Recommit Billy Brumley's ECC constant time patch with a fix for sparc64
authortb <tb@openbsd.org>
Mon, 16 Jul 2018 17:32:39 +0000 (17:32 +0000)
committertb <tb@openbsd.org>
Mon, 16 Jul 2018 17:32:39 +0000 (17:32 +0000)
from Nicola Tuveri (who spotted the omission of ecp_nist.c from the PR).

discussed with jsing
tested by jsg

lib/libcrypto/ec/ec2_smpl.c
lib/libcrypto/ec/ec_lcl.h
lib/libcrypto/ec/ec_lib.c
lib/libcrypto/ec/ecp_mont.c
lib/libcrypto/ec/ecp_nist.c
lib/libcrypto/ec/ecp_smpl.c

index 19a4250..1ca0419 100644 (file)
@@ -1,4 +1,4 @@
-/* $OpenBSD: ec2_smpl.c,v 1.19 2018/07/15 16:27:39 tb Exp $ */
+/* $OpenBSD: ec2_smpl.c,v 1.20 2018/07/16 17:32:39 tb Exp $ */
 /* ====================================================================
  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  *
@@ -107,15 +107,11 @@ EC_GF2m_simple_method(void)
                .point_cmp = ec_GF2m_simple_cmp,
                .make_affine = ec_GF2m_simple_make_affine,
                .points_make_affine = ec_GF2m_simple_points_make_affine,
-
-               /*
-                * the following three method functions are defined in
-                * ec2_mult.c
-                */
-               .mul = ec_GF2m_simple_mul,
+               .mul_generator_ct = ec_GFp_simple_mul_generator_ct,
+               .mul_single_ct = ec_GFp_simple_mul_single_ct,
+               .mul_double_nonct = ec_GFp_simple_mul_double_nonct,
                .precompute_mult = ec_GF2m_precompute_mult,
                .have_precompute_mult = ec_GF2m_have_precompute_mult,
-
                .field_mul = ec_GF2m_simple_field_mul,
                .field_sqr = ec_GF2m_simple_field_sqr,
                .field_div = ec_GF2m_simple_field_div,
index bcfd817..e430b3f 100644 (file)
@@ -1,4 +1,4 @@
-/* $OpenBSD: ec_lcl.h,v 1.9 2018/07/15 05:38:48 jsg Exp $ */
+/* $OpenBSD: ec_lcl.h,v 1.10 2018/07/16 17:32:39 tb Exp $ */
 /*
  * Originally written by Bodo Moeller for the OpenSSL project.
  */
@@ -160,10 +160,12 @@ struct ec_method_st {
        int (*make_affine)(const EC_GROUP *, EC_POINT *, BN_CTX *);
        int (*points_make_affine)(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *);
 
-       /* used by EC_POINTs_mul, EC_POINT_mul, EC_POINT_precompute_mult, EC_POINT_have_precompute_mult
-        * (default implementations are used if the 'mul' pointer is 0): */
-       int (*mul)(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
-               size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *);
+       /* used by EC_POINTs_mul, EC_POINT_mul, EC_POINT_precompute_mult, EC_POINT_have_precompute_mult */
+       int (*mul_generator_ct)(const EC_GROUP *, EC_POINT *r, const BIGNUM *scalar, BN_CTX *);
+       int (*mul_single_ct)(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
+               const EC_POINT *point, BN_CTX *);
+       int (*mul_double_nonct)(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
+               const BIGNUM *p_scalar, const EC_POINT *point, BN_CTX *);
        int (*precompute_mult)(EC_GROUP *group, BN_CTX *);
        int (*have_precompute_mult)(const EC_GROUP *group);
 
@@ -337,6 +339,11 @@ int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *);
 int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *);
 int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *);
 int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *);
+int ec_GFp_simple_mul_generator_ct(const EC_GROUP *, EC_POINT *r, const BIGNUM *scalar, BN_CTX *);
+int ec_GFp_simple_mul_single_ct(const EC_GROUP *, EC_POINT *r, const BIGNUM *scalar,
+       const EC_POINT *point, BN_CTX *);
+int ec_GFp_simple_mul_double_nonct(const EC_GROUP *, EC_POINT *r, const BIGNUM *g_scalar,
+       const BIGNUM *p_scalar, const EC_POINT *point, BN_CTX *);
 
