
+
+ /* Update our state */
+ if (vmread(VMCS_GUEST_IA32_RFLAGS,
+ &vcpu->vc_gueststate.vg_rflags)) {
+ printf("%s: can't read guest rflags during "
+ "exit\n", __func__);
+ ret = EINVAL;
+ break;
+ }
+
+ /*
+ * Handle the exit. This will alter "ret" to EAGAIN if
+ * the exit handler determines help from vmd is needed.
+ */
+ ret = vmx_handle_exit(vcpu);
+
+ if (vcpu->vc_gueststate.vg_rflags & PSL_I)
+ vcpu->vc_irqready = 1;
+ else
+ vcpu->vc_irqready = 0;
+
+ /*
+ * If not ready for interrupts, but interrupts pending,
+ * enable interrupt window exiting.
+ */
+ if (vcpu->vc_irqready == 0 && vcpu->vc_intr) {
+ if (vmread(VMCS_PROCBASED_CTLS, &procbased)) {
+ printf("%s: can't read procbased ctls "
+ "on intwin exit\n", __func__);
+ ret = EINVAL;
+ break;
+ }
+
+ procbased |= IA32_VMX_INTERRUPT_WINDOW_EXITING;
+ if (vmwrite(VMCS_PROCBASED_CTLS, procbased)) {
+ printf("%s: can't write procbased ctls "
+ "on intwin exit\n", __func__);
+ ret = EINVAL;
+ break;
+ }
+ }
+
+ /*
+ * Exit to vmd if we are terminating, failed to enter,
+ * or need help (device I/O)
+ */
+ if (ret || vcpu_must_stop(vcpu))
+ break;
+
+ if (vcpu->vc_intr && vcpu->vc_irqready) {
+ ret = EAGAIN;
+ break;
+ }
+
+ /* Check if we should yield - don't hog the {p,v}pu */
+ spc = &ci->ci_schedstate;
+ if (spc->spc_schedflags & SPCF_SHOULDYIELD)
+ break;
+
+ } else {
+ /*
+ * We failed vmresume or vmlaunch for some reason,
+ * typically due to invalid vmcs state or other
+ * reasons documented in SDM Vol 3C 30.4.
+ */
+ switch (ret) {
+ case VMX_FAIL_LAUNCH_INVALID_VMCS:
+ printf("%s: failed %s with invalid vmcs\n",
+ __func__,
+ (vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED
+ ? "vmresume" : "vmlaunch"));
+ break;
+ case VMX_FAIL_LAUNCH_VALID_VMCS:
+ printf("%s: failed %s with valid vmcs\n",
+ __func__,
+ (vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED
+ ? "vmresume" : "vmlaunch"));
+ break;
+ default:
+ printf("%s: failed %s for unknown reason\n",
+ __func__,
+ (vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED
+ ? "vmresume" : "vmlaunch"));
+ }
+
+ ret = EINVAL;
+
+ /* Try to translate a vmfail error code, if possible. */
+ if (vmread(VMCS_INSTRUCTION_ERROR, &insn_error)) {
+ printf("%s: can't read insn error field\n",
+ __func__);
+ } else
+ printf("%s: error code = %lld, %s\n", __func__,
+ insn_error,
+ vmx_instruction_error_decode(insn_error));
+#ifdef VMM_DEBUG
+ vmx_vcpu_dump_regs(vcpu);
+ dump_vcpu(vcpu);
+#endif /* VMM_DEBUG */
+ }
+ }
+
+ vcpu->vc_last_pcpu = curcpu();
+
+ /* Copy the VCPU register state to the exit structure */
+ if (vcpu_readregs_vmx(vcpu, VM_RWREGS_ALL, 0, &vcpu->vc_exit.vrs))
+ ret = EINVAL;
+ vcpu->vc_exit.cpl = vmm_get_guest_cpu_cpl(vcpu);
+
+ return (ret);
+}
+
+/*
+ * vmx_handle_intr
+ *
+ * Handle host (external) interrupts. We read which interrupt fired by
+ * extracting the vector from the VMCS and dispatch the interrupt directly
+ * to the host using vmm_dispatch_intr.
+ */
+void
+vmx_handle_intr(struct vcpu *vcpu)
+{
+ uint8_t vec;
+ uint64_t eii;
+ struct gate_descriptor *idte;
+ vaddr_t handler;
+
+ if (vmread(VMCS_EXIT_INTERRUPTION_INFO, &eii)) {
+ printf("%s: can't obtain intr info\n", __func__);
+ return;
+ }
+
+ vec = eii & 0xFF;
+
+ /* XXX check "error valid" code in eii, abort if 0 */
+ idte=&idt[vec];
+ handler = idte->gd_looffset + ((uint64_t)idte->gd_hioffset << 16);
+ vmm_dispatch_intr(handler);
+}
+
+/*
+ * svm_handle_hlt
+ *
+ * Handle HLT exits
+ *
+ * Parameters
+ * vcpu: The VCPU that executed the HLT instruction
+ *
+ * Return Values:
+ * EIO: The guest halted with interrupts disabled
+ * EAGAIN: Normal return to vmd - vmd should halt scheduling this VCPU
+ * until a virtual interrupt is ready to inject
+ */
+int
+svm_handle_hlt(struct vcpu *vcpu)
+{
+ struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
+ uint64_t rflags = vmcb->v_rflags;
+
+ /* All HLT insns are 1 byte */
+ vcpu->vc_gueststate.vg_rip += 1;
+
+ if (!(rflags & PSL_I)) {
+ DPRINTF("%s: guest halted with interrupts disabled\n",
+ __func__);
+ return (EIO);
+ }
+
+ return (EAGAIN);
+}
+
+/*
+ * vmx_handle_hlt
+ *
+ * Handle HLT exits. HLTing the CPU with interrupts disabled will terminate
+ * the guest (no NMIs handled) by returning EIO to vmd.
+ *
+ * Parameters:
+ * vcpu: The VCPU that executed the HLT instruction
+ *
+ * Return Values:
+ * EINVAL: An error occurred extracting information from the VMCS, or an
+ * invalid HLT instruction was encountered
+ * EIO: The guest halted with interrupts disabled
+ * EAGAIN: Normal return to vmd - vmd should halt scheduling this VCPU
+ * until a virtual interrupt is ready to inject
+ *
+ */
+int
+vmx_handle_hlt(struct vcpu *vcpu)
+{
+ uint64_t insn_length, rflags;
+
+ if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
+ printf("%s: can't obtain instruction length\n", __func__);
+ return (EINVAL);
+ }
+
+ if (vmread(VMCS_GUEST_IA32_RFLAGS, &rflags)) {
+ printf("%s: can't obtain guest rflags\n", __func__);
+ return (EINVAL);
+ }
+
+ if (insn_length != 1) {
+ DPRINTF("%s: HLT with instruction length %lld not supported\n",
+ __func__, insn_length);
+ return (EINVAL);
+ }
+
+ if (!(rflags & PSL_I)) {
+ DPRINTF("%s: guest halted with interrupts disabled\n",
+ __func__);
+ return (EIO);
+ }
+
+ vcpu->vc_gueststate.vg_rip += insn_length;
+ return (EAGAIN);
+}
+
+/*
+ * vmx_get_exit_info
+ *
+ * Returns exit information containing the current guest RIP and exit reason
+ * in rip and exit_reason. The return value is a bitmask indicating whether
+ * reading the RIP and exit reason was successful.
+ */
+int
+vmx_get_exit_info(uint64_t *rip, uint64_t *exit_reason)
+{
+ int rv = 0;
+
+ if (vmread(VMCS_GUEST_IA32_RIP, rip) == 0) {
+ rv |= VMX_EXIT_INFO_HAVE_RIP;
+ if (vmread(VMCS_EXIT_REASON, exit_reason) == 0)
+ rv |= VMX_EXIT_INFO_HAVE_REASON;
+ }
+ return (rv);
+}
+
+/*
+ * svm_handle_exit
+ *
+ * Handle exits from the VM by decoding the exit reason and calling various
+ * subhandlers as needed.
+ */
+int
+svm_handle_exit(struct vcpu *vcpu)
+{
+ uint64_t exit_reason, rflags;
+ int update_rip, ret = 0;
+ struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
+
+ update_rip = 0;
+ exit_reason = vcpu->vc_gueststate.vg_exit_reason;
+ rflags = vcpu->vc_gueststate.vg_rflags;
+
+ switch (exit_reason) {
+ case SVM_VMEXIT_VINTR:
+ if (!(rflags & PSL_I)) {
+ DPRINTF("%s: impossible interrupt window exit "
+ "config\n", __func__);
+ ret = EINVAL;
+ break;
+ }
+
+ /*
+ * Guest is now ready for interrupts, so disable interrupt
+ * window exiting.
+ */
+ vmcb->v_irq = 0;
+ vmcb->v_intr_vector = 0;
+ vmcb->v_intercept1 &= ~SVM_INTERCEPT_VINTR;
+ svm_set_dirty(vcpu, SVM_CLEANBITS_TPR | SVM_CLEANBITS_I);
+
+ update_rip = 0;
+ break;
+ case SVM_VMEXIT_INTR:
+ update_rip = 0;
+ break;
+ case SVM_VMEXIT_SHUTDOWN:
+ update_rip = 0;
+ ret = EAGAIN;
+ break;
+ case SVM_VMEXIT_NPF:
+ ret = svm_handle_np_fault(vcpu);
+ break;
+ case SVM_VMEXIT_CPUID:
+ ret = vmm_handle_cpuid(vcpu);
+ update_rip = 1;
+ break;
+ case SVM_VMEXIT_MSR:
+ ret = svm_handle_msr(vcpu);
+ update_rip = 1;
+ break;
+ case SVM_VMEXIT_XSETBV:
+ ret = svm_handle_xsetbv(vcpu);
+ update_rip = 1;
+ break;
+ case SVM_VMEXIT_IOIO:
+ if (svm_handle_inout(vcpu) == 0)
+ ret = EAGAIN;
+ update_rip = 1;
+ break;
+ case SVM_VMEXIT_HLT:
+ ret = svm_handle_hlt(vcpu);
+ update_rip = 1;
+ break;
+ case SVM_VMEXIT_MWAIT:
+ case SVM_VMEXIT_MWAIT_CONDITIONAL:
+ case SVM_VMEXIT_MONITOR:
+ case SVM_VMEXIT_VMRUN:
+ case SVM_VMEXIT_VMMCALL:
+ case SVM_VMEXIT_VMLOAD:
+ case SVM_VMEXIT_VMSAVE:
+ case SVM_VMEXIT_STGI:
+ case SVM_VMEXIT_CLGI:
+ case SVM_VMEXIT_SKINIT:
+ case SVM_VMEXIT_RDTSCP:
+ case SVM_VMEXIT_ICEBP:
+ case SVM_VMEXIT_INVLPGA:
+ ret = vmm_inject_ud(vcpu);
+ update_rip = 0;
+ break;
+ default:
+ DPRINTF("%s: unhandled exit 0x%llx (pa=0x%llx)\n", __func__,
+ exit_reason, (uint64_t)vcpu->vc_control_pa);
+ return (EINVAL);
+ }
+
+ if (update_rip) {
+ vmcb->v_rip = vcpu->vc_gueststate.vg_rip;
+
+ if (rflags & PSL_T) {
+ if (vmm_inject_db(vcpu)) {
+ printf("%s: can't inject #DB exception to "
+ "guest", __func__);
+ return (EINVAL);
+ }
+ }
+ }
+
+ /* Enable SVME in EFER (must always be set) */
+ vmcb->v_efer |= EFER_SVME;
+ svm_set_dirty(vcpu, SVM_CLEANBITS_CR);
+
+ return (ret);
+}
+
+/*
+ * vmx_handle_exit
+ *
+ * Handle exits from the VM by decoding the exit reason and calling various
+ * subhandlers as needed.
+ */
+int
+vmx_handle_exit(struct vcpu *vcpu)
+{
+ uint64_t exit_reason, rflags, istate;
+ int update_rip, ret = 0;
+
+ update_rip = 0;
+ exit_reason = vcpu->vc_gueststate.vg_exit_reason;
+ rflags = vcpu->vc_gueststate.vg_rflags;
+
+ switch (exit_reason) {
+ case VMX_EXIT_INT_WINDOW:
+ if (!(rflags & PSL_I)) {
+ DPRINTF("%s: impossible interrupt window exit "
+ "config\n", __func__);
+ ret = EINVAL;
+ break;
+ }
+
+ ret = EAGAIN;
+ update_rip = 0;
+ break;
+ case VMX_EXIT_EPT_VIOLATION:
+ ret = vmx_handle_np_fault(vcpu);
+ break;
+ case VMX_EXIT_CPUID:
+ ret = vmm_handle_cpuid(vcpu);
+ update_rip = 1;
+ break;
+ case VMX_EXIT_IO:
+ if (vmx_handle_inout(vcpu) == 0)
+ ret = EAGAIN;
+ update_rip = 1;
+ break;
+ case VMX_EXIT_EXTINT:
+ vmx_handle_intr(vcpu);
+ update_rip = 0;
+ break;
+ case VMX_EXIT_CR_ACCESS:
+ ret = vmx_handle_cr(vcpu);
+ update_rip = 1;
+ break;
+ case VMX_EXIT_HLT:
+ ret = vmx_handle_hlt(vcpu);
+ update_rip = 1;
+ break;
+ case VMX_EXIT_RDMSR:
+ ret = vmx_handle_rdmsr(vcpu);
+ update_rip = 1;
+ break;
+ case VMX_EXIT_WRMSR:
+ ret = vmx_handle_wrmsr(vcpu);
+ update_rip = 1;
+ break;
+ case VMX_EXIT_XSETBV:
+ ret = vmx_handle_xsetbv(vcpu);
+ update_rip = 1;
+ break;
+ case VMX_EXIT_MWAIT:
+ case VMX_EXIT_MONITOR:
+ case VMX_EXIT_VMXON:
+ case VMX_EXIT_VMWRITE:
+ case VMX_EXIT_VMREAD:
+ case VMX_EXIT_VMLAUNCH:
+ case VMX_EXIT_VMRESUME:
+ case VMX_EXIT_VMPTRLD:
+ case VMX_EXIT_VMPTRST:
+ case VMX_EXIT_VMCLEAR:
+ case VMX_EXIT_VMCALL:
+ case VMX_EXIT_VMFUNC:
+ case VMX_EXIT_VMXOFF:
+ case VMX_EXIT_INVVPID:
+ case VMX_EXIT_INVEPT:
+ ret = vmm_inject_ud(vcpu);
+ update_rip = 0;
+ break;
+ case VMX_EXIT_TRIPLE_FAULT:
+#ifdef VMM_DEBUG
+ DPRINTF("%s: vm %d vcpu %d triple fault\n", __func__,
+ vcpu->vc_parent->vm_id, vcpu->vc_id);
+ vmx_vcpu_dump_regs(vcpu);
+ dump_vcpu(vcpu);
+ vmx_dump_vmcs(vcpu);
+#endif /* VMM_DEBUG */
+ ret = EAGAIN;
+ update_rip = 0;
+ break;
+ default:
+#ifdef VMM_DEBUG
+ DPRINTF("%s: unhandled exit 0x%llx (%s)\n", __func__,
+ exit_reason, vmx_exit_reason_decode(exit_reason));
+#endif /* VMM_DEBUG */
+ return (EINVAL);
+ }
+
+ if (update_rip) {
+ if (vmwrite(VMCS_GUEST_IA32_RIP,
+ vcpu->vc_gueststate.vg_rip)) {
+ printf("%s: can't advance rip\n", __func__);
+ return (EINVAL);
+ }
+
+ if (vmread(VMCS_GUEST_INTERRUPTIBILITY_ST,
+ &istate)) {
+ printf("%s: can't read interruptibility state\n",
+ __func__);
+ return (EINVAL);
+ }
+
+ /* Interruptibility state 0x3 covers NMIs and STI */
+ istate &= ~0x3;
+
+ if (vmwrite(VMCS_GUEST_INTERRUPTIBILITY_ST,
+ istate)) {
+ printf("%s: can't write interruptibility state\n",
+ __func__);
+ return (EINVAL);
+ }
+
+ if (rflags & PSL_T) {
+ if (vmm_inject_db(vcpu)) {
+ printf("%s: can't inject #DB exception to "
+ "guest", __func__);
+ return (EINVAL);
+ }
+ }
+ }
+
+ return (ret);
+}
+
+/*
+ * vmm_inject_gp
+ *
+ * Injects an #GP exception into the guest VCPU.
+ *
+ * Parameters:
+ * vcpu: vcpu to inject into
+ *
+ * Return values:
+ * Always 0
+ */
+int
+vmm_inject_gp(struct vcpu *vcpu)
+{
+ DPRINTF("%s: injecting #GP at guest %%rip 0x%llx\n", __func__,
+ vcpu->vc_gueststate.vg_rip);
+ vcpu->vc_event = VMM_EX_GP;
+
+ return (0);
+}
+
+/*
+ * vmm_inject_ud
+ *
+ * Injects an #UD exception into the guest VCPU.
+ *
+ * Parameters:
+ * vcpu: vcpu to inject into
+ *
+ * Return values:
+ * Always 0
+ */
+int
+vmm_inject_ud(struct vcpu *vcpu)
+{
+ DPRINTF("%s: injecting #UD at guest %%rip 0x%llx\n", __func__,
+ vcpu->vc_gueststate.vg_rip);
+ vcpu->vc_event = VMM_EX_UD;
+
+ return (0);
+}
+
+/*
+ * vmm_inject_db
+ *
+ * Injects a #DB exception into the guest VCPU.
+ *
+ * Parameters:
+ * vcpu: vcpu to inject into
+ *
+ * Return values:
+ * Always 0
+ */
+int
+vmm_inject_db(struct vcpu *vcpu)
+{
+ DPRINTF("%s: injecting #DB at guest %%rip 0x%llx\n", __func__,
+ vcpu->vc_gueststate.vg_rip);
+ vcpu->vc_event = VMM_EX_DB;
+
+ return (0);
+}
+
+/*
+ * vmm_get_guest_memtype
+ *
+ * Returns the type of memory 'gpa' refers to in the context of vm 'vm'
+ */
+int
+vmm_get_guest_memtype(struct vm *vm, paddr_t gpa)
+{
+ int i;
+ struct vm_mem_range *vmr;
+
+ /* XXX Use binary search? */
+ for (i = 0; i < vm->vm_nmemranges; i++) {
+ vmr = &vm->vm_memranges[i];
+
+ /*
+ * vm_memranges are ascending. gpa can no longer be in one of
+ * the memranges
+ */
+ if (gpa < vmr->vmr_gpa)
+ break;
+
+ if (gpa < vmr->vmr_gpa + vmr->vmr_size) {
+ if (vmr->vmr_type == VM_MEM_MMIO)
+ return (VMM_MEM_TYPE_MMIO);
+ return (VMM_MEM_TYPE_REGULAR);
+ }
+ }
+
+ DPRINTF("guest memtype @ 0x%llx unknown\n", (uint64_t)gpa);
+ return (VMM_MEM_TYPE_UNKNOWN);
+}
+
+/*
+ * vmx_get_exit_qualification
+ *
+ * Return the current VMCS' exit qualification information
+ */
+int
+vmx_get_exit_qualification(uint64_t *exit_qualification)
+{
+ if (vmread(VMCS_GUEST_EXIT_QUALIFICATION, exit_qualification)) {
+ printf("%s: can't extract exit qual\n", __func__);
+ return (EINVAL);
+ }
+
+ return (0);
+}
+
+/*
+ * vmx_get_guest_faulttype
+ *
+ * Determines the type (R/W/X) of the last fault on the VCPU last run on
+ * this PCPU.
