Implement the Baillie-PSW primality test
authortb <tb@openbsd.org>
Wed, 13 Jul 2022 06:32:15 +0000 (06:32 +0000)
committertb <tb@openbsd.org>
Wed, 13 Jul 2022 06:32:15 +0000 (06:32 +0000)
It has long been known that pure Miller-Rabin primality tests are
insufficient. "Prime and Prejudice: Primality Testing Under Adversarial
Conditions" https://eprint.iacr.org/2018/749 points out severe flaws
in many widely used libraries. In particular, they exhibited a method to
generate 2048-bit composites that bypass the default OpenSSL (and hence
LibreSSL) primality test with a probability of 1/16 (!).

As a remedy, the authors recommend switching to using BPSW wherever
possible. This possibility has always been there, but someone had to
sit down and actually implement a properly licensed piece of code.

Fortunately, espie suggested to Martin Grenouilloux to do precisely this
after asking us whether we would be interested. Of course we were!
After a good first implementation from Martin and a lot of back and
forth, we came up with the present version.

This implementation is ~50% slower than the current default Miller-Rabin
test, but that is a small price to pay given the improvements.

Thanks to Martin Grenouilloux <martin.grenouilloux () lse ! epita ! fr>
for this awesome work, to espie without whom it wouldn't have happened,
and to djm for pointing us at this problem a long time back.