 
 /* method functions in ecp_mont.c */
index 53d79f2..7e0ea01 100644 (file)
@@ -1,4 +1,4 @@
-/* $OpenBSD: ec_lib.c,v 1.28 2018/07/15 16:27:39 tb Exp $ */
+/* $OpenBSD: ec_lib.c,v 1.29 2018/07/16 17:32:39 tb Exp $ */
 /*
  * Originally written by Bodo Moeller for the OpenSSL project.
  */
@@ -1026,47 +1026,88 @@ EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[],
 }
 
 
-/* Functions for point multiplication.
- *
- * If group->meth->mul is 0, we use the wNAF-based implementations in ec_mult.c;
- * otherwise we dispatch through methods.
- */
-
+/* Functions for point multiplication */
 int 
 EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
     size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
 {
-       if (group->meth->mul == 0)
-               /* use default */
-               return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
-
-       return group->meth->mul(group, r, scalar, num, points, scalars, ctx);
+       /*
+        * The function pointers must be set, and only support num == 0 and
+        * num == 1.
+        */
+       if (group->meth->mul_generator_ct == NULL ||
+           group->meth->mul_single_ct == NULL ||
+           group->meth->mul_double_nonct == NULL ||
+           num > 1) {
+               ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
+               return 0;
+       }
+       
+       /* Either bP or aG + bP, this is sane. */
+       if (num == 1 && points != NULL && scalars != NULL)
+               return EC_POINT_mul(group, r, scalar, points[0], scalars[0],
+                   ctx);
+       
+       /* aG, this is sane */
+       if (scalar != NULL && points == NULL && scalars == NULL)
+               return EC_POINT_mul(group, r, scalar, NULL, NULL, ctx);
+       
+       /* anything else is an error */
+       ECerror(ERR_R_EC_LIB);
+       return 0;
 }
 
 int 
 EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
     const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx)
 {
-       /* just a convenient interface to EC_POINTs_mul() */
-
-       const EC_POINT *points[1];
-       const BIGNUM *scalars[1];
-
-       points[0] = point;
-       scalars[0] = p_scalar;
-
-       return EC_POINTs_mul(group, r, g_scalar,
-           (point != NULL && p_scalar != NULL),
-           points, scalars, ctx);
+       if (group->meth->mul_generator_ct == NULL ||
+           group->meth->mul_single_ct == NULL ||
+           group->meth->mul_double_nonct == NULL) {
+               ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
+               return 0;
+       }
+       if (g_scalar != NULL && point == NULL && p_scalar == NULL) {
+               /*
+                * In this case we want to compute g_scalar * GeneratorPoint:
+                * this codepath is reached most prominently by (ephemeral) key
+                * generation of EC cryptosystems (i.e. ECDSA keygen and sign
+                * setup, ECDH keygen/first half), where the scalar is always
+                * secret. This is why we ignore if BN_FLG_CONSTTIME is actually
+                * set and we always call the constant time version.
+                */
+               return group->meth->mul_generator_ct(group, r, g_scalar, ctx);
+       }
+       if (g_scalar == NULL && point != NULL && p_scalar != NULL) {
+               /* In this case we want to compute p_scalar * GenericPoint:
+                * this codepath is reached most prominently by the second half
+                * of ECDH, where the secret scalar is multiplied by the peer's
+                * public point. To protect the secret scalar, we ignore if
+                * BN_FLG_CONSTTIME is actually set and we always call the
+                * constant time version.
+                */
+               return group->meth->mul_single_ct(group, r, p_scalar, point,
+                   ctx);
+       }
+       if (g_scalar != NULL && point != NULL && p_scalar != NULL) {
+               /*
+                * In this case we want to compute
+                *   g_scalar * GeneratorPoint + p_scalar * GenericPoint:
+                * this codepath is reached most prominently by ECDSA signature
+                * verification. So we call the non-ct version.
+                */
+               return group->meth->mul_double_nonct(group, r, g_scalar,
+                   p_scalar, point, ctx);
+       }
+               
+       /* Anything else is an error. */
+       ECerror(ERR_R_EC_LIB);
+       return 0;
 }
 
