*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53-24 = 29 bit trailing zeros.
- * 2. Perform y*log2(x) = n+y' by simulating muti-precision
+ * 2. Perform y*log2(x) = n+y' by simulating multi-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
- * always returns the correct integer provided it is
+ * always returns the correct integer provided it is
* representable.
*
* Constants :
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "math.h"
#include "math_private.h"
-static const double
+static const double
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
- if((iy|ly)==0) return one;
+ if((iy|ly)==0) return one;
/* +-NaN return x+y */
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
- iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
- return x+y;
+ iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
+ return x+y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 2 ... y is an even int
*/
yisint = 0;
- if(hx<0) {
+ if(hx<0) {
if(iy>=0x43400000) yisint = 2; /* even integer y */
else if(iy>=0x3ff00000) {
k = (iy>>20)-0x3ff; /* exponent */
j = iy>>(20-k);
if((j<<(20-k))==iy) yisint = 2-(j&1);
}
- }
- }
+ }
+ }
/* special value of y */
- if(ly==0) {
+ if(ly==0) {
if (iy==0x7ff00000) { /* y is +-inf */
if(((ix-0x3ff00000)|lx)==0)
return y - y; /* inf**+-1 is NaN */
return (hy>=0)? y: zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy<0)?-y: zero;
- }
+ }
if(iy==0x3ff00000) { /* y is +-1 */
if(hy<0) return one/x; else return x;
}
if(hy==0x40000000) return x*x; /* y is 2 */
if(hy==0x3fe00000) { /* y is 0.5 */
if(hx>=0) /* x >= +0 */
- return __ieee754_sqrt(x);
+ return __ieee754_sqrt(x);
}
}
if(hx<0) {
if(((ix-0x3ff00000)|yisint)==0) {
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
- } else if(yisint==1)
+ } else if(yisint==1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
-
+
+ n = (hx>>31)+1;
+
/* (x<0)**(non-int) is NaN */
- if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
+ if((n|yisint)==0) return (x-x)/(x-x);
+
+ s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
+ if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
/* |y| is huge */
if(iy>0x41e00000) { /* if |y| > 2**31 */
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
}
/* over/underflow if x is not close to one */
- if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
- if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
- /* now |1-x| is tiny <= 2**-20, suffice to compute
+ if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
+ if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
+ /* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
- t = x-1; /* t has 20 trailing zeros */
+ t = ax-one; /* t has 20 trailing zeros */
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
v = t*ivln2_l-w*ivln2;
SET_LOW_WORD(t1,0);
t2 = v-(t1-u);
} else {
- double s2,s_h,s_l,t_h,t_l;
+ double ss,s2,s_h,s_l,t_h,t_l;
n = 0;
/* take care subnormal number */
if(ix<0x00100000)
else {k=0;n+=1;ix -= 0x00100000;}
SET_HIGH_WORD(ax,ix);
- /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one/(ax+bp[k]);
- s = u*v;
- s_h = s;
+ ss = u*v;
+ s_h = ss;
SET_LOW_WORD(s_h,0);
/* t_h=ax+bp[k] High */
t_h = zero;
t_l = ax - (t_h-bp[k]);
s_l = v*((u-s_h*t_h)-s_h*t_l);
/* compute log(ax) */
- s2 = s*s;
+ s2 = ss*ss;
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
- r += s_l*(s_h+s);
+ r += s_l*(s_h+ss);
s2 = s_h*s_h;
t_h = 3.0+s2+r;
SET_LOW_WORD(t_h,0);
t_l = r-((t_h-3.0)-s2);
- /* u+v = s*(1+...) */
+ /* u+v = ss*(1+...) */
u = s_h*t_h;
- v = s_l*t_h+t_l*s;
- /* 2/(3log2)*(s+...) */
+ v = s_l*t_h+t_l*ss;
+ /* 2/(3log2)*(ss+...) */
p_h = u+v;
SET_LOW_WORD(p_h,0);
p_l = v-(p_h-u);
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l*p_h+p_l*cp+dp_l[k];
- /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (double)n;
t1 = (((z_h+z_l)+dp_h[k])+t);
SET_LOW_WORD(t1,0);
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
}
- s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
- if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
- s = -one;/* (-ve)**(odd int) */
-
/* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
yy1 = y;
SET_LOW_WORD(yy1,0);
n = ((n&0x000fffff)|0x00100000)>>(20-k);
if(j<0) n = -n;
p_h -= t;
- }
+ }
t = p_l+p_h;
SET_LOW_WORD(t,0);
u = t*lg2_h;