+++ /dev/null
-.\" $OpenBSD: bdes.1,v 1.11 2013/08/05 06:58:40 jmc Exp $
-.\" $NetBSD: bdes.1,v 1.11 2003/08/07 11:13:11 agc Exp $
-.\"
-.\" Copyright (c) 1991, 1993
-.\" The Regents of the University of California. All rights reserved.
-.\"
-.\" This code is derived from software contributed to Berkeley by
-.\" Matt Bishop of Dartmouth College.
-.\"
-.\" Redistribution and use in source and binary forms, with or without
-.\" modification, are permitted provided that the following conditions
-.\" are met:
-.\" 1. Redistributions of source code must retain the above copyright
-.\" notice, this list of conditions and the following disclaimer.
-.\" 2. Redistributions in binary form must reproduce the above copyright
-.\" notice, this list of conditions and the following disclaimer in the
-.\" documentation and/or other materials provided with the distribution.
-.\" 3. Neither the name of the University nor the names of its contributors
-.\" may be used to endorse or promote products derived from this software
-.\" without specific prior written permission.
-.\"
-.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
-.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-.\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
-.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
-.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
-.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
-.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
-.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
-.\" SUCH DAMAGE.
-.\"
-.\" @(#)bdes.1 8.1 (Berkeley) 6/29/93
-.\"
-.Dd $Mdocdate: August 5 2013 $
-.Dt BDES 1
-.Os
-.Sh NAME
-.Nm bdes
-.Nd encrypt/decrypt using the Data Encryption Standard
-.Sh SYNOPSIS
-.Nm
-.Op Fl abdp
-.Op Fl F Ar N
-.Op Fl f Ar N
-.Op Fl k Ar key
-.Op Fl m Ar N
-.Op Fl o Ar N
-.Op Fl v Ar vector
-.Sh DESCRIPTION
-.Nm
-implements all DES modes of operation described in FIPS PUB 81,
-including alternative cipher feedback mode and both authentication
-modes.
-.Nm
-reads from the standard input and writes to the standard output.
-By default, the input is encrypted using cipher block chaining mode.
-Using the same key for encryption and decryption preserves plain text.
-.Pp
-All modes but the electronic code book mode require an initialization
-vector; if none is supplied, the zero vector is used.
-If no
-.Ar key
-is specified on the command line, the user is prompted for one (see
-.Xr getpass 3
-for more details).
-.Pp
-The options are as follows:
-.Bl -tag -width "-v vector"
-.It Fl a
-The key and initialization vector strings are to be taken as ASCII,
-suppressing the special interpretation given to leading
-.Dq 0X ,
-.Dq 0x ,
-.Dq 0B
-and
-.Dq 0b
-characters.
-This flag applies to
-.Em both
-the key and initialization vector.
-.It Fl b
-Use electronic code book mode.
-This is not recommended for messages
-longer than 8 bytes, as patterns in the input will show through to the
-output.
-.It Fl d
-Decrypt the input.
-.It Fl F Ar N
-Use
-.Ar N Ns -bit
-alternative cipher feedback mode.
-Currently
-.Ar N
-must be a multiple of 7 between 7 and 56 inclusive (this does not conform
-to the alternative CFB mode specification).
-.It Fl f Ar N
-Use
-.Ar N Ns -bit
-cipher feedback mode.
-Currently
-.Ar N
-must be a multiple of 8 between 8 and 64 inclusive (this does not conform
-to the standard CFB mode specification).
-.It Fl k Ar key
-Use
-.Ar key
-as the cryptographic key.
-.It Fl m Ar N
-Compute a message authentication code (MAC) of
-.Ar N
-bits on the input.
-The value of
-.Ar N
-must be between 1 and 64 inclusive; if
-.Ar N
-is not a multiple of 8, enough 0 bits will be added to pad the MAC length
-to the nearest multiple of 8.
-Only the MAC is output.
-MACs are only available in cipher block chaining mode or in cipher feedback
-mode.
-.It Fl o Ar N
-Use
-.Ar N Ns -bit
-output feedback mode.