 int 
 EC_GROUP_precompute_mult(EC_GROUP * group, BN_CTX * ctx)
 {
-       if (group->meth->mul == 0)
-               /* use default */
-               return ec_wNAF_precompute_mult(group, ctx);
-
        if (group->meth->precompute_mult != 0)
                return group->meth->precompute_mult(group, ctx);
        else
@@ -1076,10 +1117,6 @@ EC_GROUP_precompute_mult(EC_GROUP * group, BN_CTX * ctx)
 int 
 EC_GROUP_have_precompute_mult(const EC_GROUP * group)
 {
-       if (group->meth->mul == 0)
-               /* use default */
-               return ec_wNAF_have_precompute_mult(group);
-
        if (group->meth->have_precompute_mult != 0)
                return group->meth->have_precompute_mult(group);
        else
index 40c512a..ba4b9ca 100644 (file)
@@ -1,4 +1,4 @@
-/* $OpenBSD: ecp_mont.c,v 1.15 2018/07/15 16:27:39 tb Exp $ */
+/* $OpenBSD: ecp_mont.c,v 1.16 2018/07/16 17:32:39 tb Exp $ */
 /*
  * Originally written by Bodo Moeller for the OpenSSL project.
  */
@@ -102,6 +102,9 @@ EC_GFp_mont_method(void)
                .point_cmp = ec_GFp_simple_cmp,
                .make_affine = ec_GFp_simple_make_affine,
                .points_make_affine = ec_GFp_simple_points_make_affine,
+               .mul_generator_ct = ec_GFp_simple_mul_generator_ct,
+               .mul_single_ct = ec_GFp_simple_mul_single_ct,
+               .mul_double_nonct = ec_GFp_simple_mul_double_nonct,
                .field_mul = ec_GFp_mont_field_mul,
                .field_sqr = ec_GFp_mont_field_sqr,
                .field_encode = ec_GFp_mont_field_encode,
index 3e6005e..6ae1170 100644 (file)
@@ -1,4 +1,4 @@
-/* $OpenBSD: ecp_nist.c,v 1.13 2018/07/15 16:27:39 tb Exp $ */
+/* $OpenBSD: ecp_nist.c,v 1.14 2018/07/16 17:32:39 tb Exp $ */
 /*
  * Written by Nils Larsch for the OpenSSL project.
  */
@@ -103,6 +103,9 @@ EC_GFp_nist_method(void)
                .point_cmp = ec_GFp_simple_cmp,
                .make_affine = ec_GFp_simple_make_affine,
                .points_make_affine = ec_GFp_simple_points_make_affine,
+               .mul_generator_ct = ec_GFp_simple_mul_generator_ct,
+               .mul_single_ct = ec_GFp_simple_mul_single_ct,
+               .mul_double_nonct = ec_GFp_simple_mul_double_nonct,
                .field_mul = ec_GFp_nist_field_mul,
                .field_sqr = ec_GFp_nist_field_sqr
        };
index eabad4b..a25fd1d 100644 (file)
@@ -1,4 +1,4 @@
-/* $OpenBSD: ecp_smpl.c,v 1.21 2018/07/15 16:27:39 tb Exp $ */
+/* $OpenBSD: ecp_smpl.c,v 1.22 2018/07/16 17:32:39 tb Exp $ */
 /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
  * for the OpenSSL project.
  * Includes code written by Bodo Moeller for the OpenSSL project.
@@ -103,6 +103,9 @@ EC_GFp_simple_method(void)
                .point_cmp = ec_GFp_simple_cmp,
                .make_affine = ec_GFp_simple_make_affine,
                .points_make_affine = ec_GFp_simple_points_make_affine,
+               .mul_generator_ct = ec_GFp_simple_mul_generator_ct,
+               .mul_single_ct = ec_GFp_simple_mul_single_ct,
+               .mul_double_nonct = ec_GFp_simple_mul_double_nonct,
                .field_mul = ec_GFp_simple_field_mul,
                .field_sqr = ec_GFp_simple_field_sqr
        };
@@ -1409,3 +1412,248 @@ ec_GFp_simple_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN
 {
        return BN_mod_sqr(r, a, &group->field, ctx);
 }
+
+#define EC_POINT_BN_set_flags(P, flags) do {                           \
+       BN_set_flags(&(P)->X, (flags));                                 \
+       BN_set_flags(&(P)->Y, (flags));                                 \
+       BN_set_flags(&(P)->Z, (flags));                                 \
+} while(0)
+
+#define EC_POINT_CSWAP(c, a, b, w, t) do {                             \
+       if (!BN_swap_ct(c, &(a)->X, &(b)->X, w) ||                      \