+ */
+int
+vmx_get_guest_faulttype(void)
+{
+ uint64_t exit_qual;
+ uint64_t presentmask = IA32_VMX_EPT_FAULT_WAS_READABLE |
+ IA32_VMX_EPT_FAULT_WAS_WRITABLE | IA32_VMX_EPT_FAULT_WAS_EXECABLE;
+ vm_prot_t prot, was_prot;
+
+ if (vmx_get_exit_qualification(&exit_qual))
+ return (-1);
+
+ if ((exit_qual & presentmask) == 0)
+ return VM_FAULT_INVALID;
+
+ was_prot = 0;
+ if (exit_qual & IA32_VMX_EPT_FAULT_WAS_READABLE)
+ was_prot |= PROT_READ;
+ if (exit_qual & IA32_VMX_EPT_FAULT_WAS_WRITABLE)
+ was_prot |= PROT_WRITE;
+ if (exit_qual & IA32_VMX_EPT_FAULT_WAS_EXECABLE)
+ was_prot |= PROT_EXEC;
+
+ prot = 0;
+ if (exit_qual & IA32_VMX_EPT_FAULT_READ)
+ prot = PROT_READ;
+ else if (exit_qual & IA32_VMX_EPT_FAULT_WRITE)
+ prot = PROT_WRITE;
+ else if (exit_qual & IA32_VMX_EPT_FAULT_EXEC)
+ prot = PROT_EXEC;
+
+ if ((was_prot & prot) == 0)
+ return VM_FAULT_PROTECT;
+
+ return (-1);
+}
+
+/*
+ * svm_get_guest_faulttype
+ *
+ * Determines the type (R/W/X) of the last fault on the VCPU last run on
+ * this PCPU.
+ */
+int
+svm_get_guest_faulttype(struct vmcb *vmcb)
+{
+ if (!(vmcb->v_exitinfo1 & 0x1))
+ return VM_FAULT_INVALID;
+ return VM_FAULT_PROTECT;
+}
+
+/*
+ * svm_fault_page
+ *
+ * Request a new page to be faulted into the UVM map of the VM owning 'vcpu'
+ * at address 'gpa'.
+ */
+int
+svm_fault_page(struct vcpu *vcpu, paddr_t gpa)
+{
+ int ret;
+
+ ret = uvm_fault(vcpu->vc_parent->vm_map, gpa, VM_FAULT_WIRE,
+ PROT_READ | PROT_WRITE | PROT_EXEC);
+ if (ret)
+ printf("%s: uvm_fault returns %d, GPA=0x%llx, rip=0x%llx\n",
+ __func__, ret, (uint64_t)gpa, vcpu->vc_gueststate.vg_rip);
+
+ return (ret);
+}
+
+/*
+ * svm_handle_np_fault
+ *
+ * High level nested paging handler for SVM. Verifies that a fault is for a
+ * valid memory region, then faults a page, or aborts otherwise.
+ */
+int
+svm_handle_np_fault(struct vcpu *vcpu)
+{
+ uint64_t gpa;
+ int gpa_memtype, ret = 0;
+ struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
+ struct vm_exit_eptviolation *vee = &vcpu->vc_exit.vee;
+ struct cpu_info *ci = curcpu();
+
+ memset(vee, 0, sizeof(*vee));
+
+ gpa = vmcb->v_exitinfo2;
+
+ gpa_memtype = vmm_get_guest_memtype(vcpu->vc_parent, gpa);
+ switch (gpa_memtype) {
+ case VMM_MEM_TYPE_REGULAR:
+ vee->vee_fault_type = VEE_FAULT_HANDLED;
+ ret = svm_fault_page(vcpu, gpa);
+ break;
+ case VMM_MEM_TYPE_MMIO:
+ vee->vee_fault_type = VEE_FAULT_MMIO_ASSIST;
+ if (ci->ci_vmm_cap.vcc_svm.svm_decode_assist) {
+ vee->vee_insn_len = vmcb->v_n_bytes_fetched;
+ memcpy(&vee->vee_insn_bytes, vmcb->v_guest_ins_bytes,
+ sizeof(vee->vee_insn_bytes));
+ vee->vee_insn_info |= VEE_BYTES_VALID;
+ }
+ ret = EAGAIN;
+ break;
+ default:
+ printf("unknown memory type %d for GPA 0x%llx\n",
+ gpa_memtype, gpa);
+ return (EINVAL);
+ }
+
+ return (ret);
+}
+
+/*
+ * vmx_fault_page
+ *
+ * Request a new page to be faulted into the UVM map of the VM owning 'vcpu'
+ * at address 'gpa'.
+ *
+ * Parameters:
+ * vcpu: guest VCPU requiring the page to be faulted into the UVM map
+ * gpa: guest physical address that triggered the fault
+ *
+ * Return Values:
+ * 0: if successful
+ * EINVAL: if fault type could not be determined or VMCS reload fails
+ * EAGAIN: if a protection fault occurred, ie writing to a read-only page
+ * errno: if uvm_fault(9) fails to wire in the page
+ */
+int
+vmx_fault_page(struct vcpu *vcpu, paddr_t gpa)
+{
+ int fault_type, ret;
+
+ fault_type = vmx_get_guest_faulttype();
+ switch (fault_type) {
+ case -1:
+ printf("%s: invalid fault type\n", __func__);
+ return (EINVAL);
+ case VM_FAULT_PROTECT:
+ vcpu->vc_exit.vee.vee_fault_type = VEE_FAULT_PROTECT;
+ return (EAGAIN);
+ default:
+ vcpu->vc_exit.vee.vee_fault_type = VEE_FAULT_HANDLED;
+ break;
+ }
+
+ /* We may sleep during uvm_fault(9), so reload VMCS. */
+ vcpu->vc_last_pcpu = curcpu();
+ ret = uvm_fault(vcpu->vc_parent->vm_map, gpa, VM_FAULT_WIRE,
+ PROT_READ | PROT_WRITE | PROT_EXEC);
+ if (vcpu_reload_vmcs_vmx(vcpu)) {
+ printf("%s: failed to reload vmcs\n", __func__);
+ return (EINVAL);
+ }
+
+ if (ret)
+ printf("%s: uvm_fault returns %d, GPA=0x%llx, rip=0x%llx\n",
+ __func__, ret, (uint64_t)gpa, vcpu->vc_gueststate.vg_rip);
+
+ return (ret);
+}
+
+/*
+ * vmx_handle_np_fault
+ *
+ * High level nested paging handler for VMX. Verifies that a fault is for a
+ * valid memory region, then faults a page, or aborts otherwise.
+ */
+int
+vmx_handle_np_fault(struct vcpu *vcpu)
+{
+ uint64_t insn_len = 0, gpa;
+ int gpa_memtype, ret = 0;
+ struct vm_exit_eptviolation *vee = &vcpu->vc_exit.vee;
+
+ memset(vee, 0, sizeof(*vee));
+
+ if (vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa)) {
+ printf("%s: cannot extract faulting pa\n", __func__);
+ return (EINVAL);
+ }
+
+ gpa_memtype = vmm_get_guest_memtype(vcpu->vc_parent, gpa);
+ switch (gpa_memtype) {
+ case VMM_MEM_TYPE_REGULAR:
+ vee->vee_fault_type = VEE_FAULT_HANDLED;
+ ret = vmx_fault_page(vcpu, gpa);
+ break;
+ case VMM_MEM_TYPE_MMIO:
+ vee->vee_fault_type = VEE_FAULT_MMIO_ASSIST;
+ if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_len) ||
+ insn_len == 0 || insn_len > 15) {
+ printf("%s: failed to extract instruction length\n",
+ __func__);
+ ret = EINVAL;
+ } else {
+ vee->vee_insn_len = (uint32_t)insn_len;
+ vee->vee_insn_info |= VEE_LEN_VALID;
+ ret = EAGAIN;
+ }
+ break;
+ default:
+ printf("unknown memory type %d for GPA 0x%llx\n",
+ gpa_memtype, gpa);
+ return (EINVAL);
+ }
+
+ return (ret);
+}
+
+/*
+ * vmm_get_guest_cpu_cpl
+ *
+ * Determines current CPL of 'vcpu'. On VMX/Intel, this is gathered from the
+ * VMCS field for the DPL of SS (this seems odd, but is documented that way
+ * in the SDM). For SVM/AMD, this is gathered directly from the VMCB's 'cpl'
+ * field, as per the APM.
+ *
+ * Parameters:
+ * vcpu: guest VCPU for which CPL is to be checked
+ *
+ * Return Values:
+ * -1: the CPL could not be determined
+ * 0-3 indicating the current CPL. For real mode operation, 0 is returned.
+ */
+int
+vmm_get_guest_cpu_cpl(struct vcpu *vcpu)
+{
+ int mode;
+ struct vmcb *vmcb;
+ uint64_t ss_ar;
+
+ mode = vmm_get_guest_cpu_mode(vcpu);
+
+ if (mode == VMM_CPU_MODE_UNKNOWN)
+ return (-1);
+
+ if (mode == VMM_CPU_MODE_REAL)
+ return (0);
+
+ if (vmm_softc->mode == VMM_MODE_RVI) {
+ vmcb = (struct vmcb *)vcpu->vc_control_va;
+ return (vmcb->v_cpl);
+ } else if (vmm_softc->mode == VMM_MODE_EPT) {
+ if (vmread(VMCS_GUEST_IA32_SS_AR, &ss_ar))
+ return (-1);
+ return ((ss_ar & 0x60) >> 5);
+ } else
+ return (-1);
+}
+
+/*
+ * vmm_get_guest_cpu_mode
+ *
+ * Determines current CPU mode of 'vcpu'.
+ *
+ * Parameters:
+ * vcpu: guest VCPU for which mode is to be checked
+ *
+ * Return Values:
+ * One of VMM_CPU_MODE_*, or VMM_CPU_MODE_UNKNOWN if the mode could not be
+ * ascertained.
+ */
+int
+vmm_get_guest_cpu_mode(struct vcpu *vcpu)
+{
+ uint64_t cr0, efer, cs_ar;
+ uint8_t l, dib;
+ struct vmcb *vmcb;
+ struct vmx_msr_store *msr_store;
+
+ if (vmm_softc->mode == VMM_MODE_RVI) {
+ vmcb = (struct vmcb *)vcpu->vc_control_va;
+ cr0 = vmcb->v_cr0;
+ efer = vmcb->v_efer;
+ cs_ar = vmcb->v_cs.vs_attr;
+ cs_ar = (cs_ar & 0xff) | ((cs_ar << 4) & 0xf000);
+ } else if (vmm_softc->mode == VMM_MODE_EPT) {
+ if (vmread(VMCS_GUEST_IA32_CR0, &cr0))
+ return (VMM_CPU_MODE_UNKNOWN);
+ if (vmread(VMCS_GUEST_IA32_CS_AR, &cs_ar))
+ return (VMM_CPU_MODE_UNKNOWN);
+ msr_store =
+ (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
+ efer = msr_store[VCPU_REGS_EFER].vms_data;
+ } else
+ return (VMM_CPU_MODE_UNKNOWN);
+
+ l = (cs_ar & 0x2000) >> 13;
+ dib = (cs_ar & 0x4000) >> 14;
+
+ /* Check CR0.PE */
+ if (!(cr0 & CR0_PE))
+ return (VMM_CPU_MODE_REAL);
+
+ /* Check EFER */
+ if (efer & EFER_LMA) {
+ /* Could be compat or long mode, check CS.L */
+ if (l)
+ return (VMM_CPU_MODE_LONG);
+ else
+ return (VMM_CPU_MODE_COMPAT);
+ }
+
+ /* Check prot vs prot32 */
+ if (dib)
+ return (VMM_CPU_MODE_PROT32);
+ else
+ return (VMM_CPU_MODE_PROT);
+}
+
+/*
+ * svm_handle_inout
+ *
+ * Exit handler for IN/OUT instructions.
+ *
+ * Parameters:
+ * vcpu: The VCPU where the IN/OUT instruction occurred
+ *
+ * Return values:
+ * 0: if successful
+ * EINVAL: an invalid IN/OUT instruction was encountered
+ */
+int
+svm_handle_inout(struct vcpu *vcpu)
+{
+ uint64_t insn_length, exit_qual;
+ struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
+
+ insn_length = vmcb->v_exitinfo2 - vmcb->v_rip;
+ if (insn_length != 1 && insn_length != 2) {
+ DPRINTF("%s: IN/OUT instruction with length %lld not "
+ "supported\n", __func__, insn_length);
+ return (EINVAL);
+ }
+
+ exit_qual = vmcb->v_exitinfo1;
+
+ /* Bit 0 - direction */
+ if (exit_qual & 0x1)
+ vcpu->vc_exit.vei.vei_dir = VEI_DIR_IN;
+ else
+ vcpu->vc_exit.vei.vei_dir = VEI_DIR_OUT;
+ /* Bit 2 - string instruction? */
+ vcpu->vc_exit.vei.vei_string = (exit_qual & 0x4) >> 2;
+ /* Bit 3 - REP prefix? */
+ vcpu->vc_exit.vei.vei_rep = (exit_qual & 0x8) >> 3;
+
+ /* Bits 4:6 - size of exit */
+ if (exit_qual & 0x10)
+ vcpu->vc_exit.vei.vei_size = 1;
+ else if (exit_qual & 0x20)
+ vcpu->vc_exit.vei.vei_size = 2;
+ else if (exit_qual & 0x40)
+ vcpu->vc_exit.vei.vei_size = 4;
+
+ /* Bit 16:31 - port */
+ vcpu->vc_exit.vei.vei_port = (exit_qual & 0xFFFF0000) >> 16;
+ /* Data */
+ vcpu->vc_exit.vei.vei_data = vmcb->v_rax;
+
+ TRACEPOINT(vmm, inout, vcpu, vcpu->vc_exit.vei.vei_port,
+ vcpu->vc_exit.vei.vei_dir, vcpu->vc_exit.vei.vei_data);
+
+ vcpu->vc_gueststate.vg_rip += insn_length;
+
+ return (0);
+}
+
+/*
+ * vmx_handle_inout
+ *
+ * Exit handler for IN/OUT instructions.
+ *
+ * Parameters:
+ * vcpu: The VCPU where the IN/OUT instruction occurred
+ *
+ * Return values:
+ * 0: if successful
+ * EINVAL: invalid IN/OUT instruction or vmread failures occurred
+ */
+int
+vmx_handle_inout(struct vcpu *vcpu)
+{
+ uint64_t insn_length, exit_qual;
+
+ if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
+ printf("%s: can't obtain instruction length\n", __func__);
+ return (EINVAL);
+ }
+
+ if (insn_length != 1 && insn_length != 2) {
+ DPRINTF("%s: IN/OUT instruction with length %lld not "
+ "supported\n", __func__, insn_length);
+ return (EINVAL);
+ }
+
+ if (vmx_get_exit_qualification(&exit_qual)) {
+ printf("%s: can't get exit qual\n", __func__);
+ return (EINVAL);
+ }
+
+ /* Bits 0:2 - size of exit */
+ vcpu->vc_exit.vei.vei_size = (exit_qual & 0x7) + 1;
+ /* Bit 3 - direction */
+ if ((exit_qual & 0x8) >> 3)
+ vcpu->vc_exit.vei.vei_dir = VEI_DIR_IN;
+ else
+ vcpu->vc_exit.vei.vei_dir = VEI_DIR_OUT;
+ /* Bit 4 - string instruction? */
+ vcpu->vc_exit.vei.vei_string = (exit_qual & 0x10) >> 4;
+ /* Bit 5 - REP prefix? */
+ vcpu->vc_exit.vei.vei_rep = (exit_qual & 0x20) >> 5;
+ /* Bit 6 - Operand encoding */
+ vcpu->vc_exit.vei.vei_encoding = (exit_qual & 0x40) >> 6;
+ /* Bit 16:31 - port */
+ vcpu->vc_exit.vei.vei_port = (exit_qual & 0xFFFF0000) >> 16;
+ /* Data */
+ vcpu->vc_exit.vei.vei_data = (uint32_t)vcpu->vc_gueststate.vg_rax;
+
+ TRACEPOINT(vmm, inout, vcpu, vcpu->vc_exit.vei.vei_port,
+ vcpu->vc_exit.vei.vei_dir, vcpu->vc_exit.vei.vei_data);
+
+ vcpu->vc_gueststate.vg_rip += insn_length;
+
+ return (0);
+}
+
+/*
+ * vmx_load_pdptes
+ *
+ * Update the PDPTEs in the VMCS with the values currently indicated by the
+ * guest CR3. This is used for 32-bit PAE guests when enabling paging.
+ *
+ * Parameters
+ * vcpu: The vcpu whose PDPTEs should be loaded
+ *
+ * Return values:
+ * 0: if successful
+ * EINVAL: if the PDPTEs could not be loaded
+ * ENOMEM: memory allocation failure
+ */
+int
+vmx_load_pdptes(struct vcpu *vcpu)
+{
+ uint64_t cr3, cr3_host_phys;
+ vaddr_t cr3_host_virt;
+ pd_entry_t *pdptes;
+ int ret;
+
+ if (vmread(VMCS_GUEST_IA32_CR3, &cr3)) {
+ printf("%s: can't read guest cr3\n", __func__);
+ return (EINVAL);
+ }
+
+ if (!pmap_extract(vcpu->vc_parent->vm_map->pmap, (vaddr_t)cr3,
+ (paddr_t *)&cr3_host_phys)) {
+ DPRINTF("%s: nonmapped guest CR3, setting PDPTEs to 0\n",
+ __func__);
+ if (vmwrite(VMCS_GUEST_PDPTE0, 0)) {
+ printf("%s: can't write guest PDPTE0\n", __func__);
+ return (EINVAL);
+ }
+
+ if (vmwrite(VMCS_GUEST_PDPTE1, 0)) {
+ printf("%s: can't write guest PDPTE1\n", __func__);
+ return (EINVAL);
+ }
+
+ if (vmwrite(VMCS_GUEST_PDPTE2, 0)) {
+ printf("%s: can't write guest PDPTE2\n", __func__);
+ return (EINVAL);
+ }
+
+ if (vmwrite(VMCS_GUEST_PDPTE3, 0)) {
+ printf("%s: can't write guest PDPTE3\n", __func__);
+ return (EINVAL);
+ }
+ return (0);
+ }
+
+ ret = 0;
+
+ /* We may sleep during km_alloc(9), so reload VMCS. */
+ vcpu->vc_last_pcpu = curcpu();
+ cr3_host_virt = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none,
+ &kd_waitok);
+ if (vcpu_reload_vmcs_vmx(vcpu)) {
+ printf("%s: failed to reload vmcs\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (!cr3_host_virt) {
+ printf("%s: can't allocate address for guest CR3 mapping\n",
+ __func__);
+ return (ENOMEM);
+ }
+
+ pmap_kenter_pa(cr3_host_virt, cr3_host_phys, PROT_READ);
+
+ pdptes = (pd_entry_t *)cr3_host_virt;
+ if (vmwrite(VMCS_GUEST_PDPTE0, pdptes[0])) {
+ printf("%s: can't write guest PDPTE0\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_GUEST_PDPTE1, pdptes[1])) {
+ printf("%s: can't write guest PDPTE1\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_GUEST_PDPTE2, pdptes[2])) {
+ printf("%s: can't write guest PDPTE2\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+ if (vmwrite(VMCS_GUEST_PDPTE3, pdptes[3])) {
+ printf("%s: can't write guest PDPTE3\n", __func__);
+ ret = EINVAL;
+ goto exit;
+ }
+
+exit:
+ pmap_kremove(cr3_host_virt, PAGE_SIZE);
+
+ /* km_free(9) might sleep, so we need to reload VMCS. */
+ vcpu->vc_last_pcpu = curcpu();
+ km_free((void *)cr3_host_virt, PAGE_SIZE, &kv_any, &kp_none);
+ if (vcpu_reload_vmcs_vmx(vcpu)) {
+ printf("%s: failed to reload vmcs after km_free\n", __func__);
+ ret = EINVAL;
+ }
+
+ return (ret);
+}
+
+/*
+ * vmx_handle_cr0_write
+ *
+ * Write handler for CR0. This function ensures valid values are written into
+ * CR0 for the cpu/vmm mode in use (cr0 must-be-0 and must-be-1 bits, etc).