ok jsing

lib/libcrypto/bn/bn_bpsw.c [new file with mode: 0644]
lib/libcrypto/bn/bn_lcl.h

diff --git a/lib/libcrypto/bn/bn_bpsw.c b/lib/libcrypto/bn/bn_bpsw.c
new file mode 100644 (file)
index 0000000..0741c6f
--- /dev/null
@@ -0,0 +1,420 @@
+/*     $OpenBSD: bn_bpsw.c,v 1.1 2022/07/13 06:32:15 tb Exp $ */
+/*
+ * Copyright (c) 2022 Martin Grenouilloux <martin.grenouilloux@lse.epita.fr>
+ * Copyright (c) 2022 Theo Buehler <tb@openbsd.org>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+#include <openssl/bn.h>
+
+#include "bn_lcl.h"
+#include "bn_prime.h"
+
+/*
+ * For an odd n compute a / 2 (mod n). If a is even, we can do a plain
+ * division, otherwise calculate (a + n) / 2. Then reduce (mod n).
+ */
+static int
+bn_div_by_two_mod_odd_n(BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
+{
+       if (!BN_is_odd(n))
+               return 0;
+
+       if (BN_is_odd(a)) {
+               if (!BN_add(a, a, n))
+                       return 0;
+       }
+       if (!BN_rshift1(a, a))
+               return 0;
+       if (!BN_mod_ct(a, a, n, ctx))
+               return 0;
+
+       return 1;
+}
+
+/*
+ * Given the next binary digit of k and the current Lucas terms U and V, this
+ * helper computes the next terms in the Lucas sequence defined as follows:
+ *
+ *   U' = U * V                  (mod n)
+ *   V' = (V^2 + D * U^2) / 2    (mod n)
+ *
+ * If digit == 0, bn_lucas_step() returns U' and V'. If digit == 1, it returns
+ *
+ *   U'' = (U' + V') / 2         (mod n)
+ *   V'' = (V' + D * U') / 2     (mod n)
+ *
+ * Compare with FIPS 186-4, Appendix C.3.3, step 6.
+ */
+static int
+bn_lucas_step(BIGNUM *U, BIGNUM *V, int digit, const BIGNUM *D,
+    const BIGNUM *n, BN_CTX *ctx)
+{
+       BIGNUM *tmp;
+       int ret = 0;
+
+       BN_CTX_start(ctx);
+
+       if ((tmp = BN_CTX_get(ctx)) == NULL)
+               goto err;
+
+       /* Calculate D * U^2 before computing U'. */
+       if (!BN_sqr(tmp, U, ctx))
+               goto err;
+       if (!BN_mul(tmp, D, tmp, ctx))
+               goto err;
+
+       /* U' = U * V (mod n). */
+       if (!BN_mod_mul(U, U, V, n, ctx))
+               goto err;
+
+       /* V' = (V^2 + D * U^2) / 2 (mod n). */
+       if (!BN_sqr(V, V, ctx))
+               goto err;
+       if (!BN_add(V, V, tmp))
+               goto err;
+       if (!bn_div_by_two_mod_odd_n(V, n, ctx))
+               goto err;
+
+       if (digit == 1) {
+               /* Calculate D * U' before computing U''. */
+               if (!BN_mul(tmp, D, U, ctx))
+                       goto err;
+
+               /* U'' = (U' + V') / 2 (mod n). */
+               if (!BN_add(U, U, V))
+                       goto err;
+               if (!bn_div_by_two_mod_odd_n(U, n, ctx))
+                       goto err;
+
+               /* V'' = (V' + D * U') / 2 (mod n). */
+               if (!BN_add(V, V, tmp))
+                       goto err;
+               if (!bn_div_by_two_mod_odd_n(V, n, ctx))
+                       goto err;
+       }
+
+       ret = 1;
+
+ err:
+       BN_CTX_end(ctx);
+
+       return ret;
+}
+
+/*
+ * Compute the Lucas terms U_k, V_k, see FIPS 186-4, Appendix C.3.3, steps 4-6.
+ */
+static int
+bn_lucas(BIGNUM *U, BIGNUM *V, const BIGNUM *k, const BIGNUM *D,
+    const BIGNUM *n, BN_CTX *ctx)
+{
+       int digit, i;
+       int ret = 0;
+
+       if (!BN_one(U))
+               goto err;
+       if (!BN_one(V))
+               goto err;
+
+       /*
+        * Iterate over the digits of k from MSB to LSB. Start at digit 2
+        * since the first digit is dealt with by setting U = 1 and V = 1.
+        */
+       for (i = BN_num_bits(k) - 2; i >= 0; i--) {
+               digit = BN_is_bit_set(k, i);
+
+               if (!bn_lucas_step(U, V, digit, D, n, ctx))
+                       goto err;
+       }
+
+       ret = 1;
+
+ err:
+       return ret;
+}
+
+/*