+           !BN_swap_ct(c, &(a)->Y, &(b)->Y, w) ||                      \
+           !BN_swap_ct(c, &(a)->Z, &(b)->Z, w))                        \
+               goto err;                                               \
+       t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c);                      \
+       (a)->Z_is_one ^= (t);                                           \
+       (b)->Z_is_one ^= (t);                                           \
+} while(0)
+
+/*
+ * This function computes (in constant time) a point multiplication over the
+ * EC group.
+ *
+ * At a high level, it is Montgomery ladder with conditional swaps.
+ *
+ * It performs either a fixed point multiplication
+ *          (scalar * generator)
+ * when point is NULL, or a variable point multiplication
+ *          (scalar * point)
+ * when point is not NULL.
+ *
+ * scalar should be in the range [0,n) otherwise all constant time bets are off.
+ *
+ * NB: This says nothing about EC_POINT_add and EC_POINT_dbl,
+ * which of course are not constant time themselves.
+ *
+ * The product is stored in r.
+ *
+ * Returns 1 on success, 0 otherwise.
+ */
+static int
+ec_GFp_simple_mul_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
+    const EC_POINT *point, BN_CTX *ctx)
+{
+       int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
+       EC_POINT *s = NULL;
+       BIGNUM *k = NULL;
+       BIGNUM *lambda = NULL;
+       BIGNUM *cardinality = NULL;
+       BN_CTX *new_ctx = NULL;
+       int ret = 0;
+
+       if (ctx == NULL && (ctx = new_ctx = BN_CTX_new()) == NULL)
+               return 0;
+
+       BN_CTX_start(ctx);
+
+       if ((s = EC_POINT_new(group)) == NULL)
+               goto err;
+
+       if (point == NULL) {
+               if (!EC_POINT_copy(s, group->generator))
+                       goto err;
+       } else {
+               if (!EC_POINT_copy(s, point))
+                       goto err;
+       }
+
+       EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
+
+       if ((cardinality = BN_CTX_get(ctx)) == NULL)
+               goto err;
+       if ((lambda = BN_CTX_get(ctx)) == NULL)
+               goto err;
+       if ((k = BN_CTX_get(ctx)) == NULL)
+               goto err;
+       if (!BN_mul(cardinality, &group->order, &group->cofactor, ctx))
+               goto err;
+
+       /*
+        * Group cardinalities are often on a word boundary.
+        * So when we pad the scalar, some timing diff might
+        * pop if it needs to be expanded due to carries.
+        * So expand ahead of time.
+        */
+       cardinality_bits = BN_num_bits(cardinality);
+       group_top = cardinality->top;
+       if ((bn_wexpand(k, group_top + 1) == NULL) ||
+           (bn_wexpand(lambda, group_top + 1) == NULL))
+               goto err;
+
+       if (!BN_copy(k, scalar))
+               goto err;
+
+       BN_set_flags(k, BN_FLG_CONSTTIME);
+
+       if (BN_num_bits(k) > cardinality_bits || BN_is_negative(k)) {
+               /*
+                * This is an unusual input, and we don't guarantee
+                * constant-timeness
+                */
+               if (!BN_nnmod(k, k, cardinality, ctx))
+                       goto err;
+       }
+
+       if (!BN_add(lambda, k, cardinality))
+               goto err;
+       BN_set_flags(lambda, BN_FLG_CONSTTIME);
+       if (!BN_add(k, lambda, cardinality))
+               goto err;
+       /*
+        * lambda := scalar + cardinality
+        * k := scalar + 2*cardinality
+        */
+       kbit = BN_is_bit_set(lambda, cardinality_bits);
+       if (!BN_swap_ct(kbit, k, lambda, group_top + 1))
+               goto err;
+
+       group_top = group->field.top;
+       if ((bn_wexpand(&s->X, group_top) == NULL) ||
+           (bn_wexpand(&s->Y, group_top) == NULL) ||