-Currently
-.Ar N
-must be a multiple of 8 between 8 and 64 inclusive (this does not conform
-to the OFB mode specification).
-.It Fl p
-Disable the resetting of the parity bit.
-This flag forces the parity bit of the key to be used as typed, rather than
-making each character be of odd parity.
-It is used only if the key is given in ASCII.
-.It Fl v Ar vector
-Set the initialization vector to
-.Ar vector ;
-the vector is interpreted in the same way as the key.
-The vector is ignored in electronic codebook mode.
-For best security, a different
-initialization vector should be used for each file.
-.El
-.Pp
-The key and initialization vector are taken as sequences of ASCII
-characters which are then mapped into their bit representations.
-If either begins with
-.Dq 0X
-or
-.Dq 0x ,
-that one is taken as a sequence of hexadecimal digits indicating the
-bit pattern;
-if either begins with
-.Dq 0B
-or
-.Dq 0b ,
-that one is taken as a sequence of binary digits indicating the bit pattern.
-In either case,
-only the leading 64 bits of the key or initialization vector
-are used,
-and if fewer than 64 bits are provided, enough 0 bits are appended
-to pad the key to 64 bits.
-.Pp
-According to the DES standard, the low-order bit of each character in the
-key string is deleted.
-Since most ASCII representations set the high-order bit to 0, simply
-deleting the low-order bit effectively reduces the size of the key space
-from
-.if t 2\u\s-356\s0\d
-.if n 2**56
-to
-.if t 2\u\s-348\s0\d
-.if n 2**48
-keys.
-To prevent this, the high-order bit must be a function depending in part
-upon the low-order bit; so, the high-order bit is set to whatever value
-gives odd parity.
-This preserves the key space size.
-Note this resetting of the parity bit is
-.Em not
-done if the key is given in binary or hex, and can be disabled for ASCII
-keys as well.
-.Pp
-The DES is considered a strong cryptosystem hobbled by a short
-key, and other than table lookup attacks, key search attacks, and
-Hellman's time-memory tradeoff (all of which are expensive and
-time-consuming), no practical cryptanalytic methods for breaking the
-DES are known in the open literature.
-As of this writing, the best
-known cryptanalytic method is linear cryptanalysis, which requires an
-average of
-.if t 2\u\s-343\s0\d
-.if n 2**43
-known plaintext-ciphertext pairs to succeed.
-Unfortunately for the DES, key search attacks (requiring only
-a single known plaintext-ciphertext pair and trying
-.if t 2\u\s-355\s0\d
-.if n 2**55
-keys on average) are becoming practical.
-.Pp
-As with all cryptosystems, the choice of keys and
-key security remain the most vulnerable aspect of
-.Nm .
-.Sh IMPLEMENTATION NOTES
-For implementors wishing to write software compatible with this program,
-the following notes are provided.
-This software is believed to be compatible with the implementation of the
-data encryption standard distributed by Sun Microsystems, Inc.
-.Pp
-In the ECB and CBC modes, plaintext is encrypted in units of 64 bits (8 bytes,
-also called a block).
-To ensure that the plaintext file is encrypted correctly,
-.Nm
-will (internally) append from 1 to 8 bytes, the last byte containing an
-integer stating how many bytes of that final block are from the plaintext
-file, and encrypt the resulting block.
-Hence, when decrypting, the last block may contain from 0 to 7 characters
-present in the plaintext file, and the last byte tells how many.
-Note that if during decryption the last byte of the file does not contain an
-integer between 0 and 7, either the file has been corrupted or an incorrect
-key has been given.
-A similar mechanism is used for the OFB and CFB modes, except that those
-simply require the length of the input to be a multiple of the mode size,
-and the final byte contains an integer between 0 and one less than the number
-of bytes being used as the mode.
-(This was another reason that the mode size must be a multiple of 8 for those
-modes.)
-.Pp
-Unlike Sun's implementation, unused bytes of that last block are not filled
-with random data, but instead contain what was in those byte positions in
-the preceding block.