+ * This is a stronger variant of the Lucas test in FIPS 186-4, Appendix C.3.3.
+ * Every strong Lucas pseudoprime n is also a Lucas pseudoprime since
+ * U_{n+1} == 0 follows from U_k == 0 or V_{k * 2^r} == 0 for 0 <= r < s.
+ */
+static int
+bn_strong_lucas_test(int *is_prime, const BIGNUM *n, const BIGNUM *D,
+    BN_CTX *ctx)
+{
+       BIGNUM *k, *U, *V;
+       int r, s;
+       int ret = 0;
+
+       BN_CTX_start(ctx);
+
+       if ((k = BN_CTX_get(ctx)) == NULL)
+               goto err;
+       if ((U = BN_CTX_get(ctx)) == NULL)
+               goto err;
+       if ((V = BN_CTX_get(ctx)) == NULL)
+               goto err;
+
+       /*
+        * Factorize n + 1 = k * 2^s with odd k: shift away the s trailing ones
+        * of n and set the lowest bit of the resulting number k.
+        */
+       s = 0;
+       while (BN_is_bit_set(n, s))
+               s++;
+       if (!BN_rshift(k, n, s))
+               goto err;
+       if (!BN_set_bit(k, 0))
+               goto err;
+
+       /*
+        * Calculate the Lucas terms U_k and V_k. If either of them is zero,
+        * then n is a strong Lucas pseudoprime.
+        */
+       if (!bn_lucas(U, V, k, D, n, ctx))
+               goto err;
+
+       if (BN_is_zero(U) || BN_is_zero(V)) {
+               *is_prime = 1;
+               goto done;
+       }
+
+       /*
+        * If any V_{k * 2^r} is zero for 1 <= r < s then n is a strong Lucas
+        * pseudoprime.
+        */
+       for (r = 1; r < s; r++) {
+               if (!bn_lucas_step(U, V, 0, D, n, ctx))
+                       goto err;
+
+               if (BN_is_zero(V)) {
+                       *is_prime = 1;
+                       goto done;
+               }
+       }
+
+       /* If we got here, n is definitely composite. */
+       *is_prime = 0;
+
+ done:
+       ret = 1;
+
+ err:
+       BN_CTX_end(ctx);
+
+       return ret;
+}
+
+/*
+ * Test n for primality using the strong Lucas test with Selfridge's
+ * parameters. Returns 1 if n is prime or a strong Lucas-Selfridge
+ * pseudoprime. Returns 0 if n is definitely composite.
+ */
+static int
+bn_strong_lucas_selfridge(int *is_prime, const BIGNUM *n, BN_CTX *ctx)
+{
+       BIGNUM *D, *two;
+       int is_perfect_square, jacobi_symbol, sign;
+       int ret = 0;
+
+       BN_CTX_start(ctx);
+
+       /* If n is a perfect square, it is composite. */
+       if (!bn_is_perfect_square(&is_perfect_square, n, ctx))
+               goto err;
+       if (is_perfect_square) {
+               *is_prime = 0;
+               goto err;
+       }
+
+       /*
+        * Find the first D in the Selfridge sequence 5, -7, 9, -11, 13, ...
+        * such that the Jacobi symbol (D/n) is -1.
+        */
+       if ((D = BN_CTX_get(ctx)) == NULL)
+               goto err;
+       if ((two = BN_CTX_get(ctx)) == NULL)
+               goto err;
+
+       sign = 1;
+       if (!BN_set_word(D, 5))
+               goto err;
+       if (!BN_set_word(two, 2))
+               goto err;
+
+       while (1) {
+               /* For odd n the Kronecker symbol computes the Jacobi symbol. */
+               if ((jacobi_symbol = BN_kronecker(D, n, ctx)) == -2)
+                       goto err;
+
+               /* We found the value for D. */
+               if (jacobi_symbol == -1)
+                       break;
+
+               /* n and D have prime factors in common. */
+               if (jacobi_symbol == 0) {
+                       *is_prime = 0;
+                       goto done;
+               }
+
+               sign = -sign;
+               if (!BN_uadd(D, D, two))
+                       goto err;
+               BN_set_negative(D, sign == -1);
+       }
+
+       if (!bn_strong_lucas_test(is_prime, n, D, ctx))
+               goto err;
+
+ done:
+       ret = 1;
+
+ err:
+       BN_CTX_end(ctx);
+
+       return ret;
+}
+
+/*
+ * Miller-Rabin primality test for base 2.