+           (bn_wexpand(&s->Z, group_top) == NULL) ||
+           (bn_wexpand(&r->X, group_top) == NULL) ||
+           (bn_wexpand(&r->Y, group_top) == NULL) ||
+           (bn_wexpand(&r->Z, group_top) == NULL))
+               goto err;
+
+       /* top bit is a 1, in a fixed pos */
+       if (!EC_POINT_copy(r, s))
+               goto err;
+
+       EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
+
+       if (!EC_POINT_dbl(group, s, s, ctx))
+               goto err;
+
+       pbit = 0;
+
+       /*
+        * The ladder step, with branches, is
+        *
+        * k[i] == 0: S = add(R, S), R = dbl(R)
+        * k[i] == 1: R = add(S, R), S = dbl(S)
+        *
+        * Swapping R, S conditionally on k[i] leaves you with state
+        *
+        * k[i] == 0: T, U = R, S
+        * k[i] == 1: T, U = S, R
+        *
+        * Then perform the ECC ops.
+        *
+        * U = add(T, U)
+        * T = dbl(T)
+        *
+        * Which leaves you with state
+        *
+        * k[i] == 0: U = add(R, S), T = dbl(R)
+        * k[i] == 1: U = add(S, R), T = dbl(S)
+        *
+        * Swapping T, U conditionally on k[i] leaves you with state
+        *
+        * k[i] == 0: R, S = T, U
+        * k[i] == 1: R, S = U, T
+        *
+        * Which leaves you with state
+        *
+        * k[i] == 0: S = add(R, S), R = dbl(R)
+        * k[i] == 1: R = add(S, R), S = dbl(S)
+        *
+        * So we get the same logic, but instead of a branch it's a
+        * conditional swap, followed by ECC ops, then another conditional swap.
+        *
+        * Optimization: The end of iteration i and start of i-1 looks like
+        *
+        * ...
+        * CSWAP(k[i], R, S)
+        * ECC
+        * CSWAP(k[i], R, S)
+        * (next iteration)
+        * CSWAP(k[i-1], R, S)
+        * ECC
+        * CSWAP(k[i-1], R, S)
+        * ...
+        *
+        * So instead of two contiguous swaps, you can merge the condition
+        * bits and do a single swap.
+        *
+        * k[i]   k[i-1]    Outcome
+        * 0      0         No Swap
+        * 0      1         Swap
+        * 1      0         Swap
+        * 1      1         No Swap
+        *
+        * This is XOR. pbit tracks the previous bit of k.
+        */
+
+       for (i = cardinality_bits - 1; i >= 0; i--) {
+               kbit = BN_is_bit_set(k, i) ^ pbit;
+               EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
+               if (!EC_POINT_add(group, s, r, s, ctx))
+                       goto err;
+               if (!EC_POINT_dbl(group, r, r, ctx))
+                       goto err;
+               /*
+                * pbit logic merges this cswap with that of the
+                * next iteration
+                */
+               pbit ^= kbit;
+       }
+       /* one final cswap to move the right value into r */
+       EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
+       
+       ret = 1;
+
+ err:
+       EC_POINT_free(s);
+       if (ctx != NULL)
+               BN_CTX_end(ctx);
+       BN_CTX_free(new_ctx);
+
+       return ret;
+}
+
+#undef EC_POINT_BN_set_flags
+#undef EC_POINT_CSWAP
+
+int
+ec_GFp_simple_mul_generator_ct(const EC_GROUP *group, EC_POINT *r,
+    const BIGNUM *scalar, BN_CTX *ctx)
+{
+       return ec_GFp_simple_mul_ct(group, r, scalar, NULL, ctx);
+}
+
+int
+ec_GFp_simple_mul_single_ct(const EC_GROUP *group, EC_POINT *r,
+    const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx)
+{
+       return ec_GFp_simple_mul_ct(group, r, scalar, point, ctx);
+}
+
+int
+ec_GFp_simple_mul_double_nonct(const EC_GROUP *group, EC_POINT *r,
+    const BIGNUM *g_scalar, const BIGNUM *p_scalar, const EC_POINT *point,
+    BN_CTX *ctx)
+{
+       return ec_wNAF_mul(group, r, g_scalar, 1, &point, &p_scalar, ctx);
+}