+ *
+ * Parameters
+ * vcpu: The vcpu taking the cr0 write exit
+ * r: The guest's desired (incoming) cr0 value
+ *
+ * Return values:
+ * 0: if successful
+ * EINVAL: if an error occurred
+ */
+int
+vmx_handle_cr0_write(struct vcpu *vcpu, uint64_t r)
+{
+ struct vmx_msr_store *msr_store;
+ struct vmx_invvpid_descriptor vid;
+ uint64_t ectls, oldcr0, cr4, mask;
+ int ret;
+
+ /* Check must-be-0 bits */
+ mask = vcpu->vc_vmx_cr0_fixed1;
+ if (~r & mask) {
+ /* Inject #GP, let the guest handle it */
+ DPRINTF("%s: guest set invalid bits in %%cr0. Zeros "
+ "mask=0x%llx, data=0x%llx\n", __func__,
+ vcpu->vc_vmx_cr0_fixed1, r);
+ vmm_inject_gp(vcpu);
+ return (0);
+ }
+
+ /* Check must-be-1 bits */
+ mask = vcpu->vc_vmx_cr0_fixed0;
+ if ((r & mask) != mask) {
+ /* Inject #GP, let the guest handle it */
+ DPRINTF("%s: guest set invalid bits in %%cr0. Ones "
+ "mask=0x%llx, data=0x%llx\n", __func__,
+ vcpu->vc_vmx_cr0_fixed0, r);
+ vmm_inject_gp(vcpu);
+ return (0);
+ }
+
+ if (r & 0xFFFFFFFF00000000ULL) {
+ DPRINTF("%s: setting bits 63:32 of %%cr0 is invalid,"
+ " inject #GP, cr0=0x%llx\n", __func__, r);
+ vmm_inject_gp(vcpu);
+ return (0);
+ }
+
+ if ((r & CR0_PG) && (r & CR0_PE) == 0) {
+ DPRINTF("%s: PG flag set when the PE flag is clear,"
+ " inject #GP, cr0=0x%llx\n", __func__, r);
+ vmm_inject_gp(vcpu);
+ return (0);
+ }
+
+ if ((r & CR0_NW) && (r & CR0_CD) == 0) {
+ DPRINTF("%s: NW flag set when the CD flag is clear,"
+ " inject #GP, cr0=0x%llx\n", __func__, r);
+ vmm_inject_gp(vcpu);
+ return (0);
+ }
+
+ if (vmread(VMCS_GUEST_IA32_CR0, &oldcr0)) {
+ printf("%s: can't read guest cr0\n", __func__);
+ return (EINVAL);
+ }
+
+ /* CR0 must always have NE set */
+ r |= CR0_NE;
+
+ if (vmwrite(VMCS_GUEST_IA32_CR0, r)) {
+ printf("%s: can't write guest cr0\n", __func__);
+ return (EINVAL);
+ }
+
+ /* If the guest hasn't enabled paging ... */
+ if (!(r & CR0_PG) && (oldcr0 & CR0_PG)) {
+ /* Paging was disabled (prev. enabled) - Flush TLB */
+ if (vmm_softc->mode == VMM_MODE_EPT &&
+ vcpu->vc_vmx_vpid_enabled) {
+ vid.vid_vpid = vcpu->vc_parent->vm_id;
+ vid.vid_addr = 0;
+ invvpid(IA32_VMX_INVVPID_SINGLE_CTX_GLB, &vid);
+ }
+ } else if (!(oldcr0 & CR0_PG) && (r & CR0_PG)) {
+ /*
+ * Since the guest has enabled paging, then the IA32_VMX_IA32E_MODE_GUEST
+ * control must be set to the same as EFER_LME.
+ */
+ msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
+
+ if (vmread(VMCS_ENTRY_CTLS, &ectls)) {
+ printf("%s: can't read entry controls", __func__);
+ return (EINVAL);
+ }
+
+ if (msr_store[VCPU_REGS_EFER].vms_data & EFER_LME)
+ ectls |= IA32_VMX_IA32E_MODE_GUEST;
+ else
+ ectls &= ~IA32_VMX_IA32E_MODE_GUEST;
+
+ if (vmwrite(VMCS_ENTRY_CTLS, ectls)) {
+ printf("%s: can't write entry controls", __func__);
+ return (EINVAL);
+ }
+
+ if (vmread(VMCS_GUEST_IA32_CR4, &cr4)) {
+ printf("%s: can't read guest cr4\n", __func__);
+ return (EINVAL);
+ }
+
+ /* Load PDPTEs if PAE guest enabling paging */
+ if (cr4 & CR4_PAE) {
+ ret = vmx_load_pdptes(vcpu);
+
+ if (ret) {
+ printf("%s: updating PDPTEs failed\n", __func__);
+ return (ret);
+ }
+ }
+ }
+
+ return (0);
+}
+
+/*
+ * vmx_handle_cr4_write
+ *
+ * Write handler for CR4. This function ensures valid values are written into
+ * CR4 for the cpu/vmm mode in use (cr4 must-be-0 and must-be-1 bits, etc).
+ *
+ * Parameters
+ * vcpu: The vcpu taking the cr4 write exit
+ * r: The guest's desired (incoming) cr4 value
+ *
+ * Return values:
+ * 0: if successful
+ * EINVAL: if an error occurred
+ */
+int
+vmx_handle_cr4_write(struct vcpu *vcpu, uint64_t r)
+{
+ uint64_t mask;
+
+ /* Check must-be-0 bits */
+ mask = ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1);
+ if (r & mask) {
+ /* Inject #GP, let the guest handle it */
+ DPRINTF("%s: guest set invalid bits in %%cr4. Zeros "
+ "mask=0x%llx, data=0x%llx\n", __func__,
+ curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1,
+ r);
+ vmm_inject_gp(vcpu);
+ return (0);
+ }
+
+ /* Check must-be-1 bits */
+ mask = curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0;
+ if ((r & mask) != mask) {
+ /* Inject #GP, let the guest handle it */
+ DPRINTF("%s: guest set invalid bits in %%cr4. Ones "
+ "mask=0x%llx, data=0x%llx\n", __func__,
+ curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0,
+ r);
+ vmm_inject_gp(vcpu);
+ return (0);
+ }
+
+ /* CR4_VMXE must always be enabled */
+ r |= CR4_VMXE;
+
+ if (vmwrite(VMCS_GUEST_IA32_CR4, r)) {
+ printf("%s: can't write guest cr4\n", __func__);
+ return (EINVAL);
+ }
+
+ return (0);
+}
+
+/*
+ * vmx_handle_cr
+ *
+ * Handle reads/writes to control registers (except CR3)
+ */
+int
+vmx_handle_cr(struct vcpu *vcpu)
+{
+ uint64_t insn_length, exit_qual, r;
+ uint8_t crnum, dir, reg;
+
+ if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
+ printf("%s: can't obtain instruction length\n", __func__);
+ return (EINVAL);
+ }
+
+ if (vmx_get_exit_qualification(&exit_qual)) {
+ printf("%s: can't get exit qual\n", __func__);
+ return (EINVAL);
+ }
+
+ /* Low 4 bits of exit_qual represent the CR number */
+ crnum = exit_qual & 0xf;
+
+ /*
+ * Bits 5:4 indicate the direction of operation (or special CR-modifying
+ * instruction)
+ */
+ dir = (exit_qual & 0x30) >> 4;
+
+ /* Bits 11:8 encode the source/target register */
+ reg = (exit_qual & 0xf00) >> 8;
+
+ switch (dir) {
+ case CR_WRITE:
+ if (crnum == 0 || crnum == 4) {
+ switch (reg) {
+ case 0: r = vcpu->vc_gueststate.vg_rax; break;
+ case 1: r = vcpu->vc_gueststate.vg_rcx; break;
+ case 2: r = vcpu->vc_gueststate.vg_rdx; break;
+ case 3: r = vcpu->vc_gueststate.vg_rbx; break;
+ case 4: if (vmread(VMCS_GUEST_IA32_RSP, &r)) {
+ printf("%s: unable to read guest "
+ "RSP\n", __func__);
+ return (EINVAL);
+ }
+ break;
+ case 5: r = vcpu->vc_gueststate.vg_rbp; break;
+ case 6: r = vcpu->vc_gueststate.vg_rsi; break;
+ case 7: r = vcpu->vc_gueststate.vg_rdi; break;
+ case 8: r = vcpu->vc_gueststate.vg_r8; break;
+ case 9: r = vcpu->vc_gueststate.vg_r9; break;
+ case 10: r = vcpu->vc_gueststate.vg_r10; break;
+ case 11: r = vcpu->vc_gueststate.vg_r11; break;
+ case 12: r = vcpu->vc_gueststate.vg_r12; break;
+ case 13: r = vcpu->vc_gueststate.vg_r13; break;
+ case 14: r = vcpu->vc_gueststate.vg_r14; break;
+ case 15: r = vcpu->vc_gueststate.vg_r15; break;
+ }
+ DPRINTF("%s: mov to cr%d @ %llx, data=0x%llx\n",
+ __func__, crnum, vcpu->vc_gueststate.vg_rip, r);
+ }
+
+ if (crnum == 0)
+ vmx_handle_cr0_write(vcpu, r);
+
+ if (crnum == 4)
+ vmx_handle_cr4_write(vcpu, r);
+
+ break;
+ case CR_READ:
+ DPRINTF("%s: mov from cr%d @ %llx\n", __func__, crnum,
+ vcpu->vc_gueststate.vg_rip);
+ break;
+ case CR_CLTS:
+ DPRINTF("%s: clts instruction @ %llx\n", __func__,
+ vcpu->vc_gueststate.vg_rip);
+ break;
+ case CR_LMSW:
+ DPRINTF("%s: lmsw instruction @ %llx\n", __func__,
+ vcpu->vc_gueststate.vg_rip);
+ break;
+ default:
+ DPRINTF("%s: unknown cr access @ %llx\n", __func__,
+ vcpu->vc_gueststate.vg_rip);
+ }
+
+ vcpu->vc_gueststate.vg_rip += insn_length;
+
+ return (0);
+}
+
+/*
+ * vmx_handle_rdmsr
+ *
+ * Handler for rdmsr instructions. Bitmap MSRs are allowed implicit access
+ * and won't end up here. This handler is primarily intended to catch otherwise
+ * unknown MSR access for possible later inclusion in the bitmap list. For
+ * each MSR access that ends up here, we log the access (when VMM_DEBUG is
+ * enabled)
+ *
+ * Parameters:
+ * vcpu: vcpu structure containing instruction info causing the exit
+ *
+ * Return value:
+ * 0: The operation was successful
+ * EINVAL: An error occurred
+ */
+int
+vmx_handle_rdmsr(struct vcpu *vcpu)
+{
+ uint64_t insn_length;
+ uint64_t *rax, *rdx;
+ uint64_t *rcx;
+ int ret;
+
+ if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
+ printf("%s: can't obtain instruction length\n", __func__);
+ return (EINVAL);
+ }
+
+ if (insn_length != 2) {
+ DPRINTF("%s: RDMSR with instruction length %lld not "
+ "supported\n", __func__, insn_length);
+ return (EINVAL);
+ }
+
+ rax = &vcpu->vc_gueststate.vg_rax;
+ rcx = &vcpu->vc_gueststate.vg_rcx;
+ rdx = &vcpu->vc_gueststate.vg_rdx;
+
+ switch (*rcx) {
+ case MSR_BIOS_SIGN:
+ case MSR_PLATFORM_ID:
+ /* Ignored */
+ *rax = 0;
+ *rdx = 0;
+ break;
+ case MSR_CR_PAT:
+ *rax = (vcpu->vc_shadow_pat & 0xFFFFFFFFULL);
+ *rdx = (vcpu->vc_shadow_pat >> 32);
+ break;
+ default:
+ /* Unsupported MSRs causes #GP exception, don't advance %rip */
+ DPRINTF("%s: unsupported rdmsr (msr=0x%llx), injecting #GP\n",
+ __func__, *rcx);
+ ret = vmm_inject_gp(vcpu);
+ return (ret);
+ }
+
+ vcpu->vc_gueststate.vg_rip += insn_length;
+
+ return (0);
+}
+
+/*
+ * vmx_handle_xsetbv
+ *
+ * VMX-specific part of the xsetbv instruction exit handler
+ *
+ * Parameters:
+ * vcpu: vcpu structure containing instruction info causing the exit
+ *
+ * Return value:
+ * 0: The operation was successful
+ * EINVAL: An error occurred
+ */
+int
+vmx_handle_xsetbv(struct vcpu *vcpu)
+{
+ uint64_t insn_length, *rax;
+ int ret;
+
+ if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
+ printf("%s: can't obtain instruction length\n", __func__);
+ return (EINVAL);
+ }
+
+ /* All XSETBV instructions are 3 bytes */
+ if (insn_length != 3) {
+ DPRINTF("%s: XSETBV with instruction length %lld not "
+ "supported\n", __func__, insn_length);
+ return (EINVAL);
+ }
+
+ rax = &vcpu->vc_gueststate.vg_rax;
+
+ ret = vmm_handle_xsetbv(vcpu, rax);
+
+ vcpu->vc_gueststate.vg_rip += insn_length;
+
+ return ret;
+}
+
+/*
+ * svm_handle_xsetbv
+ *
+ * SVM-specific part of the xsetbv instruction exit handler
+ *
+ * Parameters:
+ * vcpu: vcpu structure containing instruction info causing the exit
+ *
+ * Return value:
+ * 0: The operation was successful
+ * EINVAL: An error occurred
+ */
+int
+svm_handle_xsetbv(struct vcpu *vcpu)
+{
+ uint64_t insn_length, *rax;
+ int ret;
+ struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
+
+ /* All XSETBV instructions are 3 bytes */
+ insn_length = 3;
+
+ rax = &vmcb->v_rax;
+
+ ret = vmm_handle_xsetbv(vcpu, rax);
+
+ vcpu->vc_gueststate.vg_rip += insn_length;
+
+ return ret;
+}
+
+/*
+ * vmm_handle_xsetbv
+ *
+ * Handler for xsetbv instructions. We allow the guest VM to set xcr0 values
+ * limited to the xsave_mask in use in the host.
+ *
+ * Parameters:
+ * vcpu: vcpu structure containing instruction info causing the exit
+ * rax: pointer to guest %rax
+ *
+ * Return value:
+ * 0: The operation was successful
+ * EINVAL: An error occurred
+ */
+int
+vmm_handle_xsetbv(struct vcpu *vcpu, uint64_t *rax)
+{
+ uint64_t *rdx, *rcx, val;
+
+ rcx = &vcpu->vc_gueststate.vg_rcx;
+ rdx = &vcpu->vc_gueststate.vg_rdx;
+
+ if (vmm_get_guest_cpu_cpl(vcpu) != 0) {
+ DPRINTF("%s: guest cpl not zero\n", __func__);
+ return (vmm_inject_gp(vcpu));
+ }
+
+ if (*rcx != 0) {
+ DPRINTF("%s: guest specified invalid xcr register number "
+ "%lld\n", __func__, *rcx);
+ return (vmm_inject_gp(vcpu));
+ }
+
+ val = *rax + (*rdx << 32);
+ if (val & ~xsave_mask) {
+ DPRINTF("%s: guest specified xcr0 outside xsave_mask %lld\n",
+ __func__, val);
+ return (vmm_inject_gp(vcpu));
+ }
+
+ vcpu->vc_gueststate.vg_xcr0 = val;
+
+ return (0);
+}
+
+/*
+ * vmx_handle_misc_enable_msr
+ *
+ * Handler for writes to the MSR_MISC_ENABLE (0x1a0) MSR on Intel CPUs. We
+ * limit what the guest can write to this MSR (certain hardware-related
+ * settings like speedstep, etc).
+ *
+ * Parameters:
+ * vcpu: vcpu structure containing information about the wrmsr causing this
+ * exit
+ */
+void
+vmx_handle_misc_enable_msr(struct vcpu *vcpu)
+{
+ uint64_t *rax, *rdx;
+ struct vmx_msr_store *msr_store;
+
+ rax = &vcpu->vc_gueststate.vg_rax;
+ rdx = &vcpu->vc_gueststate.vg_rdx;
+ msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
+
+ /* Filter out guest writes to TCC, EIST, and xTPR */
+ *rax &= ~(MISC_ENABLE_TCC | MISC_ENABLE_EIST_ENABLED |
+ MISC_ENABLE_xTPR_MESSAGE_DISABLE);
+
+ msr_store[VCPU_REGS_MISC_ENABLE].vms_data = *rax | (*rdx << 32);
+}
+
+/*
+ * vmx_handle_wrmsr
+ *
+ * Handler for wrmsr instructions. This handler logs the access, and discards
+ * the written data (when VMM_DEBUG is enabled). Any valid wrmsr will not end
+ * up here (it will be whitelisted in the MSR bitmap).
+ *
+ * Parameters:
+ * vcpu: vcpu structure containing instruction info causing the exit
+ *
+ * Return value:
+ * 0: The operation was successful
+ * EINVAL: An error occurred
+ */
+int
+vmx_handle_wrmsr(struct vcpu *vcpu)
+{
+ uint64_t insn_length, val;
+ uint64_t *rax, *rdx, *rcx;
+ int ret;
+
+ if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
+ printf("%s: can't obtain instruction length\n", __func__);
+ return (EINVAL);
+ }
+
+ if (insn_length != 2) {
+ DPRINTF("%s: WRMSR with instruction length %lld not "
+ "supported\n", __func__, insn_length);
+ return (EINVAL);
+ }
+
+ rax = &vcpu->vc_gueststate.vg_rax;
+ rcx = &vcpu->vc_gueststate.vg_rcx;
+ rdx = &vcpu->vc_gueststate.vg_rdx;
+ val = (*rdx << 32) | (*rax & 0xFFFFFFFFULL);
+
+ switch (*rcx) {
+ case MSR_CR_PAT:
+ if (!vmm_pat_is_valid(val)) {
+ ret = vmm_inject_gp(vcpu);
+ return (ret);
+ }
+ vcpu->vc_shadow_pat = val;
+ break;
+ case MSR_MISC_ENABLE:
+ vmx_handle_misc_enable_msr(vcpu);
+ break;
+ case MSR_SMM_MONITOR_CTL:
+ /*
+ * 34.15.5 - Enabling dual monitor treatment
+ *
+ * Unsupported, so inject #GP and return without
+ * advancing %rip.
+ */
+ ret = vmm_inject_gp(vcpu);
+ return (ret);
+ case KVM_MSR_SYSTEM_TIME:
+ vmm_init_pvclock(vcpu,
+ (*rax & 0xFFFFFFFFULL) | (*rdx << 32));
+ break;
+#ifdef VMM_DEBUG
+ default:
+ /*
+ * Log the access, to be able to identify unknown MSRs
+ */
+ DPRINTF("%s: wrmsr exit, msr=0x%llx, discarding data "
+ "written from guest=0x%llx:0x%llx\n", __func__,
+ *rcx, *rdx, *rax);
+#endif /* VMM_DEBUG */
+ }
+
+ vcpu->vc_gueststate.vg_rip += insn_length;
+
+ return (0);
+}
+
+/*
+ * svm_handle_msr
+ *
+ * Handler for MSR instructions.