+ */
+static int
+bn_miller_rabin_base_2(int *is_prime, const BIGNUM *n, BN_CTX *ctx)
+{
+       BIGNUM *n_minus_one, *k, *x;
+       int i, s;
+       int ret = 0;
+
+       BN_CTX_start(ctx);
+
+       if ((n_minus_one = BN_CTX_get(ctx)) == NULL)
+               goto err;
+       if ((k = BN_CTX_get(ctx)) == NULL)
+               goto err;
+       if ((x = BN_CTX_get(ctx)) == NULL)
+               goto err;
+
+       if (BN_is_word(n, 2) || BN_is_word(n, 3)) {
+               *is_prime = 1;
+               goto done;
+       }
+
+       if (BN_cmp(n, BN_value_one()) <= 0 || !BN_is_odd(n)) {
+               *is_prime = 0;
+               goto done;
+       }
+
+       if (!BN_sub(n_minus_one, n, BN_value_one()))
+               goto err;
+
+       s = 0;
+       while (!BN_is_bit_set(n_minus_one, s))
+               s++;
+       if (!BN_rshift(k, n_minus_one, s))
+               goto err;
+
+       /* If 2^k is 1 or -1 (mod n) then n is a 2-pseudoprime. */
+       if (!BN_set_word(x, 2))
+               goto err;
+       if (!BN_mod_exp_ct(x, x, k, n, ctx))
+               goto err;
+
+       if (BN_is_one(x) || BN_cmp(x, n_minus_one) == 0) {
+               *is_prime = 1;
+               goto done;
+       }
+
+       /*
+        * If 2^{2^i k} == -1 (mod n) for some 1 <= i < s, then n is a
+        * 2-pseudoprime
+        */
+       for (i = 1; i < s; i++) {
+               if (!BN_mod_sqr(x, x, n, ctx))
+                       goto err;
+               if (BN_cmp(x, n_minus_one) == 0) {
+                       *is_prime = 1;
+                       goto done;
+               }
+       }
+
+       /* If we got here, n is definitely composite. */
+       *is_prime = 0;
+
+ done:
+       ret = 1;
+
+ err:
+       BN_CTX_end(ctx);
+
+       return ret;
+}
+
+/*
+ * The Baillie-Pomerance-Selfridge-Wagstaff algorithm combines a Miller-Rabin
+ * test for base 2 with a Strong Lucas pseudoprime test.
+ */
+
+int
+bn_is_prime_bpsw(int *is_prime, const BIGNUM *n, BN_CTX *in_ctx)
+{
+       BN_CTX *ctx = NULL;
+       BN_ULONG mod;
+       int i;
+       int ret = 0;
+
+       if (BN_is_word(n, 2)) {
+               *is_prime = 1;
+               goto done;
+       }
+
+       if (BN_cmp(n, BN_value_one()) <= 0 || !BN_is_odd(n)) {
+               *is_prime = 0;
+               goto done;
+       }
+
+       /* Trial divisions with the first 2048 primes. */
+       for (i = 0; i < NUMPRIMES; i++) {
+               if ((mod = BN_mod_word(n, primes[i])) == (BN_ULONG)-1)
+                       goto err;
+               if (mod == 0) {
+                       *is_prime = BN_is_word(n, primes[i]);
+                       goto done;
+               }
+       }
+
+       if ((ctx = in_ctx) == NULL)
+               ctx = BN_CTX_new();
+       if (ctx == NULL)
+               goto err;
+
+       if (!bn_miller_rabin_base_2(is_prime, n, ctx))
+               goto err;
+       if (!*is_prime)
+               goto done;
+
+       /* XXX - Miller-Rabin for random bases? - see FIPS 186-4, Table C.1. */
+
+       if (!bn_strong_lucas_selfridge(is_prime, n, ctx))
+               goto err;
+
+ done:
+       ret = 1;
+
+ err:
+       if (ctx != in_ctx)
+               BN_CTX_free(ctx);
+
+       return ret;
+}
index 71b35b3..e1f80f5 100644 (file)
@@ -1,4 +1,4 @@
-/* $OpenBSD: bn_lcl.h,v 1.33 2022/07/13 06:28:22 tb Exp $ */
+/* $OpenBSD: bn_lcl.h,v 1.34 2022/07/13 06:32:15 tb Exp $ */
 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  * All rights reserved.
  *
@@ -659,5 +659,7 @@ int BN_swap_ct(BN_ULONG swap, BIGNUM *a, BIGNUM *b, size_t nwords);
 int bn_isqrt(BIGNUM *out_sqrt, int *out_perfect, const BIGNUM *n, BN_CTX *ctx);
 int bn_is_perfect_square(int *is_perfect_square, const BIGNUM *n, BN_CTX *ctx);
 
+int bn_is_prime_bpsw(int *is_prime, const BIGNUM *n, BN_CTX *in_ctx);
+
 __END_HIDDEN_DECLS
 #endif