+ *
+ * Parameters:
+ * vcpu: vcpu structure containing instruction info causing the exit
+ *
+ * Return value:
+ * Always 0 (successful)
+ */
+int
+svm_handle_msr(struct vcpu *vcpu)
+{
+ uint64_t insn_length, val;
+ uint64_t *rax, *rcx, *rdx;
+ struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
+ int ret;
+
+ /* XXX: Validate RDMSR / WRMSR insn_length */
+ insn_length = 2;
+
+ rax = &vmcb->v_rax;
+ rcx = &vcpu->vc_gueststate.vg_rcx;
+ rdx = &vcpu->vc_gueststate.vg_rdx;
+
+ if (vmcb->v_exitinfo1 == 1) {
+ /* WRMSR */
+ val = (*rdx << 32) | (*rax & 0xFFFFFFFFULL);
+
+ switch (*rcx) {
+ case MSR_CR_PAT:
+ if (!vmm_pat_is_valid(val)) {
+ ret = vmm_inject_gp(vcpu);
+ return (ret);
+ }
+ vcpu->vc_shadow_pat = val;
+ break;
+ case MSR_EFER:
+ vmcb->v_efer = *rax | EFER_SVME;
+ break;
+ case KVM_MSR_SYSTEM_TIME:
+ vmm_init_pvclock(vcpu,
+ (*rax & 0xFFFFFFFFULL) | (*rdx << 32));
+ break;
+ default:
+ /* Log the access, to be able to identify unknown MSRs */
+ DPRINTF("%s: wrmsr exit, msr=0x%llx, discarding data "
+ "written from guest=0x%llx:0x%llx\n", __func__,
+ *rcx, *rdx, *rax);
+ }
+ } else {
+ /* RDMSR */
+ switch (*rcx) {
+ case MSR_BIOS_SIGN:
+ case MSR_INT_PEN_MSG:
+ case MSR_PLATFORM_ID:
+ /* Ignored */
+ *rax = 0;
+ *rdx = 0;
+ break;
+ case MSR_CR_PAT:
+ *rax = (vcpu->vc_shadow_pat & 0xFFFFFFFFULL);
+ *rdx = (vcpu->vc_shadow_pat >> 32);
+ break;
+ case MSR_DE_CFG:
+ /* LFENCE serializing bit is set by host */
+ *rax = DE_CFG_SERIALIZE_LFENCE;
+ *rdx = 0;
+ break;
+ default:
+ /*
+ * Unsupported MSRs causes #GP exception, don't advance
+ * %rip
+ */
+ DPRINTF("%s: unsupported rdmsr (msr=0x%llx), "
+ "injecting #GP\n", __func__, *rcx);
+ ret = vmm_inject_gp(vcpu);
+ return (ret);
+ }
+ }
+
+ vcpu->vc_gueststate.vg_rip += insn_length;
+
+ return (0);
+}
+
+/*
+ * vmm_handle_cpuid
+ *
+ * Exit handler for CPUID instruction
+ *
+ * Parameters:
+ * vcpu: vcpu causing the CPUID exit
+ *
+ * Return value:
+ * 0: the exit was processed successfully
+ * EINVAL: error occurred validating the CPUID instruction arguments
+ */
+int
+vmm_handle_cpuid(struct vcpu *vcpu)
+{
+ uint64_t insn_length, cr4;
+ uint64_t *rax, *rbx, *rcx, *rdx;
+ struct vmcb *vmcb;
+ uint32_t leaf, subleaf, eax, ebx, ecx, edx;
+ struct vmx_msr_store *msr_store;
+ int vmm_cpuid_level;
+
+ /* what's the cpuid level we support/advertise? */
+ vmm_cpuid_level = cpuid_level;
+ if (vmm_cpuid_level < 0x15 && tsc_is_invariant)
+ vmm_cpuid_level = 0x15;
+
+ if (vmm_softc->mode == VMM_MODE_EPT) {
+ if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
+ DPRINTF("%s: can't obtain instruction length\n",
+ __func__);
+ return (EINVAL);
+ }
+
+ if (vmread(VMCS_GUEST_IA32_CR4, &cr4)) {
+ DPRINTF("%s: can't obtain cr4\n", __func__);
+ return (EINVAL);
+ }
+
+ rax = &vcpu->vc_gueststate.vg_rax;
+
+ /*
+ * "CPUID leaves above 02H and below 80000000H are only
+ * visible when IA32_MISC_ENABLE MSR has bit 22 set to its
+ * default value 0"
+ */
+ msr_store =
+ (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
+ if (msr_store[VCPU_REGS_MISC_ENABLE].vms_data &
+ MISC_ENABLE_LIMIT_CPUID_MAXVAL)
+ vmm_cpuid_level = 0x02;
+ } else {
+ /* XXX: validate insn_length 2 */
+ insn_length = 2;
+ vmcb = (struct vmcb *)vcpu->vc_control_va;
+ rax = &vmcb->v_rax;
+ cr4 = vmcb->v_cr4;
+ }
+
+ rbx = &vcpu->vc_gueststate.vg_rbx;
+ rcx = &vcpu->vc_gueststate.vg_rcx;
+ rdx = &vcpu->vc_gueststate.vg_rdx;
+ vcpu->vc_gueststate.vg_rip += insn_length;
+
+ leaf = *rax;
+ subleaf = *rcx;
+
+ /*
+ * "If a value entered for CPUID.EAX is higher than the maximum input
+ * value for basic or extended function for that processor then the
+ * data for the highest basic information leaf is returned."
+ *
+ * "When CPUID returns the highest basic leaf information as a result
+ * of an invalid input EAX value, any dependence on input ECX value
+ * in the basic leaf is honored."
+ *
+ * This means if leaf is between vmm_cpuid_level and 0x40000000 (the start
+ * of the hypervisor info leaves), clamp to vmm_cpuid_level, but without
+ * altering subleaf. Also, if leaf is greater than the extended function
+ * info, clamp also to vmm_cpuid_level.
+ */
+ if ((leaf > vmm_cpuid_level && leaf < 0x40000000) ||
+ (leaf > curcpu()->ci_pnfeatset)) {
+ DPRINTF("%s: invalid cpuid input leaf 0x%x, guest rip="
+ "0x%llx - resetting to 0x%x\n", __func__, leaf,
+ vcpu->vc_gueststate.vg_rip - insn_length,
+ vmm_cpuid_level);
+ leaf = vmm_cpuid_level;
+ }
+
+ /* we fake up values in the range (cpuid_level, vmm_cpuid_level] */
+ if (leaf <= cpuid_level || leaf > 0x80000000)
+ CPUID_LEAF(leaf, subleaf, eax, ebx, ecx, edx);
+ else
+ eax = ebx = ecx = edx = 0;
+
+ switch (leaf) {
+ case 0x00: /* Max level and vendor ID */
+ *rax = vmm_cpuid_level;
+ *rbx = *((uint32_t *)&cpu_vendor);
+ *rdx = *((uint32_t *)&cpu_vendor + 1);
+ *rcx = *((uint32_t *)&cpu_vendor + 2);
+ break;
+ case 0x01: /* Version, brand, feature info */
+ *rax = cpu_id;
+ /* mask off host's APIC ID, reset to vcpu id */
+ *rbx = cpu_ebxfeature & 0x0000FFFF;
+ *rbx |= (vcpu->vc_id & 0xFF) << 24;
+ *rcx = (cpu_ecxfeature | CPUIDECX_HV) & VMM_CPUIDECX_MASK;
+
+ /* Guest CR4.OSXSAVE determines presence of CPUIDECX_OSXSAVE */
+ if (cr4 & CR4_OSXSAVE)
+ *rcx |= CPUIDECX_OSXSAVE;
+ else
+ *rcx &= ~CPUIDECX_OSXSAVE;
+
+ *rdx = curcpu()->ci_feature_flags & VMM_CPUIDEDX_MASK;
+ break;
+ case 0x02: /* Cache and TLB information */
+ *rax = eax;
+ *rbx = ebx;
+ *rcx = ecx;
+ *rdx = edx;
+ break;
+ case 0x03: /* Processor serial number (not supported) */
+ DPRINTF("%s: function 0x03 (processor serial number) not "
+ "supported\n", __func__);
+ *rax = 0;
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ break;
+ case 0x04: /* Deterministic cache info */
+ *rax = eax & VMM_CPUID4_CACHE_TOPOLOGY_MASK;
+ *rbx = ebx;
+ *rcx = ecx;
+ *rdx = edx;
+ break;
+ case 0x05: /* MONITOR/MWAIT (not supported) */
+ DPRINTF("%s: function 0x05 (monitor/mwait) not supported\n",
+ __func__);
+ *rax = 0;
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ break;
+ case 0x06: /* Thermal / Power management (not supported) */
+ DPRINTF("%s: function 0x06 (thermal/power mgt) not supported\n",
+ __func__);
+ *rax = 0;
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ break;
+ case 0x07: /* SEFF */
+ if (subleaf == 0) {
+ *rax = 0; /* Highest subleaf supported */
+ *rbx = curcpu()->ci_feature_sefflags_ebx & VMM_SEFF0EBX_MASK;
+ *rcx = curcpu()->ci_feature_sefflags_ecx & VMM_SEFF0ECX_MASK;
+ *rdx = curcpu()->ci_feature_sefflags_edx & VMM_SEFF0EDX_MASK;
+ /*
+ * Only expose PKU support if we've detected it in use
+ * on the host.
+ */
+ if (vmm_softc->sc_md.pkru_enabled)
+ *rcx |= SEFF0ECX_PKU;
+ else
+ *rcx &= ~SEFF0ECX_PKU;
+ } else {
+ /* Unsupported subleaf */
+ DPRINTF("%s: function 0x07 (SEFF) unsupported subleaf "
+ "0x%x not supported\n", __func__, subleaf);
+ *rax = 0;
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ }
+ break;
+ case 0x09: /* Direct Cache Access (not supported) */
+ DPRINTF("%s: function 0x09 (direct cache access) not "
+ "supported\n", __func__);
+ *rax = 0;
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ break;
+ case 0x0a: /* Architectural perf monitoring (not supported) */
+ DPRINTF("%s: function 0x0a (arch. perf mon) not supported\n",
+ __func__);
+ *rax = 0;
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ break;
+ case 0x0b: /* Extended topology enumeration (not supported) */
+ DPRINTF("%s: function 0x0b (topology enumeration) not "
+ "supported\n", __func__);
+ *rax = 0;
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ break;
+ case 0x0d: /* Processor ext. state information */
+ if (subleaf == 0) {
+ *rax = xsave_mask;
+ *rbx = ebx;
+ *rcx = ecx;
+ *rdx = edx;
+ } else if (subleaf == 1) {
+ *rax = 0;
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ } else {
+ *rax = eax;
+ *rbx = ebx;
+ *rcx = ecx;
+ *rdx = edx;
+ }
+ break;
+ case 0x0f: /* QoS info (not supported) */
+ DPRINTF("%s: function 0x0f (QoS info) not supported\n",
+ __func__);
+ *rax = 0;
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ break;
+ case 0x14: /* Processor Trace info (not supported) */
+ DPRINTF("%s: function 0x14 (processor trace info) not "
+ "supported\n", __func__);
+ *rax = 0;
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ break;
+ case 0x15:
+ if (cpuid_level >= 0x15) {
+ *rax = eax;
+ *rbx = ebx;
+ *rcx = ecx;
+ *rdx = edx;
+ } else {
+ KASSERT(tsc_is_invariant);
+ *rax = 1;
+ *rbx = 100;
+ *rcx = tsc_frequency / 100;
+ *rdx = 0;
+ }
+ break;
+ case 0x16: /* Processor frequency info */
+ *rax = eax;
+ *rbx = ebx;
+ *rcx = ecx;
+ *rdx = edx;
+ break;
+ case 0x40000000: /* Hypervisor information */
+ *rax = 0;
+ *rbx = *((uint32_t *)&vmm_hv_signature[0]);
+ *rcx = *((uint32_t *)&vmm_hv_signature[4]);
+ *rdx = *((uint32_t *)&vmm_hv_signature[8]);
+ break;
+ case 0x40000001: /* KVM hypervisor features */
+ *rax = (1 << KVM_FEATURE_CLOCKSOURCE2) |
+ (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ break;
+ case 0x80000000: /* Extended function level */
+ *rax = 0x80000008; /* curcpu()->ci_pnfeatset */
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ break;
+ case 0x80000001: /* Extended function info */
+ *rax = curcpu()->ci_efeature_eax;
+ *rbx = 0; /* Reserved */
+ *rcx = curcpu()->ci_efeature_ecx & VMM_ECPUIDECX_MASK;
+ *rdx = curcpu()->ci_feature_eflags & VMM_FEAT_EFLAGS_MASK;
+ break;
+ case 0x80000002: /* Brand string */
+ *rax = curcpu()->ci_brand[0];
+ *rbx = curcpu()->ci_brand[1];
+ *rcx = curcpu()->ci_brand[2];
+ *rdx = curcpu()->ci_brand[3];
+ break;
+ case 0x80000003: /* Brand string */
+ *rax = curcpu()->ci_brand[4];
+ *rbx = curcpu()->ci_brand[5];
+ *rcx = curcpu()->ci_brand[6];
+ *rdx = curcpu()->ci_brand[7];
+ break;
+ case 0x80000004: /* Brand string */
+ *rax = curcpu()->ci_brand[8];
+ *rbx = curcpu()->ci_brand[9];
+ *rcx = curcpu()->ci_brand[10];
+ *rdx = curcpu()->ci_brand[11];
+ break;
+ case 0x80000005: /* Reserved (Intel), cacheinfo (AMD) */
+ *rax = eax;
+ *rbx = ebx;
+ *rcx = ecx;
+ *rdx = edx;
+ break;
+ case 0x80000006: /* ext. cache info */
+ *rax = eax;
+ *rbx = ebx;
+ *rcx = ecx;
+ *rdx = edx;
+ break;
+ case 0x80000007: /* apmi */
+ *rax = eax;
+ *rbx = ebx;
+ *rcx = ecx;
+ *rdx = edx;
+ break;
+ case 0x80000008: /* Phys bits info and topology (AMD) */
+ *rax = eax;
+ *rbx = ebx & VMM_AMDSPEC_EBX_MASK;
+ /* Reset %rcx (topology) */
+ *rcx = 0;
+ *rdx = edx;
+ break;
+ case 0x8000001d: /* cache topology (AMD) */
+ *rax = eax;
+ *rbx = ebx;
+ *rcx = ecx;
+ *rdx = edx;
+ break;
+ default:
+ DPRINTF("%s: unsupported rax=0x%llx\n", __func__, *rax);
+ *rax = 0;
+ *rbx = 0;
+ *rcx = 0;
+ *rdx = 0;
+ }
+
+
+ if (vmm_softc->mode == VMM_MODE_RVI) {
+ /*
+ * update %rax. the rest of the registers get updated in
+ * svm_enter_guest
+ */
+ vmcb->v_rax = *rax;
+ }
+
+ return (0);
+}
+
+/*
+ * vcpu_run_svm
+ *
+ * SVM main loop used to run a VCPU.
+ *
+ * Parameters:
+ * vcpu: The VCPU to run
+ * vrp: run parameters
+ *
+ * Return values:
+ * 0: The run loop exited and no help is needed from vmd
+ * EAGAIN: The run loop exited and help from vmd is needed
+ * EINVAL: an error occurred
+ */
+int
+vcpu_run_svm(struct vcpu *vcpu, struct vm_run_params *vrp)
+{
+ int ret = 0;
+ struct region_descriptor gdt;
+ struct cpu_info *ci = NULL;
+ uint64_t exit_reason;
+ struct schedstate_percpu *spc;
+ uint16_t irq;
+ struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
+
+ irq = vrp->vrp_irq;
+
+ /*
+ * If we are returning from userspace (vmd) because we exited
+ * last time, fix up any needed vcpu state first. Which state
+ * needs to be fixed up depends on what vmd populated in the
+ * exit data structure.
+ */
+ if (vrp->vrp_continue) {
+ switch (vcpu->vc_gueststate.vg_exit_reason) {
+ case SVM_VMEXIT_IOIO:
+ if (vcpu->vc_exit.vei.vei_dir == VEI_DIR_IN) {
+ vcpu->vc_gueststate.vg_rax =
+ vcpu->vc_exit.vei.vei_data;
+ vmcb->v_rax = vcpu->vc_gueststate.vg_rax;
+ }
+ break;
+ case SVM_VMEXIT_NPF:
+ ret = vcpu_writeregs_svm(vcpu, VM_RWREGS_GPRS,
+ &vcpu->vc_exit.vrs);
+ if (ret) {
+ printf("%s: vm %d vcpu %d failed to update "
+ "registers\n", __func__,
+ vcpu->vc_parent->vm_id, vcpu->vc_id);
+ return (EINVAL);
+ }
+ break;
+ }
+ memset(&vcpu->vc_exit, 0, sizeof(vcpu->vc_exit));
+ }
+
+ while (ret == 0) {
+ vmm_update_pvclock(vcpu);
+ if (ci != curcpu()) {
+ /*
+ * We are launching for the first time, or we are
+ * resuming from a different pcpu, so we need to
+ * reset certain pcpu-specific values.
+ */
+ ci = curcpu();
+ setregion(&gdt, ci->ci_gdt, GDT_SIZE - 1);
+
+ if (ci != vcpu->vc_last_pcpu) {
+ /*
+ * Flush TLB by guest ASID if feature
+ * available, flush entire TLB if not.
+ */
+ if (ci->ci_vmm_cap.vcc_svm.svm_flush_by_asid)
+ vmcb->v_tlb_control =
+ SVM_TLB_CONTROL_FLUSH_ASID;
+ else
+ vmcb->v_tlb_control =
+ SVM_TLB_CONTROL_FLUSH_ALL;
+
+ svm_set_dirty(vcpu, SVM_CLEANBITS_ALL);
+ }
+
+ vcpu->vc_last_pcpu = ci;
+
+ if (gdt.rd_base == 0) {
+ ret = EINVAL;
+ break;
+ }
+ }
+
+ /* Handle vmd(8) injected interrupts */
+ /* Is there an interrupt pending injection? */
+ if (irq != 0xFFFF && vcpu->vc_irqready) {
+ vmcb->v_eventinj = (irq & 0xFF) | (1 << 31);
+ irq = 0xFFFF;
+ }
+
+ /* Inject event if present */
+ if (vcpu->vc_event != 0) {
+ DPRINTF("%s: inject event %d\n", __func__,
+ vcpu->vc_event);
+ vmcb->v_eventinj = 0;
+ /* Set the "Event Valid" flag for certain vectors */
+ switch (vcpu->vc_event & 0xFF) {
+ case VMM_EX_DF:
+ case VMM_EX_TS:
+ case VMM_EX_NP:
+ case VMM_EX_SS:
+ case VMM_EX_GP:
+ case VMM_EX_PF:
+ case VMM_EX_AC:
+ vmcb->v_eventinj |= (1ULL << 11);
+ }
+ vmcb->v_eventinj |= (vcpu->vc_event) | (1 << 31);
+ vmcb->v_eventinj |= (3ULL << 8); /* Exception */
+ vcpu->vc_event = 0;
+ }
+
+ TRACEPOINT(vmm, guest_enter, vcpu, vrp);
+
+ /* Start / resume the VCPU */
+ /* Disable interrupts and save the current host FPU state. */
+ clgi();
+ if ((ret = vmm_fpurestore(vcpu))) {
+ stgi();
+ break;
+ }
+
+ /* Restore any guest PKRU state. */
+ if (vmm_softc->sc_md.pkru_enabled)
+ wrpkru(vcpu->vc_pkru);
+
+ KASSERT(vmcb->v_intercept1 & SVM_INTERCEPT_INTR);
+ wrmsr(MSR_AMD_VM_HSAVE_PA, vcpu->vc_svm_hsa_pa);
+
+ ret = svm_enter_guest(vcpu->vc_control_pa,
+ &vcpu->vc_gueststate, &gdt);
+
+ /* Restore host PKRU state. */
+ if (vmm_softc->sc_md.pkru_enabled) {
+ vcpu->vc_pkru = rdpkru(0);
+ wrpkru(PGK_VALUE);
+ }
+
+ /*
+ * On exit, interrupts are disabled, and we are running with
+ * the guest FPU state still possibly on the CPU. Save the FPU
+ * state before re-enabling interrupts.
+ */
+ vmm_fpusave(vcpu);
+
+ /*
+ * Enable interrupts now. Note that if the exit was due to INTR
+ * (external interrupt), the interrupt will be processed now.
+ */
+ stgi();
+
+ vcpu->vc_gueststate.vg_rip = vmcb->v_rip;
+ vmcb->v_tlb_control = SVM_TLB_CONTROL_FLUSH_NONE;
+ svm_set_clean(vcpu, SVM_CLEANBITS_ALL);
+
+ /* If we exited successfully ... */
+ if (ret == 0) {
+ exit_reason = vmcb->v_exitcode;
+ vcpu->vc_gueststate.vg_exit_reason = exit_reason;
+ TRACEPOINT(vmm, guest_exit, vcpu, vrp, exit_reason);
+
+ vcpu->vc_gueststate.vg_rflags = vmcb->v_rflags;
+
+ /*
+ * Handle the exit. This will alter "ret" to EAGAIN if
+ * the exit handler determines help from vmd is needed.
+ */
+ ret = svm_handle_exit(vcpu);
+
+ if (vcpu->vc_gueststate.vg_rflags & PSL_I)
+ vcpu->vc_irqready = 1;
+ else
+ vcpu->vc_irqready = 0;
+
+ /*
+ * If not ready for interrupts, but interrupts pending,
+ * enable interrupt window exiting.
+ */
+ if (vcpu->vc_irqready == 0 && vcpu->vc_intr) {
+ vmcb->v_intercept1 |= SVM_INTERCEPT_VINTR;
+ vmcb->v_irq = 1;
+ vmcb->v_intr_misc = SVM_INTR_MISC_V_IGN_TPR;
+ vmcb->v_intr_vector = 0;
+ svm_set_dirty(vcpu, SVM_CLEANBITS_TPR |
+ SVM_CLEANBITS_I);
+ }
+
+ /*
+ * Exit to vmd if we are terminating, failed to enter,
+ * or need help (device I/O)
+ */
+ if (ret || vcpu_must_stop(vcpu))
+ break;
+
+ if (vcpu->vc_intr && vcpu->vc_irqready) {
+ ret = EAGAIN;
+ break;
+ }
+
+ /* Check if we should yield - don't hog the cpu */
+ spc = &ci->ci_schedstate;
+ if (spc->spc_schedflags & SPCF_SHOULDYIELD)
+ break;
+ }
+ }
+
+ /*
+ * We are heading back to userspace (vmd), either because we need help
+ * handling an exit, a guest interrupt is pending, or we failed in some
+ * way to enter the guest. Copy the guest registers to the exit struct
+ * and return to vmd.
+ */
+ if (vcpu_readregs_svm(vcpu, VM_RWREGS_ALL, &vcpu->vc_exit.vrs))
+ ret = EINVAL;
+
+ return (ret);
+}
+
+/*
+ * vmm_alloc_vpid
+ *
+ * Sets the memory location pointed to by "vpid" to the next available VPID
+ * or ASID.
+ *
+ * Parameters:
+ * vpid: Pointer to location to receive the next VPID/ASID
+ *
+ * Return Values:
+ * 0: The operation completed successfully
+ * ENOMEM: No VPIDs/ASIDs were available. Content of 'vpid' is unchanged.
+ */
+int
+vmm_alloc_vpid(uint16_t *vpid)
+{
+ uint16_t i;
+ uint8_t idx, bit;
+ struct vmm_softc *sc = vmm_softc;
+
+ rw_enter_write(&vmm_softc->vpid_lock);
+ for (i = 1; i <= sc->max_vpid; i++) {
+ idx = i / 8;
+ bit = i - (idx * 8);
+
+ if (!(sc->vpids[idx] & (1 << bit))) {
+ sc->vpids[idx] |= (1 << bit);
+ *vpid = i;
+ DPRINTF("%s: allocated VPID/ASID %d\n", __func__,
+ i);
+ rw_exit_write(&vmm_softc->vpid_lock);
+ return 0;
+ }
+ }
+
+ printf("%s: no available %ss\n", __func__,
+ (sc->mode == VMM_MODE_EPT) ? "VPID" :
+ "ASID");
+
+ rw_exit_write(&vmm_softc->vpid_lock);
+ return ENOMEM;
+}
+
+/*
+ * vmm_free_vpid
+ *
+ * Frees the VPID/ASID id supplied in "vpid".
+ *
+ * Parameters:
+ * vpid: VPID/ASID to free.
+ */
+void
+vmm_free_vpid(uint16_t vpid)
+{
+ uint8_t idx, bit;
+ struct vmm_softc *sc = vmm_softc;
+
+ rw_enter_write(&vmm_softc->vpid_lock);
+ idx = vpid / 8;
+ bit = vpid - (idx * 8);
+ sc->vpids[idx] &= ~(1 << bit);
+
+ DPRINTF("%s: freed VPID/ASID %d\n", __func__, vpid);
+ rw_exit_write(&vmm_softc->vpid_lock);
+}
+
+
+/* vmm_gpa_is_valid
+ *
+ * Check if the given gpa is within guest memory space.
+ *
+ * Parameters:
+ * vcpu: The virtual cpu we are running on.
+ * gpa: The address to check.
+ * obj_size: The size of the object assigned to gpa
+ *
+ * Return values:
+ * 1: gpa is within the memory ranges allocated for the vcpu
+ * 0: otherwise
+ */
+int
+vmm_gpa_is_valid(struct vcpu *vcpu, paddr_t gpa, size_t obj_size)
+{
+ struct vm *vm = vcpu->vc_parent;
+ struct vm_mem_range *vmr;
+ size_t i;
+
+ for (i = 0; i < vm->vm_nmemranges; ++i) {
+ vmr = &vm->vm_memranges[i];
+ if (vmr->vmr_size >= obj_size &&
+ vmr->vmr_gpa <= gpa &&
+ gpa < (vmr->vmr_gpa + vmr->vmr_size - obj_size)) {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+void
+vmm_init_pvclock(struct vcpu *vcpu, paddr_t gpa)
+{
+ paddr_t pvclock_gpa = gpa & 0xFFFFFFFFFFFFFFF0;
+ if (!vmm_gpa_is_valid(vcpu, pvclock_gpa,
+ sizeof(struct pvclock_time_info))) {
+ /* XXX: Kill guest? */
+ vmm_inject_gp(vcpu);
+ return;
+ }
+
+ /* XXX: handle case when this struct goes over page boundaries */
+ if ((pvclock_gpa & PAGE_MASK) + sizeof(struct pvclock_time_info) >
+ PAGE_SIZE) {
+ vmm_inject_gp(vcpu);
+ return;
+ }
+
+ vcpu->vc_pvclock_system_gpa = gpa;
+ if (tsc_frequency > 0)
+ vcpu->vc_pvclock_system_tsc_mul =
+ (int) ((1000000000L << 20) / tsc_frequency);
+ else
+ vcpu->vc_pvclock_system_tsc_mul = 0;
+ vmm_update_pvclock(vcpu);
+}
+
+int
+vmm_update_pvclock(struct vcpu *vcpu)
+{
+ struct pvclock_time_info *pvclock_ti;
+ struct timespec tv;
+ struct vm *vm = vcpu->vc_parent;
+ paddr_t pvclock_hpa, pvclock_gpa;
+
+ if (vcpu->vc_pvclock_system_gpa & PVCLOCK_SYSTEM_TIME_ENABLE) {
+ pvclock_gpa = vcpu->vc_pvclock_system_gpa & 0xFFFFFFFFFFFFFFF0;
+ if (!pmap_extract(vm->vm_map->pmap, pvclock_gpa, &pvclock_hpa))
+ return (EINVAL);
+ pvclock_ti = (void*) PMAP_DIRECT_MAP(pvclock_hpa);
+
+ /* START next cycle (must be odd) */
+ pvclock_ti->ti_version =
+ (++vcpu->vc_pvclock_version << 1) | 0x1;
+
+ pvclock_ti->ti_tsc_timestamp = rdtsc();
+ nanotime(&tv);
+ pvclock_ti->ti_system_time =
+ tv.tv_sec * 1000000000L + tv.tv_nsec;
+ pvclock_ti->ti_tsc_shift = 12;
+ pvclock_ti->ti_tsc_to_system_mul =
+ vcpu->vc_pvclock_system_tsc_mul;
+ pvclock_ti->ti_flags = PVCLOCK_FLAG_TSC_STABLE;
+
+ /* END (must be even) */
+ pvclock_ti->ti_version &= ~0x1;
+ }
+ return (0);
+}
+
+int
+vmm_pat_is_valid(uint64_t pat)
+{
+ int i;
+ uint8_t *byte = (uint8_t *)&pat;
+
+ /* Intel SDM Vol 3A, 11.12.2: 0x02, 0x03, and 0x08-0xFF result in #GP */
+ for (i = 0; i < 8; i++) {
+ if (byte[i] == 0x02 || byte[i] == 0x03 || byte[i] > 0x07) {
+ DPRINTF("%s: invalid pat %llx\n", __func__, pat);
+ return 0;
+ }
+ }
+
+ return 1;
+}
+
+/*
+ * vmx_exit_reason_decode
+ *
+ * Returns a human readable string describing exit type 'code'
+ */
+const char *
+vmx_exit_reason_decode(uint32_t code)
+{
+ switch (code) {
+ case VMX_EXIT_NMI: return "NMI";
+ case VMX_EXIT_EXTINT: return "External interrupt";
+ case VMX_EXIT_TRIPLE_FAULT: return "Triple fault";
+ case VMX_EXIT_INIT: return "INIT signal";
+ case VMX_EXIT_SIPI: return "SIPI signal";
+ case VMX_EXIT_IO_SMI: return "I/O SMI";
+ case VMX_EXIT_OTHER_SMI: return "other SMI";
+ case VMX_EXIT_INT_WINDOW: return "Interrupt window";
+ case VMX_EXIT_NMI_WINDOW: return "NMI window";
+ case VMX_EXIT_TASK_SWITCH: return "Task switch";
+ case VMX_EXIT_CPUID: return "CPUID instruction";
+ case VMX_EXIT_GETSEC: return "GETSEC instruction";
+ case VMX_EXIT_HLT: return "HLT instruction";
+ case VMX_EXIT_INVD: return "INVD instruction";
+ case VMX_EXIT_INVLPG: return "INVLPG instruction";
+ case VMX_EXIT_RDPMC: return "RDPMC instruction";
+ case VMX_EXIT_RDTSC: return "RDTSC instruction";
+ case VMX_EXIT_RSM: return "RSM instruction";
+ case VMX_EXIT_VMCALL: return "VMCALL instruction";
+ case VMX_EXIT_VMCLEAR: return "VMCLEAR instruction";
+ case VMX_EXIT_VMLAUNCH: return "VMLAUNCH instruction";
+ case VMX_EXIT_VMPTRLD: return "VMPTRLD instruction";
+ case VMX_EXIT_VMPTRST: return "VMPTRST instruction";
+ case VMX_EXIT_VMREAD: return "VMREAD instruction";
+ case VMX_EXIT_VMRESUME: return "VMRESUME instruction";
+ case VMX_EXIT_VMWRITE: return "VMWRITE instruction";
+ case VMX_EXIT_VMXOFF: return "VMXOFF instruction";
+ case VMX_EXIT_VMXON: return "VMXON instruction";
+ case VMX_EXIT_CR_ACCESS: return "CR access";
+ case VMX_EXIT_MOV_DR: return "MOV DR instruction";
+ case VMX_EXIT_IO: return "I/O instruction";
+ case VMX_EXIT_RDMSR: return "RDMSR instruction";
+ case VMX_EXIT_WRMSR: return "WRMSR instruction";
+ case VMX_EXIT_ENTRY_FAILED_GUEST_STATE: return "guest state invalid";
+ case VMX_EXIT_ENTRY_FAILED_MSR_LOAD: return "MSR load failed";
+ case VMX_EXIT_MWAIT: return "MWAIT instruction";
+ case VMX_EXIT_MTF: return "monitor trap flag";
+ case VMX_EXIT_MONITOR: return "MONITOR instruction";
+ case VMX_EXIT_PAUSE: return "PAUSE instruction";
+ case VMX_EXIT_ENTRY_FAILED_MCE: return "MCE during entry";
+ case VMX_EXIT_TPR_BELOW_THRESHOLD: return "TPR below threshold";
+ case VMX_EXIT_APIC_ACCESS: return "APIC access";
+ case VMX_EXIT_VIRTUALIZED_EOI: return "virtualized EOI";
+ case VMX_EXIT_GDTR_IDTR: return "GDTR/IDTR access";
+ case VMX_EXIT_LDTR_TR: return "LDTR/TR access";
+ case VMX_EXIT_EPT_VIOLATION: return "EPT violation";
+ case VMX_EXIT_EPT_MISCONFIGURATION: return "EPT misconfiguration";
+ case VMX_EXIT_INVEPT: return "INVEPT instruction";
+ case VMX_EXIT_RDTSCP: return "RDTSCP instruction";
+ case VMX_EXIT_VMX_PREEMPTION_TIMER_EXPIRED:
+ return "preemption timer expired";
+ case VMX_EXIT_INVVPID: return "INVVPID instruction";
+ case VMX_EXIT_WBINVD: return "WBINVD instruction";
+ case VMX_EXIT_XSETBV: return "XSETBV instruction";
+ case VMX_EXIT_APIC_WRITE: return "APIC write";
+ case VMX_EXIT_RDRAND: return "RDRAND instruction";
+ case VMX_EXIT_INVPCID: return "INVPCID instruction";
+ case VMX_EXIT_VMFUNC: return "VMFUNC instruction";
+ case VMX_EXIT_RDSEED: return "RDSEED instruction";
+ case VMX_EXIT_XSAVES: return "XSAVES instruction";
+ case VMX_EXIT_XRSTORS: return "XRSTORS instruction";
+ default: return "unknown";
+ }
+}
+
+/*
+ * svm_exit_reason_decode
+ *
+ * Returns a human readable string describing exit type 'code'
+ */
+const char *
+svm_exit_reason_decode(uint32_t code)
+{
+ switch (code) {
+ case SVM_VMEXIT_CR0_READ: return "CR0 read"; /* 0x00 */
+ case SVM_VMEXIT_CR1_READ: return "CR1 read"; /* 0x01 */
+ case SVM_VMEXIT_CR2_READ: return "CR2 read"; /* 0x02 */
+ case SVM_VMEXIT_CR3_READ: return "CR3 read"; /* 0x03 */
+ case SVM_VMEXIT_CR4_READ: return "CR4 read"; /* 0x04 */
+ case SVM_VMEXIT_CR5_READ: return "CR5 read"; /* 0x05 */
+ case SVM_VMEXIT_CR6_READ: return "CR6 read"; /* 0x06 */
+ case SVM_VMEXIT_CR7_READ: return "CR7 read"; /* 0x07 */
+ case SVM_VMEXIT_CR8_READ: return "CR8 read"; /* 0x08 */
+ case SVM_VMEXIT_CR9_READ: return "CR9 read"; /* 0x09 */
+ case SVM_VMEXIT_CR10_READ: return "CR10 read"; /* 0x0A */
+ case SVM_VMEXIT_CR11_READ: return "CR11 read"; /* 0x0B */
+ case SVM_VMEXIT_CR12_READ: return "CR12 read"; /* 0x0C */
+ case SVM_VMEXIT_CR13_READ: return "CR13 read"; /* 0x0D */
+ case SVM_VMEXIT_CR14_READ: return "CR14 read"; /* 0x0E */
+ case SVM_VMEXIT_CR15_READ: return "CR15 read"; /* 0x0F */
+ case SVM_VMEXIT_CR0_WRITE: return "CR0 write"; /* 0x10 */
+ case SVM_VMEXIT_CR1_WRITE: return "CR1 write"; /* 0x11 */
+ case SVM_VMEXIT_CR2_WRITE: return "CR2 write"; /* 0x12 */
+ case SVM_VMEXIT_CR3_WRITE: return "CR3 write"; /* 0x13 */
+ case SVM_VMEXIT_CR4_WRITE: return "CR4 write"; /* 0x14 */
+ case SVM_VMEXIT_CR5_WRITE: return "CR5 write"; /* 0x15 */
+ case SVM_VMEXIT_CR6_WRITE: return "CR6 write"; /* 0x16 */
+ case SVM_VMEXIT_CR7_WRITE: return "CR7 write"; /* 0x17 */
+ case SVM_VMEXIT_CR8_WRITE: return "CR8 write"; /* 0x18 */
+ case SVM_VMEXIT_CR9_WRITE: return "CR9 write"; /* 0x19 */
+ case SVM_VMEXIT_CR10_WRITE: return "CR10 write"; /* 0x1A */
+ case SVM_VMEXIT_CR11_WRITE: return "CR11 write"; /* 0x1B */
+ case SVM_VMEXIT_CR12_WRITE: return "CR12 write"; /* 0x1C */
+ case SVM_VMEXIT_CR13_WRITE: return "CR13 write"; /* 0x1D */
+ case SVM_VMEXIT_CR14_WRITE: return "CR14 write"; /* 0x1E */
+ case SVM_VMEXIT_CR15_WRITE: return "CR15 write"; /* 0x1F */
+ case SVM_VMEXIT_DR0_READ: return "DR0 read"; /* 0x20 */
+ case SVM_VMEXIT_DR1_READ: return "DR1 read"; /* 0x21 */
+ case SVM_VMEXIT_DR2_READ: return "DR2 read"; /* 0x22 */
+ case SVM_VMEXIT_DR3_READ: return "DR3 read"; /* 0x23 */
+ case SVM_VMEXIT_DR4_READ: return "DR4 read"; /* 0x24 */
+ case SVM_VMEXIT_DR5_READ: return "DR5 read"; /* 0x25 */
+ case SVM_VMEXIT_DR6_READ: return "DR6 read"; /* 0x26 */
+ case SVM_VMEXIT_DR7_READ: return "DR7 read"; /* 0x27 */
+ case SVM_VMEXIT_DR8_READ: return "DR8 read"; /* 0x28 */
+ case SVM_VMEXIT_DR9_READ: return "DR9 read"; /* 0x29 */
+ case SVM_VMEXIT_DR10_READ: return "DR10 read"; /* 0x2A */
+ case SVM_VMEXIT_DR11_READ: return "DR11 read"; /* 0x2B */
+ case SVM_VMEXIT_DR12_READ: return "DR12 read"; /* 0x2C */
+ case SVM_VMEXIT_DR13_READ: return "DR13 read"; /* 0x2D */
+ case SVM_VMEXIT_DR14_READ: return "DR14 read"; /* 0x2E */
+ case SVM_VMEXIT_DR15_READ: return "DR15 read"; /* 0x2F */
+ case SVM_VMEXIT_DR0_WRITE: return "DR0 write"; /* 0x30 */
+ case SVM_VMEXIT_DR1_WRITE: return "DR1 write"; /* 0x31 */
+ case SVM_VMEXIT_DR2_WRITE: return "DR2 write"; /* 0x32 */
+ case SVM_VMEXIT_DR3_WRITE: return "DR3 write"; /* 0x33 */
+ case SVM_VMEXIT_DR4_WRITE: return "DR4 write"; /* 0x34 */
+ case SVM_VMEXIT_DR5_WRITE: return "DR5 write"; /* 0x35 */
+ case SVM_VMEXIT_DR6_WRITE: return "DR6 write"; /* 0x36 */
+ case SVM_VMEXIT_DR7_WRITE: return "DR7 write"; /* 0x37 */
+ case SVM_VMEXIT_DR8_WRITE: return "DR8 write"; /* 0x38 */
+ case SVM_VMEXIT_DR9_WRITE: return "DR9 write"; /* 0x39 */
+ case SVM_VMEXIT_DR10_WRITE: return "DR10 write"; /* 0x3A */
+ case SVM_VMEXIT_DR11_WRITE: return "DR11 write"; /* 0x3B */
+ case SVM_VMEXIT_DR12_WRITE: return "DR12 write"; /* 0x3C */
+ case SVM_VMEXIT_DR13_WRITE: return "DR13 write"; /* 0x3D */
+ case SVM_VMEXIT_DR14_WRITE: return "DR14 write"; /* 0x3E */
+ case SVM_VMEXIT_DR15_WRITE: return "DR15 write"; /* 0x3F */
+ case SVM_VMEXIT_EXCP0: return "Exception 0x00"; /* 0x40 */
+ case SVM_VMEXIT_EXCP1: return "Exception 0x01"; /* 0x41 */
+ case SVM_VMEXIT_EXCP2: return "Exception 0x02"; /* 0x42 */
+ case SVM_VMEXIT_EXCP3: return "Exception 0x03"; /* 0x43 */
+ case SVM_VMEXIT_EXCP4: return "Exception 0x04"; /* 0x44 */
+ case SVM_VMEXIT_EXCP5: return "Exception 0x05"; /* 0x45 */
+ case SVM_VMEXIT_EXCP6: return "Exception 0x06"; /* 0x46 */
+ case SVM_VMEXIT_EXCP7: return "Exception 0x07"; /* 0x47 */
+ case SVM_VMEXIT_EXCP8: return "Exception 0x08"; /* 0x48 */
+ case SVM_VMEXIT_EXCP9: return "Exception 0x09"; /* 0x49 */
+ case SVM_VMEXIT_EXCP10: return "Exception 0x0A"; /* 0x4A */
+ case SVM_VMEXIT_EXCP11: return "Exception 0x0B"; /* 0x4B */
+ case SVM_VMEXIT_EXCP12: return "Exception 0x0C"; /* 0x4C */
+ case SVM_VMEXIT_EXCP13: return "Exception 0x0D"; /* 0x4D */
+ case SVM_VMEXIT_EXCP14: return "Exception 0x0E"; /* 0x4E */
+ case SVM_VMEXIT_EXCP15: return "Exception 0x0F"; /* 0x4F */
+ case SVM_VMEXIT_EXCP16: return "Exception 0x10"; /* 0x50 */
+ case SVM_VMEXIT_EXCP17: return "Exception 0x11"; /* 0x51 */
+ case SVM_VMEXIT_EXCP18: return "Exception 0x12"; /* 0x52 */
+ case SVM_VMEXIT_EXCP19: return "Exception 0x13"; /* 0x53 */
+ case SVM_VMEXIT_EXCP20: return "Exception 0x14"; /* 0x54 */
+ case SVM_VMEXIT_EXCP21: return "Exception 0x15"; /* 0x55 */
+ case SVM_VMEXIT_EXCP22: return "Exception 0x16"; /* 0x56 */
+ case SVM_VMEXIT_EXCP23: return "Exception 0x17"; /* 0x57 */
+ case SVM_VMEXIT_EXCP24: return "Exception 0x18"; /* 0x58 */
+ case SVM_VMEXIT_EXCP25: return "Exception 0x19"; /* 0x59 */
+ case SVM_VMEXIT_EXCP26: return "Exception 0x1A"; /* 0x5A */
+ case SVM_VMEXIT_EXCP27: return "Exception 0x1B"; /* 0x5B */
+ case SVM_VMEXIT_EXCP28: return "Exception 0x1C"; /* 0x5C */
+ case SVM_VMEXIT_EXCP29: return "Exception 0x1D"; /* 0x5D */
+ case SVM_VMEXIT_EXCP30: return "Exception 0x1E"; /* 0x5E */
+ case SVM_VMEXIT_EXCP31: return "Exception 0x1F"; /* 0x5F */
+ case SVM_VMEXIT_INTR: return "External interrupt"; /* 0x60 */
+ case SVM_VMEXIT_NMI: return "NMI"; /* 0x61 */
+ case SVM_VMEXIT_SMI: return "SMI"; /* 0x62 */
+ case SVM_VMEXIT_INIT: return "INIT"; /* 0x63 */
+ case SVM_VMEXIT_VINTR: return "Interrupt window"; /* 0x64 */
+ case SVM_VMEXIT_CR0_SEL_WRITE: return "Sel CR0 write"; /* 0x65 */
+ case SVM_VMEXIT_IDTR_READ: return "IDTR read"; /* 0x66 */
+ case SVM_VMEXIT_GDTR_READ: return "GDTR read"; /* 0x67 */
+ case SVM_VMEXIT_LDTR_READ: return "LDTR read"; /* 0x68 */
+ case SVM_VMEXIT_TR_READ: return "TR read"; /* 0x69 */
+ case SVM_VMEXIT_IDTR_WRITE: return "IDTR write"; /* 0x6A */
+ case SVM_VMEXIT_GDTR_WRITE: return "GDTR write"; /* 0x6B */
+ case SVM_VMEXIT_LDTR_WRITE: return "LDTR write"; /* 0x6C */
+ case SVM_VMEXIT_TR_WRITE: return "TR write"; /* 0x6D */
+ case SVM_VMEXIT_RDTSC: return "RDTSC instruction"; /* 0x6E */
+ case SVM_VMEXIT_RDPMC: return "RDPMC instruction"; /* 0x6F */
+ case SVM_VMEXIT_PUSHF: return "PUSHF instruction"; /* 0x70 */
+ case SVM_VMEXIT_POPF: return "POPF instruction"; /* 0x71 */
+ case SVM_VMEXIT_CPUID: return "CPUID instruction"; /* 0x72 */
+ case SVM_VMEXIT_RSM: return "RSM instruction"; /* 0x73 */
+ case SVM_VMEXIT_IRET: return "IRET instruction"; /* 0x74 */
+ case SVM_VMEXIT_SWINT: return "SWINT instruction"; /* 0x75 */
+ case SVM_VMEXIT_INVD: return "INVD instruction"; /* 0x76 */
+ case SVM_VMEXIT_PAUSE: return "PAUSE instruction"; /* 0x77 */
+ case SVM_VMEXIT_HLT: return "HLT instruction"; /* 0x78 */
+ case SVM_VMEXIT_INVLPG: return "INVLPG instruction"; /* 0x79 */
+ case SVM_VMEXIT_INVLPGA: return "INVLPGA instruction"; /* 0x7A */
+ case SVM_VMEXIT_IOIO: return "I/O instruction"; /* 0x7B */
+ case SVM_VMEXIT_MSR: return "RDMSR/WRMSR instruction"; /* 0x7C */
+ case SVM_VMEXIT_TASK_SWITCH: return "Task switch"; /* 0x7D */
+ case SVM_VMEXIT_FERR_FREEZE: return "FERR_FREEZE"; /* 0x7E */
+ case SVM_VMEXIT_SHUTDOWN: return "Triple fault"; /* 0x7F */
+ case SVM_VMEXIT_VMRUN: return "VMRUN instruction"; /* 0x80 */
+ case SVM_VMEXIT_VMMCALL: return "VMMCALL instruction"; /* 0x81 */
+ case SVM_VMEXIT_VMLOAD: return "VMLOAD instruction"; /* 0x82 */
+ case SVM_VMEXIT_VMSAVE: return "VMSAVE instruction"; /* 0x83 */
+ case SVM_VMEXIT_STGI: return "STGI instruction"; /* 0x84 */
+ case SVM_VMEXIT_CLGI: return "CLGI instruction"; /* 0x85 */
+ case SVM_VMEXIT_SKINIT: return "SKINIT instruction"; /* 0x86 */
+ case SVM_VMEXIT_RDTSCP: return "RDTSCP instruction"; /* 0x87 */
+ case SVM_VMEXIT_ICEBP: return "ICEBP instruction"; /* 0x88 */
+ case SVM_VMEXIT_WBINVD: return "WBINVD instruction"; /* 0x89 */
+ case SVM_VMEXIT_MONITOR: return "MONITOR instruction"; /* 0x8A */
+ case SVM_VMEXIT_MWAIT: return "MWAIT instruction"; /* 0x8B */
+ case SVM_VMEXIT_MWAIT_CONDITIONAL: return "Cond MWAIT"; /* 0x8C */
+ case SVM_VMEXIT_NPF: return "NPT violation"; /* 0x400 */
+ default: return "unknown";
+ }
+}
+
+/*
+ * vmx_instruction_error_decode
+ *
+ * Returns a human readable string describing the instruction error in 'code'
+ */
+const char *
+vmx_instruction_error_decode(uint32_t code)
+{
+ switch (code) {
+ case 1: return "VMCALL: unsupported in VMX root";
+ case 2: return "VMCLEAR: invalid paddr";
+ case 3: return "VMCLEAR: VMXON pointer";
+ case 4: return "VMLAUNCH: non-clear VMCS";
+ case 5: return "VMRESUME: non-launched VMCS";
+ case 6: return "VMRESUME: executed after VMXOFF";
+ case 7: return "VM entry: invalid control field(s)";
+ case 8: return "VM entry: invalid host state field(s)";
+ case 9: return "VMPTRLD: invalid paddr";
+ case 10: return "VMPTRLD: VMXON pointer";
+ case 11: return "VMPTRLD: incorrect VMCS revid";
+ case 12: return "VMREAD/VMWRITE: unsupported VMCS field";
+ case 13: return "VMWRITE: RO VMCS field";
+ case 15: return "VMXON: unsupported in VMX root";
+ case 20: return "VMCALL: invalid VM exit control fields";
+ case 26: return "VM entry: blocked by MOV SS";
+ case 28: return "Invalid operand to INVEPT/INVVPID";
+ case 0x80000021: return "VM entry: invalid guest state";
+ case 0x80000022: return "VM entry: failure due to MSR loading";
+ case 0x80000029: return "VM entry: machine-check event";
+ default: return "unknown";
+ }
+}
+
+/*
+ * vcpu_state_decode
+ *
+ * Returns a human readable string describing the vcpu state in 'state'.
+ */
+const char *
+vcpu_state_decode(u_int state)
+{
+ switch (state) {
+ case VCPU_STATE_STOPPED: return "stopped";
+ case VCPU_STATE_RUNNING: return "running";
+ case VCPU_STATE_REQTERM: return "requesting termination";
+ case VCPU_STATE_TERMINATED: return "terminated";
+ case VCPU_STATE_UNKNOWN: return "unknown";
+ default: return "invalid";
+ }
+}
+
+#ifdef VMM_DEBUG
+/*
+ * dump_vcpu
+ *
+ * Dumps the VMX capabilities of vcpu 'vcpu'
+ */
+void
+dump_vcpu(struct vcpu *vcpu)
+{
+ printf("vcpu @ %p\n", vcpu);
+ printf(" parent vm @ %p\n", vcpu->vc_parent);
+ printf(" mode: ");
+ if (vcpu->vc_virt_mode == VMM_MODE_EPT) {
+ printf("VMX\n");
+ printf(" pinbased ctls: 0x%llx\n",
+ vcpu->vc_vmx_pinbased_ctls);
+ printf(" true pinbased ctls: 0x%llx\n",
+ vcpu->vc_vmx_true_pinbased_ctls);
+ CTRL_DUMP(vcpu, PINBASED, EXTERNAL_INT_EXITING);
+ CTRL_DUMP(vcpu, PINBASED, NMI_EXITING);
+ CTRL_DUMP(vcpu, PINBASED, VIRTUAL_NMIS);
+ CTRL_DUMP(vcpu, PINBASED, ACTIVATE_VMX_PREEMPTION_TIMER);
+ CTRL_DUMP(vcpu, PINBASED, PROCESS_POSTED_INTERRUPTS);
+ printf(" procbased ctls: 0x%llx\n",
+ vcpu->vc_vmx_procbased_ctls);
+ printf(" true procbased ctls: 0x%llx\n",
+ vcpu->vc_vmx_true_procbased_ctls);
+ CTRL_DUMP(vcpu, PROCBASED, INTERRUPT_WINDOW_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, USE_TSC_OFFSETTING);
+ CTRL_DUMP(vcpu, PROCBASED, HLT_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, INVLPG_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, MWAIT_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, RDPMC_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, RDTSC_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, CR3_LOAD_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, CR3_STORE_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, CR8_LOAD_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, CR8_STORE_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, USE_TPR_SHADOW);
+ CTRL_DUMP(vcpu, PROCBASED, NMI_WINDOW_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, MOV_DR_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, UNCONDITIONAL_IO_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, USE_IO_BITMAPS);
+ CTRL_DUMP(vcpu, PROCBASED, MONITOR_TRAP_FLAG);
+ CTRL_DUMP(vcpu, PROCBASED, USE_MSR_BITMAPS);
+ CTRL_DUMP(vcpu, PROCBASED, MONITOR_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED, PAUSE_EXITING);
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
+ IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1)) {
+ printf(" procbased2 ctls: 0x%llx\n",
+ vcpu->vc_vmx_procbased2_ctls);
+ CTRL_DUMP(vcpu, PROCBASED2, VIRTUALIZE_APIC);
+ CTRL_DUMP(vcpu, PROCBASED2, ENABLE_EPT);
+ CTRL_DUMP(vcpu, PROCBASED2, DESCRIPTOR_TABLE_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED2, ENABLE_RDTSCP);
+ CTRL_DUMP(vcpu, PROCBASED2, VIRTUALIZE_X2APIC_MODE);
+ CTRL_DUMP(vcpu, PROCBASED2, ENABLE_VPID);
+ CTRL_DUMP(vcpu, PROCBASED2, WBINVD_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED2, UNRESTRICTED_GUEST);
+ CTRL_DUMP(vcpu, PROCBASED2,
+ APIC_REGISTER_VIRTUALIZATION);
+ CTRL_DUMP(vcpu, PROCBASED2,
+ VIRTUAL_INTERRUPT_DELIVERY);
+ CTRL_DUMP(vcpu, PROCBASED2, PAUSE_LOOP_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED2, RDRAND_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED2, ENABLE_INVPCID);
+ CTRL_DUMP(vcpu, PROCBASED2, ENABLE_VM_FUNCTIONS);
+ CTRL_DUMP(vcpu, PROCBASED2, VMCS_SHADOWING);
+ CTRL_DUMP(vcpu, PROCBASED2, ENABLE_ENCLS_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED2, RDSEED_EXITING);
+ CTRL_DUMP(vcpu, PROCBASED2, ENABLE_PML);
+ CTRL_DUMP(vcpu, PROCBASED2, EPT_VIOLATION_VE);
+ CTRL_DUMP(vcpu, PROCBASED2, CONCEAL_VMX_FROM_PT);
+ CTRL_DUMP(vcpu, PROCBASED2, ENABLE_XSAVES_XRSTORS);
+ CTRL_DUMP(vcpu, PROCBASED2, ENABLE_TSC_SCALING);
+ }
+ printf(" entry ctls: 0x%llx\n",
+ vcpu->vc_vmx_entry_ctls);
+ printf(" true entry ctls: 0x%llx\n",
+ vcpu->vc_vmx_true_entry_ctls);
+ CTRL_DUMP(vcpu, ENTRY, LOAD_DEBUG_CONTROLS);
+ CTRL_DUMP(vcpu, ENTRY, IA32E_MODE_GUEST);
+ CTRL_DUMP(vcpu, ENTRY, ENTRY_TO_SMM);
+ CTRL_DUMP(vcpu, ENTRY, DEACTIVATE_DUAL_MONITOR_TREATMENT);
+ CTRL_DUMP(vcpu, ENTRY, LOAD_IA32_PERF_GLOBAL_CTRL_ON_ENTRY);
+ CTRL_DUMP(vcpu, ENTRY, LOAD_IA32_PAT_ON_ENTRY);
+ CTRL_DUMP(vcpu, ENTRY, LOAD_IA32_EFER_ON_ENTRY);
+ CTRL_DUMP(vcpu, ENTRY, LOAD_IA32_BNDCFGS_ON_ENTRY);
+ CTRL_DUMP(vcpu, ENTRY, CONCEAL_VM_ENTRIES_FROM_PT);
+ printf(" exit ctls: 0x%llx\n",
+ vcpu->vc_vmx_exit_ctls);
+ printf(" true exit ctls: 0x%llx\n",
+ vcpu->vc_vmx_true_exit_ctls);
+ CTRL_DUMP(vcpu, EXIT, SAVE_DEBUG_CONTROLS);
+ CTRL_DUMP(vcpu, EXIT, HOST_SPACE_ADDRESS_SIZE);
+ CTRL_DUMP(vcpu, EXIT, LOAD_IA32_PERF_GLOBAL_CTRL_ON_EXIT);
+ CTRL_DUMP(vcpu, EXIT, ACKNOWLEDGE_INTERRUPT_ON_EXIT);
+ CTRL_DUMP(vcpu, EXIT, SAVE_IA32_PAT_ON_EXIT);
+ CTRL_DUMP(vcpu, EXIT, LOAD_IA32_PAT_ON_EXIT);
+ CTRL_DUMP(vcpu, EXIT, SAVE_IA32_EFER_ON_EXIT);
+ CTRL_DUMP(vcpu, EXIT, LOAD_IA32_EFER_ON_EXIT);
+ CTRL_DUMP(vcpu, EXIT, SAVE_VMX_PREEMPTION_TIMER);
+ CTRL_DUMP(vcpu, EXIT, CLEAR_IA32_BNDCFGS_ON_EXIT);
+ CTRL_DUMP(vcpu, EXIT, CONCEAL_VM_EXITS_FROM_PT);
+ }
+}
+
+/*
+ * vmx_dump_vmcs_field
+ *
+ * Debug function to dump the contents of a single VMCS field
+ *
+ * Parameters:
+ * fieldid: VMCS Field ID
+ * msg: string to display
+ */
+void
+vmx_dump_vmcs_field(uint16_t fieldid, const char *msg)
+{
+ uint8_t width;
+ uint64_t val;
+
+
+ DPRINTF("%s (0x%04x): ", msg, fieldid);
+ if (vmread(fieldid, &val))
+ DPRINTF("???? ");
+ else {
+ /*
+ * Field width encoding : bits 13:14
+ *
+ * 0: 16-bit
+ * 1: 64-bit
+ * 2: 32-bit
+ * 3: natural width
+ */
+ width = (fieldid >> 13) & 0x3;
+ switch (width) {
+ case 0: DPRINTF("0x%04llx ", val); break;
+ case 1:
+ case 3: DPRINTF("0x%016llx ", val); break;
+ case 2: DPRINTF("0x%08llx ", val);
+ }
+ }
+}
+
+/*
+ * vmx_dump_vmcs
+ *
+ * Debug function to dump the contents of the current VMCS.
+ */
+void
+vmx_dump_vmcs(struct vcpu *vcpu)
+{
+ int has_sec, i;
+ uint32_t cr3_tgt_ct;
+
+ /* XXX save and load new vmcs, restore at end */
+
+ DPRINTF("--CURRENT VMCS STATE--\n");
+ printf("VMCS launched: %s\n",
+ (vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED) ? "Yes" : "No");
+ DPRINTF("VMXON revision : 0x%x\n",
+ curcpu()->ci_vmm_cap.vcc_vmx.vmx_vmxon_revision);
+ DPRINTF("CR0 fixed0: 0x%llx\n",
+ curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed0);
+ DPRINTF("CR0 fixed1: 0x%llx\n",
+ curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed1);
+ DPRINTF("CR4 fixed0: 0x%llx\n",
+ curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0);
+ DPRINTF("CR4 fixed1: 0x%llx\n",
+ curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1);
+ DPRINTF("MSR table size: 0x%x\n",
+ 512 * (curcpu()->ci_vmm_cap.vcc_vmx.vmx_msr_table_size + 1));
+
+ has_sec = vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
+ IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1);
+
+ if (has_sec) {
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_VPID, 1)) {
+ vmx_dump_vmcs_field(VMCS_GUEST_VPID, "VPID");
+ }
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PINBASED_CTLS,
+ IA32_VMX_PROCESS_POSTED_INTERRUPTS, 1)) {
+ vmx_dump_vmcs_field(VMCS_POSTED_INT_NOTIF_VECTOR,
+ "Posted Int Notif Vec");
+ }
+
+ if (has_sec) {
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_EPT_VIOLATION_VE, 1)) {
+ vmx_dump_vmcs_field(VMCS_EPTP_INDEX, "EPTP idx");
+ }
+ }
+
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_ES_SEL, "G.ES");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_CS_SEL, "G.CS");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_SS_SEL, "G.SS");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_DS_SEL, "G.DS");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_FS_SEL, "G.FS");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_GS_SEL, "G.GS");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_LDTR_SEL, "LDTR");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_TR_SEL, "G.TR");
+
+ if (has_sec) {
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_VIRTUAL_INTERRUPT_DELIVERY, 1)) {
+ vmx_dump_vmcs_field(VMCS_GUEST_INTERRUPT_STATUS,
+ "Int sts");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_PML, 1)) {
+ vmx_dump_vmcs_field(VMCS_GUEST_PML_INDEX, "PML Idx");
+ }
+ }
+
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_ES_SEL, "H.ES");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_CS_SEL, "H.CS");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_SS_SEL, "H.SS");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_DS_SEL, "H.DS");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_FS_SEL, "H.FS");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_GS_SEL, "H.GS");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_IO_BITMAP_A, "I/O Bitmap A");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_IO_BITMAP_B, "I/O Bitmap B");
+ DPRINTF("\n");
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
+ IA32_VMX_USE_MSR_BITMAPS, 1)) {
+ vmx_dump_vmcs_field(VMCS_MSR_BITMAP_ADDRESS, "MSR Bitmap");
+ DPRINTF("\n");
+ }
+
+ vmx_dump_vmcs_field(VMCS_EXIT_STORE_MSR_ADDRESS, "Exit Store MSRs");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_EXIT_LOAD_MSR_ADDRESS, "Exit Load MSRs");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_ENTRY_LOAD_MSR_ADDRESS, "Entry Load MSRs");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_EXECUTIVE_VMCS_POINTER, "Exec VMCS Ptr");
+ DPRINTF("\n");
+
+ if (has_sec) {
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_PML, 1)) {
+ vmx_dump_vmcs_field(VMCS_PML_ADDRESS, "PML Addr");
+ DPRINTF("\n");
+ }
+ }
+
+ vmx_dump_vmcs_field(VMCS_TSC_OFFSET, "TSC Offset");
+ DPRINTF("\n");
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
+ IA32_VMX_USE_TPR_SHADOW, 1)) {
+ vmx_dump_vmcs_field(VMCS_VIRTUAL_APIC_ADDRESS,
+ "Virtual APIC Addr");
+ DPRINTF("\n");
+ }
+
+ if (has_sec) {
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_VIRTUALIZE_APIC, 1)) {
+ vmx_dump_vmcs_field(VMCS_APIC_ACCESS_ADDRESS,
+ "APIC Access Addr");
+ DPRINTF("\n");
+ }
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PINBASED_CTLS,
+ IA32_VMX_PROCESS_POSTED_INTERRUPTS, 1)) {
+ vmx_dump_vmcs_field(VMCS_POSTED_INTERRUPT_DESC,
+ "Posted Int Desc Addr");
+ DPRINTF("\n");
+ }
+
+ if (has_sec) {
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_VM_FUNCTIONS, 1)) {
+ vmx_dump_vmcs_field(VMCS_VM_FUNCTION_CONTROLS,
+ "VM Function Controls");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_EPT, 1)) {
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_EPTP,
+ "EPT Pointer");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_VIRTUAL_INTERRUPT_DELIVERY, 1)) {
+ vmx_dump_vmcs_field(VMCS_EOI_EXIT_BITMAP_0,
+ "EOI Exit Bitmap 0");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_EOI_EXIT_BITMAP_1,
+ "EOI Exit Bitmap 1");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_EOI_EXIT_BITMAP_2,
+ "EOI Exit Bitmap 2");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_EOI_EXIT_BITMAP_3,
+ "EOI Exit Bitmap 3");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_VM_FUNCTIONS, 1)) {
+ /* We assume all CPUs have the same VMFUNC caps */
+ if (curcpu()->ci_vmm_cap.vcc_vmx.vmx_vm_func & 0x1) {
+ vmx_dump_vmcs_field(VMCS_EPTP_LIST_ADDRESS,
+ "EPTP List Addr");
+ DPRINTF("\n");
+ }
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_VMCS_SHADOWING, 1)) {
+ vmx_dump_vmcs_field(VMCS_VMREAD_BITMAP_ADDRESS,
+ "VMREAD Bitmap Addr");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_VMWRITE_BITMAP_ADDRESS,
+ "VMWRITE Bitmap Addr");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_EPT_VIOLATION_VE, 1)) {
+ vmx_dump_vmcs_field(VMCS_VIRTUALIZATION_EXC_ADDRESS,
+ "#VE Addr");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_XSAVES_XRSTORS, 1)) {
+ vmx_dump_vmcs_field(VMCS_XSS_EXITING_BITMAP,
+ "XSS exiting bitmap addr");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_ENCLS_EXITING, 1)) {
+ vmx_dump_vmcs_field(VMCS_ENCLS_EXITING_BITMAP,
+ "Encls exiting bitmap addr");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_TSC_SCALING, 1)) {
+ vmx_dump_vmcs_field(VMCS_TSC_MULTIPLIER,
+ "TSC scaling factor");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_EPT, 1)) {
+ vmx_dump_vmcs_field(VMCS_GUEST_PHYSICAL_ADDRESS,
+ "Guest PA");
+ DPRINTF("\n");
+ }
+ }
+
+ vmx_dump_vmcs_field(VMCS_LINK_POINTER, "VMCS Link Pointer");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_DEBUGCTL, "Guest DEBUGCTL");
+ DPRINTF("\n");
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_ENTRY_CTLS,
+ IA32_VMX_LOAD_IA32_PAT_ON_ENTRY, 1) ||
+ vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
+ IA32_VMX_SAVE_IA32_PAT_ON_EXIT, 1)) {
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_PAT,
+ "Guest PAT");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_ENTRY_CTLS,
+ IA32_VMX_LOAD_IA32_EFER_ON_ENTRY, 1) ||
+ vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
+ IA32_VMX_SAVE_IA32_EFER_ON_EXIT, 1)) {
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_EFER,
+ "Guest EFER");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_ENTRY_CTLS,
+ IA32_VMX_LOAD_IA32_PERF_GLOBAL_CTRL_ON_ENTRY, 1)) {
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_PERF_GBL_CTRL,
+ "Guest Perf Global Ctrl");
+ DPRINTF("\n");
+ }
+
+ if (has_sec) {
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_ENABLE_EPT, 1)) {
+ vmx_dump_vmcs_field(VMCS_GUEST_PDPTE0, "Guest PDPTE0");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_PDPTE1, "Guest PDPTE1");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_PDPTE2, "Guest PDPTE2");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_PDPTE3, "Guest PDPTE3");
+ DPRINTF("\n");
+ }
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_ENTRY_CTLS,
+ IA32_VMX_LOAD_IA32_BNDCFGS_ON_ENTRY, 1) ||
+ vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
+ IA32_VMX_CLEAR_IA32_BNDCFGS_ON_EXIT, 1)) {
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_BNDCFGS,
+ "Guest BNDCFGS");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
+ IA32_VMX_LOAD_IA32_PAT_ON_EXIT, 1)) {
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_PAT,
+ "Host PAT");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
+ IA32_VMX_LOAD_IA32_EFER_ON_EXIT, 1)) {
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_EFER,
+ "Host EFER");
+ DPRINTF("\n");
+ }
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
+ IA32_VMX_LOAD_IA32_PERF_GLOBAL_CTRL_ON_EXIT, 1)) {
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_PERF_GBL_CTRL,
+ "Host Perf Global Ctrl");
+ DPRINTF("\n");
+ }
+
+ vmx_dump_vmcs_field(VMCS_PINBASED_CTLS, "Pinbased Ctrls");
+ vmx_dump_vmcs_field(VMCS_PROCBASED_CTLS, "Procbased Ctrls");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_EXCEPTION_BITMAP, "Exception Bitmap");
+ vmx_dump_vmcs_field(VMCS_PF_ERROR_CODE_MASK, "#PF Err Code Mask");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_PF_ERROR_CODE_MATCH, "#PF Err Code Match");
+ vmx_dump_vmcs_field(VMCS_CR3_TARGET_COUNT, "CR3 Tgt Count");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_EXIT_CTLS, "Exit Ctrls");
+ vmx_dump_vmcs_field(VMCS_EXIT_MSR_STORE_COUNT, "Exit MSR Store Ct");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_EXIT_MSR_LOAD_COUNT, "Exit MSR Load Ct");
+ vmx_dump_vmcs_field(VMCS_ENTRY_CTLS, "Entry Ctrls");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_ENTRY_MSR_LOAD_COUNT, "Entry MSR Load Ct");
+ vmx_dump_vmcs_field(VMCS_ENTRY_INTERRUPTION_INFO, "Entry Int. Info");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_ENTRY_EXCEPTION_ERROR_CODE,
+ "Entry Ex. Err Code");
+ vmx_dump_vmcs_field(VMCS_ENTRY_INSTRUCTION_LENGTH, "Entry Insn Len");
+ DPRINTF("\n");
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
+ IA32_VMX_USE_TPR_SHADOW, 1)) {
+ vmx_dump_vmcs_field(VMCS_TPR_THRESHOLD, "TPR Threshold");
+ DPRINTF("\n");
+ }
+
+ if (has_sec) {
+ vmx_dump_vmcs_field(VMCS_PROCBASED2_CTLS, "2ndary Ctrls");
+ DPRINTF("\n");
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
+ IA32_VMX_PAUSE_LOOP_EXITING, 1)) {
+ vmx_dump_vmcs_field(VMCS_PLE_GAP, "PLE Gap");
+ vmx_dump_vmcs_field(VMCS_PLE_WINDOW, "PLE Window");
+ }
+ DPRINTF("\n");
+ }
+
+ vmx_dump_vmcs_field(VMCS_INSTRUCTION_ERROR, "Insn Error");
+ vmx_dump_vmcs_field(VMCS_EXIT_REASON, "Exit Reason");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_EXIT_INTERRUPTION_INFO, "Exit Int. Info");
+ vmx_dump_vmcs_field(VMCS_EXIT_INTERRUPTION_ERR_CODE,
+ "Exit Int. Err Code");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_IDT_VECTORING_INFO, "IDT vect info");
+ vmx_dump_vmcs_field(VMCS_IDT_VECTORING_ERROR_CODE,
+ "IDT vect err code");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_INSTRUCTION_LENGTH, "Insn Len");
+ vmx_dump_vmcs_field(VMCS_EXIT_INSTRUCTION_INFO, "Exit Insn Info");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_ES_LIMIT, "G. ES Lim");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_CS_LIMIT, "G. CS Lim");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_SS_LIMIT, "G. SS Lim");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_DS_LIMIT, "G. DS Lim");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_FS_LIMIT, "G. FS Lim");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_GS_LIMIT, "G. GS Lim");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_LDTR_LIMIT, "G. LDTR Lim");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_TR_LIMIT, "G. TR Lim");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_GDTR_LIMIT, "G. GDTR Lim");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_IDTR_LIMIT, "G. IDTR Lim");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_ES_AR, "G. ES AR");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_CS_AR, "G. CS AR");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_SS_AR, "G. SS AR");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_DS_AR, "G. DS AR");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_FS_AR, "G. FS AR");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_GS_AR, "G. GS AR");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_LDTR_AR, "G. LDTR AR");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_TR_AR, "G. TR AR");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_GUEST_INTERRUPTIBILITY_ST, "G. Int St.");
+ vmx_dump_vmcs_field(VMCS_GUEST_ACTIVITY_STATE, "G. Act St.");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_GUEST_SMBASE, "G. SMBASE");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_SYSENTER_CS, "G. SYSENTER CS");
+ DPRINTF("\n");
+
+ if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PINBASED_CTLS,
+ IA32_VMX_ACTIVATE_VMX_PREEMPTION_TIMER, 1)) {
+ vmx_dump_vmcs_field(VMCS_VMX_PREEMPTION_TIMER_VAL,
+ "VMX Preempt Timer");
+ DPRINTF("\n");
+ }
+
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_SYSENTER_CS, "H. SYSENTER CS");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_CR0_MASK, "CR0 Mask");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_CR4_MASK, "CR4 Mask");
+ DPRINTF("\n");
+
+ vmx_dump_vmcs_field(VMCS_CR0_READ_SHADOW, "CR0 RD Shadow");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_CR4_READ_SHADOW, "CR4 RD Shadow");
+ DPRINTF("\n");
+
+ /* We assume all CPUs have the same max CR3 target ct */
+ cr3_tgt_ct = curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr3_tgt_count;
+ DPRINTF("Max CR3 target count: 0x%x\n", cr3_tgt_ct);
+ if (cr3_tgt_ct <= VMX_MAX_CR3_TARGETS) {
+ for (i = 0 ; i < cr3_tgt_ct; i++) {
+ vmx_dump_vmcs_field(VMCS_CR3_TARGET_0 + (2 * i),
+ "CR3 Target");
+ DPRINTF("\n");
+ }
+ } else {
+ DPRINTF("(Bogus CR3 Target Count > %d", VMX_MAX_CR3_TARGETS);
+ }
+
+ vmx_dump_vmcs_field(VMCS_GUEST_EXIT_QUALIFICATION, "G. Exit Qual");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_IO_RCX, "I/O RCX");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_IO_RSI, "I/O RSI");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_IO_RDI, "I/O RDI");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_IO_RIP, "I/O RIP");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_LINEAR_ADDRESS, "G. Lin Addr");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_CR0, "G. CR0");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_CR3, "G. CR3");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_CR4, "G. CR4");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_ES_BASE, "G. ES Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_CS_BASE, "G. CS Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_SS_BASE, "G. SS Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_DS_BASE, "G. DS Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_FS_BASE, "G. FS Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_GS_BASE, "G. GS Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_LDTR_BASE, "G. LDTR Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_TR_BASE, "G. TR Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_GDTR_BASE, "G. GDTR Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_IDTR_BASE, "G. IDTR Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_DR7, "G. DR7");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_RSP, "G. RSP");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_RIP, "G. RIP");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_RFLAGS, "G. RFLAGS");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_PENDING_DBG_EXC, "G. Pend Dbg Exc");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_SYSENTER_ESP, "G. SYSENTER ESP");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_GUEST_IA32_SYSENTER_EIP, "G. SYSENTER EIP");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_CR0, "H. CR0");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_CR3, "H. CR3");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_CR4, "H. CR4");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_FS_BASE, "H. FS Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_GS_BASE, "H. GS Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_TR_BASE, "H. TR Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_GDTR_BASE, "H. GDTR Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_IDTR_BASE, "H. IDTR Base");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_SYSENTER_ESP, "H. SYSENTER ESP");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_SYSENTER_EIP, "H. SYSENTER EIP");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_RSP, "H. RSP");
+ DPRINTF("\n");
+ vmx_dump_vmcs_field(VMCS_HOST_IA32_RIP, "H. RIP");
+ DPRINTF("\n");
+}
+
+/*
+ * vmx_vcpu_dump_regs
+ *
+ * Debug function to print vcpu regs from the current vcpu
+ * note - vmcs for 'vcpu' must be on this pcpu.
+ *
+ * Parameters:
+ * vcpu - vcpu whose registers should be dumped
+ */
+void
+vmx_vcpu_dump_regs(struct vcpu *vcpu)
+{
+ uint64_t r;
+ int i;
+ struct vmx_msr_store *msr_store;
+
+ /* XXX reformat this for 32 bit guest as needed */
+ DPRINTF("vcpu @ %p in %s mode\n", vcpu, vmm_decode_cpu_mode(vcpu));
+ i = vmm_get_guest_cpu_cpl(vcpu);
+ if (i == -1)
+ DPRINTF(" CPL=unknown\n");
+ else
+ DPRINTF(" CPL=%d\n", i);
+ DPRINTF(" rax=0x%016llx rbx=0x%016llx rcx=0x%016llx\n",
+ vcpu->vc_gueststate.vg_rax, vcpu->vc_gueststate.vg_rbx,
+ vcpu->vc_gueststate.vg_rcx);
+ DPRINTF(" rdx=0x%016llx rbp=0x%016llx rdi=0x%016llx\n",
+ vcpu->vc_gueststate.vg_rdx, vcpu->vc_gueststate.vg_rbp,
+ vcpu->vc_gueststate.vg_rdi);
+ DPRINTF(" rsi=0x%016llx r8=0x%016llx r9=0x%016llx\n",
+ vcpu->vc_gueststate.vg_rsi, vcpu->vc_gueststate.vg_r8,
+ vcpu->vc_gueststate.vg_r9);
+ DPRINTF(" r10=0x%016llx r11=0x%016llx r12=0x%016llx\n",
+ vcpu->vc_gueststate.vg_r10, vcpu->vc_gueststate.vg_r11,
+ vcpu->vc_gueststate.vg_r12);
+ DPRINTF(" r13=0x%016llx r14=0x%016llx r15=0x%016llx\n",
+ vcpu->vc_gueststate.vg_r13, vcpu->vc_gueststate.vg_r14,
+ vcpu->vc_gueststate.vg_r15);
+
+ DPRINTF(" rip=0x%016llx rsp=", vcpu->vc_gueststate.vg_rip);
+ if (vmread(VMCS_GUEST_IA32_RSP, &r))
+ DPRINTF("(error reading)\n");
+ else
+ DPRINTF("0x%016llx\n", r);
+
+ DPRINTF(" rflags=");
+ if (vmread(VMCS_GUEST_IA32_RFLAGS, &r))
+ DPRINTF("(error reading)\n");
+ else {
+ DPRINTF("0x%016llx ", r);
+ vmm_decode_rflags(r);
+ }
+
+ DPRINTF(" cr0=");
+ if (vmread(VMCS_GUEST_IA32_CR0, &r))
+ DPRINTF("(error reading)\n");
+ else {
+ DPRINTF("0x%016llx ", r);
+ vmm_decode_cr0(r);
+ }
+
+ DPRINTF(" cr2=0x%016llx\n", vcpu->vc_gueststate.vg_cr2);
+
+ DPRINTF(" cr3=");
+ if (vmread(VMCS_GUEST_IA32_CR3, &r))
+ DPRINTF("(error reading)\n");
+ else {
+ DPRINTF("0x%016llx ", r);
+ vmm_decode_cr3(r);
+ }
+
+ DPRINTF(" cr4=");
+ if (vmread(VMCS_GUEST_IA32_CR4, &r))
+ DPRINTF("(error reading)\n");
+ else {
+ DPRINTF("0x%016llx ", r);
+ vmm_decode_cr4(r);
+ }
+
+ DPRINTF(" --Guest Segment Info--\n");
+
+ DPRINTF(" cs=");
+ if (vmread(VMCS_GUEST_IA32_CS_SEL, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
+
+ DPRINTF(" base=");
+ if (vmread(VMCS_GUEST_IA32_CS_BASE, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" limit=");
+ if (vmread(VMCS_GUEST_IA32_CS_LIMIT, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" a/r=");
+ if (vmread(VMCS_GUEST_IA32_CS_AR, &r))
+ DPRINTF("(error reading)\n");
+ else {
+ DPRINTF("0x%04llx\n ", r);
+ vmm_segment_desc_decode(r);
+ }
+
+ DPRINTF(" ds=");
+ if (vmread(VMCS_GUEST_IA32_DS_SEL, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
+
+ DPRINTF(" base=");
+ if (vmread(VMCS_GUEST_IA32_DS_BASE, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" limit=");
+ if (vmread(VMCS_GUEST_IA32_DS_LIMIT, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" a/r=");
+ if (vmread(VMCS_GUEST_IA32_DS_AR, &r))
+ DPRINTF("(error reading)\n");
+ else {
+ DPRINTF("0x%04llx\n ", r);
+ vmm_segment_desc_decode(r);
+ }
+
+ DPRINTF(" es=");
+ if (vmread(VMCS_GUEST_IA32_ES_SEL, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
+
+ DPRINTF(" base=");
+ if (vmread(VMCS_GUEST_IA32_ES_BASE, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" limit=");
+ if (vmread(VMCS_GUEST_IA32_ES_LIMIT, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" a/r=");
+ if (vmread(VMCS_GUEST_IA32_ES_AR, &r))
+ DPRINTF("(error reading)\n");
+ else {
+ DPRINTF("0x%04llx\n ", r);
+ vmm_segment_desc_decode(r);
+ }
+
+ DPRINTF(" fs=");
+ if (vmread(VMCS_GUEST_IA32_FS_SEL, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
+
+ DPRINTF(" base=");
+ if (vmread(VMCS_GUEST_IA32_FS_BASE, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" limit=");
+ if (vmread(VMCS_GUEST_IA32_FS_LIMIT, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" a/r=");
+ if (vmread(VMCS_GUEST_IA32_FS_AR, &r))
+ DPRINTF("(error reading)\n");
+ else {
+ DPRINTF("0x%04llx\n ", r);
+ vmm_segment_desc_decode(r);
+ }
+
+ DPRINTF(" gs=");
+ if (vmread(VMCS_GUEST_IA32_GS_SEL, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
+
+ DPRINTF(" base=");
+ if (vmread(VMCS_GUEST_IA32_GS_BASE, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" limit=");
+ if (vmread(VMCS_GUEST_IA32_GS_LIMIT, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" a/r=");
+ if (vmread(VMCS_GUEST_IA32_GS_AR, &r))
+ DPRINTF("(error reading)\n");
+ else {
+ DPRINTF("0x%04llx\n ", r);
+ vmm_segment_desc_decode(r);
+ }
+
+ DPRINTF(" ss=");
+ if (vmread(VMCS_GUEST_IA32_SS_SEL, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
+
+ DPRINTF(" base=");
+ if (vmread(VMCS_GUEST_IA32_SS_BASE, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" limit=");
+ if (vmread(VMCS_GUEST_IA32_SS_LIMIT, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" a/r=");
+ if (vmread(VMCS_GUEST_IA32_SS_AR, &r))
+ DPRINTF("(error reading)\n");
+ else {
+ DPRINTF("0x%04llx\n ", r);
+ vmm_segment_desc_decode(r);
+ }
+
+ DPRINTF(" tr=");
+ if (vmread(VMCS_GUEST_IA32_TR_SEL, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%04llx", r);
+
+ DPRINTF(" base=");
+ if (vmread(VMCS_GUEST_IA32_TR_BASE, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" limit=");
+ if (vmread(VMCS_GUEST_IA32_TR_LIMIT, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" a/r=");
+ if (vmread(VMCS_GUEST_IA32_TR_AR, &r))
+ DPRINTF("(error reading)\n");
+ else {
+ DPRINTF("0x%04llx\n ", r);
+ vmm_segment_desc_decode(r);
+ }
+
+ DPRINTF(" gdtr base=");
+ if (vmread(VMCS_GUEST_IA32_GDTR_BASE, &r))
+ DPRINTF("(error reading) ");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" limit=");
+ if (vmread(VMCS_GUEST_IA32_GDTR_LIMIT, &r))
+ DPRINTF("(error reading)\n");
+ else
+ DPRINTF("0x%016llx\n", r);
+
+ DPRINTF(" idtr base=");
+ if (vmread(VMCS_GUEST_IA32_IDTR_BASE, &r))
+ DPRINTF("(error reading) ");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" limit=");
+ if (vmread(VMCS_GUEST_IA32_IDTR_LIMIT, &r))
+ DPRINTF("(error reading)\n");
+ else
+ DPRINTF("0x%016llx\n", r);
+
+ DPRINTF(" ldtr=");
+ if (vmread(VMCS_GUEST_IA32_LDTR_SEL, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%04llx", r);
+
+ DPRINTF(" base=");
+ if (vmread(VMCS_GUEST_IA32_LDTR_BASE, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" limit=");
+ if (vmread(VMCS_GUEST_IA32_LDTR_LIMIT, &r))
+ DPRINTF("(error reading)");
+ else
+ DPRINTF("0x%016llx", r);
+
+ DPRINTF(" a/r=");
+ if (vmread(VMCS_GUEST_IA32_LDTR_AR, &r))
+ DPRINTF("(error reading)\n");
+ else {
+ DPRINTF("0x%04llx\n ", r);
+ vmm_segment_desc_decode(r);
+ }
+
+ DPRINTF(" --Guest MSRs @ 0x%016llx (paddr: 0x%016llx)--\n",
+ (uint64_t)vcpu->vc_vmx_msr_exit_save_va,
+ (uint64_t)vcpu->vc_vmx_msr_exit_save_pa);
+
+ msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
+
+ for (i = 0; i < VMX_NUM_MSR_STORE; i++) {
+ DPRINTF(" MSR %d @ %p : 0x%08llx (%s), "
+ "value=0x%016llx ",
+ i, &msr_store[i], msr_store[i].vms_index,
+ msr_name_decode(msr_store[i].vms_index),
+ msr_store[i].vms_data);
+ vmm_decode_msr_value(msr_store[i].vms_index,
+ msr_store[i].vms_data);
+ }
+}
+
+/*
+ * msr_name_decode
+ *
+ * Returns a human-readable name for the MSR supplied in 'msr'.
+ *
+ * Parameters:
+ * msr - The MSR to decode
+ *
+ * Return value:
+ * NULL-terminated character string containing the name of the MSR requested
+ */
+const char *
+msr_name_decode(uint32_t msr)
+{
+ /*
+ * Add as needed. Also consider adding a decode function when
+ * adding to this table.
+ */
+
+ switch (msr) {
+ case MSR_TSC: return "TSC";
+ case MSR_APICBASE: return "APIC base";
+ case MSR_IA32_FEATURE_CONTROL: return "IA32 feature control";
+ case MSR_PERFCTR0: return "perf counter 0";
+ case MSR_PERFCTR1: return "perf counter 1";
+ case MSR_TEMPERATURE_TARGET: return "temperature target";
+ case MSR_MTRRcap: return "MTRR cap";
+ case MSR_PERF_STATUS: return "perf status";
+ case MSR_PERF_CTL: return "perf control";
+ case MSR_MTRRvarBase: return "MTRR variable base";
+ case MSR_MTRRfix64K_00000: return "MTRR fixed 64K";
+ case MSR_MTRRfix16K_80000: return "MTRR fixed 16K";
+ case MSR_MTRRfix4K_C0000: return "MTRR fixed 4K";
+ case MSR_CR_PAT: return "PAT";
+ case MSR_MTRRdefType: return "MTRR default type";
+ case MSR_EFER: return "EFER";
+ case MSR_STAR: return "STAR";
+ case MSR_LSTAR: return "LSTAR";
+ case MSR_CSTAR: return "CSTAR";
+ case MSR_SFMASK: return "SFMASK";
+ case MSR_FSBASE: return "FSBASE";
+ case MSR_GSBASE: return "GSBASE";
+ case MSR_KERNELGSBASE: return "KGSBASE";
+ case MSR_MISC_ENABLE: return "Misc Enable";
+ default: return "Unknown MSR";
+ }
+}
+
+/*
+ * vmm_segment_desc_decode
+ *
+ * Debug function to print segment information for supplied descriptor
+ *
+ * Parameters:
+ * val - The A/R bytes for the segment descriptor to decode
+ */
+void
+vmm_segment_desc_decode(uint64_t val)
+{
+ uint16_t ar;
+ uint8_t g, type, s, dpl, p, dib, l;
+ uint32_t unusable;
+
+ /* Exit early on unusable descriptors */
+ unusable = val & 0x10000;
+ if (unusable) {
+ DPRINTF("(unusable)\n");
+ return;
+ }
+
+ ar = (uint16_t)val;
+
+ g = (ar & 0x8000) >> 15;
+ dib = (ar & 0x4000) >> 14;
+ l = (ar & 0x2000) >> 13;
+ p = (ar & 0x80) >> 7;
+ dpl = (ar & 0x60) >> 5;
+ s = (ar & 0x10) >> 4;
+ type = (ar & 0xf);
+
+ DPRINTF("granularity=%d dib=%d l(64 bit)=%d present=%d sys=%d ",
+ g, dib, l, p, s);
+
+ DPRINTF("type=");
+ if (!s) {
+ switch (type) {
+ case SDT_SYSLDT: DPRINTF("ldt\n"); break;
+ case SDT_SYS386TSS: DPRINTF("tss (available)\n"); break;
+ case SDT_SYS386BSY: DPRINTF("tss (busy)\n"); break;
+ case SDT_SYS386CGT: DPRINTF("call gate\n"); break;
+ case SDT_SYS386IGT: DPRINTF("interrupt gate\n"); break;
+ case SDT_SYS386TGT: DPRINTF("trap gate\n"); break;
+ /* XXX handle 32 bit segment types by inspecting mode */
+ default: DPRINTF("unknown");
+ }
+ } else {
+ switch (type + 16) {
+ case SDT_MEMRO: DPRINTF("data, r/o\n"); break;
+ case SDT_MEMROA: DPRINTF("data, r/o, accessed\n"); break;
+ case SDT_MEMRW: DPRINTF("data, r/w\n"); break;
+ case SDT_MEMRWA: DPRINTF("data, r/w, accessed\n"); break;
+ case SDT_MEMROD: DPRINTF("data, r/o, expand down\n"); break;
+ case SDT_MEMRODA: DPRINTF("data, r/o, expand down, "
+ "accessed\n");
+ break;
+ case SDT_MEMRWD: DPRINTF("data, r/w, expand down\n"); break;
+ case SDT_MEMRWDA: DPRINTF("data, r/w, expand down, "
+ "accessed\n");
+ break;
+ case SDT_MEME: DPRINTF("code, x only\n"); break;
+ case SDT_MEMEA: DPRINTF("code, x only, accessed\n");
+ case SDT_MEMER: DPRINTF("code, r/x\n"); break;
+ case SDT_MEMERA: DPRINTF("code, r/x, accessed\n"); break;
+ case SDT_MEMEC: DPRINTF("code, x only, conforming\n"); break;
+ case SDT_MEMEAC: DPRINTF("code, x only, conforming, "
+ "accessed\n");
+ break;
+ case SDT_MEMERC: DPRINTF("code, r/x, conforming\n"); break;
+ case SDT_MEMERAC: DPRINTF("code, r/x, conforming, accessed\n");
+ break;
+ }
+ }
+}
+
+void
+vmm_decode_cr0(uint64_t cr0)
+{
+ struct vmm_reg_debug_info cr0_info[11] = {
+ { CR0_PG, "PG ", "pg " },
+ { CR0_CD, "CD ", "cd " },
+ { CR0_NW, "NW ", "nw " },
+ { CR0_AM, "AM ", "am " },
+ { CR0_WP, "WP ", "wp " },
+ { CR0_NE, "NE ", "ne " },
+ { CR0_ET, "ET ", "et " },
+ { CR0_TS, "TS ", "ts " },
+ { CR0_EM, "EM ", "em " },
+ { CR0_MP, "MP ", "mp " },
+ { CR0_PE, "PE", "pe" }
+ };
+
+ uint8_t i;
+
+ DPRINTF("(");
+ for (i = 0; i < nitems(cr0_info); i++)
+ if (cr0 & cr0_info[i].vrdi_bit)
+ DPRINTF("%s", cr0_info[i].vrdi_present);
+ else
+ DPRINTF("%s", cr0_info[i].vrdi_absent);
+
+ DPRINTF(")\n");
+}
+
+void
+vmm_decode_cr3(uint64_t cr3)
+{
+ struct vmm_reg_debug_info cr3_info[2] = {
+ { CR3_PWT, "PWT ", "pwt "},
+ { CR3_PCD, "PCD", "pcd"}
+ };
+
+ uint64_t cr4;
+ uint8_t i;
+
+ if (vmread(VMCS_GUEST_IA32_CR4, &cr4)) {
+ DPRINTF("(error)\n");
+ return;
+ }
+
+ /* If CR4.PCIDE = 0, interpret CR3.PWT and CR3.PCD */
+ if ((cr4 & CR4_PCIDE) == 0) {
+ DPRINTF("(");
+ for (i = 0 ; i < nitems(cr3_info) ; i++)
+ if (cr3 & cr3_info[i].vrdi_bit)
+ DPRINTF("%s", cr3_info[i].vrdi_present);
+ else
+ DPRINTF("%s", cr3_info[i].vrdi_absent);
+
+ DPRINTF(")\n");
+ } else {
+ DPRINTF("(pcid=0x%llx)\n", cr3 & 0xFFF);
+ }
+}
+
+void
+vmm_decode_cr4(uint64_t cr4)
+{
+ struct vmm_reg_debug_info cr4_info[19] = {
+ { CR4_PKE, "PKE ", "pke "},
+ { CR4_SMAP, "SMAP ", "smap "},
+ { CR4_SMEP, "SMEP ", "smep "},
+ { CR4_OSXSAVE, "OSXSAVE ", "osxsave "},
+ { CR4_PCIDE, "PCIDE ", "pcide "},
+ { CR4_FSGSBASE, "FSGSBASE ", "fsgsbase "},
+ { CR4_SMXE, "SMXE ", "smxe "},
+ { CR4_VMXE, "VMXE ", "vmxe "},
+ { CR4_OSXMMEXCPT, "OSXMMEXCPT ", "osxmmexcpt "},
+ { CR4_OSFXSR, "OSFXSR ", "osfxsr "},
+ { CR4_PCE, "PCE ", "pce "},
+ { CR4_PGE, "PGE ", "pge "},
+ { CR4_MCE, "MCE ", "mce "},
+ { CR4_PAE, "PAE ", "pae "},
+ { CR4_PSE, "PSE ", "pse "},
+ { CR4_DE, "DE ", "de "},
+ { CR4_TSD, "TSD ", "tsd "},
+ { CR4_PVI, "PVI ", "pvi "},
+ { CR4_VME, "VME", "vme"}
+ };
+
+ uint8_t i;
+
+ DPRINTF("(");
+ for (i = 0; i < nitems(cr4_info); i++)
+ if (cr4 & cr4_info[i].vrdi_bit)
+ DPRINTF("%s", cr4_info[i].vrdi_present);
+ else
+ DPRINTF("%s", cr4_info[i].vrdi_absent);
+
+ DPRINTF(")\n");
+}
+
+void
+vmm_decode_apicbase_msr_value(uint64_t apicbase)
+{
+ struct vmm_reg_debug_info apicbase_info[3] = {
+ { APICBASE_BSP, "BSP ", "bsp "},
+ { APICBASE_ENABLE_X2APIC, "X2APIC ", "x2apic "},
+ { APICBASE_GLOBAL_ENABLE, "GLB_EN", "glb_en"}
+ };
+
+ uint8_t i;
+
+ DPRINTF("(");
+ for (i = 0; i < nitems(apicbase_info); i++)
+ if (apicbase & apicbase_info[i].vrdi_bit)
+ DPRINTF("%s", apicbase_info[i].vrdi_present);
+ else
+ DPRINTF("%s", apicbase_info[i].vrdi_absent);
+
+ DPRINTF(")\n");
+}
+
+void
+vmm_decode_ia32_fc_value(uint64_t fcr)
+{
+ struct vmm_reg_debug_info fcr_info[4] = {
+ { IA32_FEATURE_CONTROL_LOCK, "LOCK ", "lock "},
+ { IA32_FEATURE_CONTROL_SMX_EN, "SMX ", "smx "},
+ { IA32_FEATURE_CONTROL_VMX_EN, "VMX ", "vmx "},
+ { IA32_FEATURE_CONTROL_SENTER_EN, "SENTER ", "senter "}
+ };
+
+ uint8_t i;
+
+ DPRINTF("(");
+ for (i = 0; i < nitems(fcr_info); i++)
+ if (fcr & fcr_info[i].vrdi_bit)
+ DPRINTF("%s", fcr_info[i].vrdi_present);
+ else
+ DPRINTF("%s", fcr_info[i].vrdi_absent);
+
+ if (fcr & IA32_FEATURE_CONTROL_SENTER_EN)
+ DPRINTF(" [SENTER param = 0x%llx]",
+ (fcr & IA32_FEATURE_CONTROL_SENTER_PARAM_MASK) >> 8);
+
+ DPRINTF(")\n");
+}
+
+void
+vmm_decode_mtrrcap_value(uint64_t val)
+{
+ struct vmm_reg_debug_info mtrrcap_info[3] = {
+ { MTRRcap_FIXED, "FIXED ", "fixed "},
+ { MTRRcap_WC, "WC ", "wc "},
+ { MTRRcap_SMRR, "SMRR ", "smrr "}
+ };
+
+ uint8_t i;
+
+ DPRINTF("(");
+ for (i = 0; i < nitems(mtrrcap_info); i++)
+ if (val & mtrrcap_info[i].vrdi_bit)
+ DPRINTF("%s", mtrrcap_info[i].vrdi_present);
+ else
+ DPRINTF("%s", mtrrcap_info[i].vrdi_absent);
+
+ if (val & MTRRcap_FIXED)
+ DPRINTF(" [nr fixed ranges = 0x%llx]",
+ (val & 0xff));
+
+ DPRINTF(")\n");
+}
+
+void
+vmm_decode_perf_status_value(uint64_t val)
+{
+ DPRINTF("(pstate ratio = 0x%llx)\n", (val & 0xffff));
+}
+
+void vmm_decode_perf_ctl_value(uint64_t val)
+{
+ DPRINTF("(%s ", (val & PERF_CTL_TURBO) ? "TURBO" : "turbo");
+ DPRINTF("pstate req = 0x%llx)\n", (val & 0xfffF));
+}
+
+void
+vmm_decode_mtrrdeftype_value(uint64_t mtrrdeftype)
+{
+ struct vmm_reg_debug_info mtrrdeftype_info[2] = {
+ { MTRRdefType_FIXED_ENABLE, "FIXED ", "fixed "},
+ { MTRRdefType_ENABLE, "ENABLED ", "enabled "},
+ };
+
+ uint8_t i;
+ int type;
+
+ DPRINTF("(");
+ for (i = 0; i < nitems(mtrrdeftype_info); i++)
+ if (mtrrdeftype & mtrrdeftype_info[i].vrdi_bit)
+ DPRINTF("%s", mtrrdeftype_info[i].vrdi_present);
+ else
+ DPRINTF("%s", mtrrdeftype_info[i].vrdi_absent);
+
+ DPRINTF("type = ");
+ type = mtrr2mrt(mtrrdeftype & 0xff);
+ switch (type) {
+ case MDF_UNCACHEABLE: DPRINTF("UC"); break;
+ case MDF_WRITECOMBINE: DPRINTF("WC"); break;
+ case MDF_WRITETHROUGH: DPRINTF("WT"); break;
+ case MDF_WRITEPROTECT: DPRINTF("RO"); break;
+ case MDF_WRITEBACK: DPRINTF("WB"); break;
+ case MDF_UNKNOWN:
+ default:
+ DPRINTF("??");
+ break;
+ }
+
+ DPRINTF(")\n");
+}
+
+void
+vmm_decode_efer_value(uint64_t efer)
+{
+ struct vmm_reg_debug_info efer_info[4] = {
+ { EFER_SCE, "SCE ", "sce "},
+ { EFER_LME, "LME ", "lme "},
+ { EFER_LMA, "LMA ", "lma "},
+ { EFER_NXE, "NXE", "nxe"},
+ };
+
+ uint8_t i;
+
+ DPRINTF("(");
+ for (i = 0; i < nitems(efer_info); i++)
+ if (efer & efer_info[i].vrdi_bit)
+ DPRINTF("%s", efer_info[i].vrdi_present);
+ else
+ DPRINTF("%s", efer_info[i].vrdi_absent);
+
+ DPRINTF(")\n");
+}
+
+void
+vmm_decode_msr_value(uint64_t msr, uint64_t val)
+{
+ switch (msr) {
+ case MSR_APICBASE: vmm_decode_apicbase_msr_value(val); break;
+ case MSR_IA32_FEATURE_CONTROL: vmm_decode_ia32_fc_value(val); break;
+ case MSR_MTRRcap: vmm_decode_mtrrcap_value(val); break;
+ case MSR_PERF_STATUS: vmm_decode_perf_status_value(val); break;
+ case MSR_PERF_CTL: vmm_decode_perf_ctl_value(val); break;
+ case MSR_MTRRdefType: vmm_decode_mtrrdeftype_value(val); break;
+ case MSR_EFER: vmm_decode_efer_value(val); break;
+ case MSR_MISC_ENABLE: vmm_decode_misc_enable_value(val); break;
+ default: DPRINTF("\n");
+ }
+}
+
+void
+vmm_decode_rflags(uint64_t rflags)
+{
+ struct vmm_reg_debug_info rflags_info[16] = {
+ { PSL_C, "CF ", "cf "},
+ { PSL_PF, "PF ", "pf "},
+ { PSL_AF, "AF ", "af "},
+ { PSL_Z, "ZF ", "zf "},
+ { PSL_N, "SF ", "sf "}, /* sign flag */
+ { PSL_T, "TF ", "tf "},
+ { PSL_I, "IF ", "if "},
+ { PSL_D, "DF ", "df "},
+ { PSL_V, "OF ", "of "}, /* overflow flag */
+ { PSL_NT, "NT ", "nt "},
+ { PSL_RF, "RF ", "rf "},
+ { PSL_VM, "VM ", "vm "},
+ { PSL_AC, "AC ", "ac "},
+ { PSL_VIF, "VIF ", "vif "},
+ { PSL_VIP, "VIP ", "vip "},
+ { PSL_ID, "ID ", "id "},
+ };
+
+ uint8_t i, iopl;
+
+ DPRINTF("(");
+ for (i = 0; i < nitems(rflags_info); i++)
+ if (rflags & rflags_info[i].vrdi_bit)
+ DPRINTF("%s", rflags_info[i].vrdi_present);
+ else
+ DPRINTF("%s", rflags_info[i].vrdi_absent);
+
+ iopl = (rflags & PSL_IOPL) >> 12;
+ DPRINTF("IOPL=%d", iopl);
+
+ DPRINTF(")\n");
+}
+
+void
+vmm_decode_misc_enable_value(uint64_t misc)
+{
+ struct vmm_reg_debug_info misc_info[10] = {
+ { MISC_ENABLE_FAST_STRINGS, "FSE ", "fse "},
+ { MISC_ENABLE_TCC, "TCC ", "tcc "},
+ { MISC_ENABLE_PERF_MON_AVAILABLE, "PERF ", "perf "},
+ { MISC_ENABLE_BTS_UNAVAILABLE, "BTSU ", "btsu "},
+ { MISC_ENABLE_PEBS_UNAVAILABLE, "PEBSU ", "pebsu "},
+ { MISC_ENABLE_EIST_ENABLED, "EIST ", "eist "},
+ { MISC_ENABLE_ENABLE_MONITOR_FSM, "MFSM ", "mfsm "},
+ { MISC_ENABLE_LIMIT_CPUID_MAXVAL, "CMAX ", "cmax "},
+ { MISC_ENABLE_xTPR_MESSAGE_DISABLE, "xTPRD ", "xtprd "},
+ { MISC_ENABLE_XD_BIT_DISABLE, "NXD", "nxd"},
+ };
+
+ uint8_t i;
+
+ DPRINTF("(");
+ for (i = 0; i < nitems(misc_info); i++)
+ if (misc & misc_info[i].vrdi_bit)
+ DPRINTF("%s", misc_info[i].vrdi_present);
+ else
+ DPRINTF("%s", misc_info[i].vrdi_absent);
+
+ DPRINTF(")\n");
+}
+
+const char *
+vmm_decode_cpu_mode(struct vcpu *vcpu)
+{
+ int mode = vmm_get_guest_cpu_mode(vcpu);
+
+ switch (mode) {
+ case VMM_CPU_MODE_REAL: return "real";
+ case VMM_CPU_MODE_PROT: return "16 bit protected";
+ case VMM_CPU_MODE_PROT32: return "32 bit protected";
+ case VMM_CPU_MODE_COMPAT: return "compatibility";
+ case VMM_CPU_MODE_LONG: return "long";
+ default: return "unknown";
+ }
+}
+#endif /* VMM_DEBUG */