-This is quicker and more portable, and does not weaken the encryption
-significantly.
-.Pp
-If the key is entered in ASCII, the parity bits of the key characters are set
-so that each key character is of odd parity.
-Unlike Sun's implementation, it is possible to enter binary or hexadecimal
-keys on the command line, and if this is done, the parity bits are
-.Em not
-reset.
-This allows testing using arbitrary bit patterns as keys.
-.Pp
-The Sun implementation always uses an initialization vector of 0
-(that is, all zeroes).
-By default,
-.Nm
-does too, but this may be changed from the command line.
-.Sh SEE ALSO
-.Xr crypt 3 ,
-.Xr getpass 3
-.Rs
-.%T Data Encryption Standard
-.%R Federal Information Processing Standard #46
-.%Q National Bureau of Standards, U.S. Department of Commerce
-.%C Washington DC
-.%D January 1977
-.Re
-.Rs
-.%T DES Modes of Operation
-.%R Federal Information Processing Standard #81
-.%Q National Bureau of Standards, U.S. Department of Commerce
-.%C Washington DC
-.%D December 1980
-.Re
-.Rs
-.%A Dorothy Denning
-.%T Cryptography and Data Security
-.%I Addison-Wesley Publishing Co.
-.%C Reading, MA
-.%D 1982
-.Re
-.Rs
-.%A Matt Bishop
-.%T Implementation Notes on bdes(1)
-.%R Technical Report PCS-TR-91-158
-.%Q Department of Mathematics and Computer Science, Dartmouth College
-.%C Hanover, NH 03755
-.%D April 1991
-.Re
-.Rs
-.%A M.J. Wiener
-.%T Efficient DES Key Search
-.%R Technical Report 244
-.%Q School of Computer Science, Carleton University
-.%D May 1994
-.Re
-.Rs
-.%A Bruce Schneier
-.%T Applied Cryptography (2nd edition)
-.%I John Wiley & Sons, Inc.
-.%C New York, NY
-.%D 1996
-.Re
-.Rs
-.%A M. Matsui
-.%T Linear Cryptanalysis Method for DES Cipher
-.%R Advances in Cryptology \(em Eurocrypt '93 Proceedings
-.%I Springer-Verlag
-.%D 1994
-.Re
-.Rs
-.%A Blaze
-.%A Diffie
-.%A Rivest
-.%A Schneier
-.%A Shimomura
-.%A Thompson
-.%A Wiener
-.%T "Minimal Key Lengths for Symmetric Ciphers To Provide Adequate Commercial Security"
-.%D January 1996
-.Re
-.Sh BUGS
-When this document was originally written, there was a controversy
-raging over whether the DES would still be secure in a few years.
-There is now near-universal consensus in the cryptographic community
-that the key length of the DES is far too short.
-The advent of
-special-purpose hardware could reduce the cost of any of the methods
-of attack named above so that they are no longer computationally
-infeasible; in addition, the explosive growth in the number and speed
-of modern microprocessors as well as advances in programmable logic
-devices has brought an attack using only commodity hardware into the
-realm of possibility.
-Schneier and others currently recommend using
-cryptosystems with keys of at least 90 bits when long-term security is
-needed.
-.Pp
-As the key or key schedule is stored in memory, the encryption can be
-compromised if memory is readable.
-Additionally, programs which display programs' arguments may compromise the
-key and initialization vector, if they are specified on the command line.
-To avoid this
-.Nm
-overwrites its arguments, however, the obvious race cannot currently be
-avoided.
-.Pp
-Certain specific keys should be avoided because they introduce potential
-weaknesses; these keys, called the
-.Em weak
-and
-.Em semiweak
-keys, are (in hex notation, where p is either 0 or 1, and P is either
-e or f):
-.Bd -literal -offset indent
-0x0p0p0p0p0p0p0p0p 0x0p1P0p1P0p0P0p0P
-0x0pep0pep0pfp0pfp 0x0pfP0pfP0pfP0pfP
-0x1P0p1P0p0P0p0P0p 0x1P1P1P1P0P0P0P0P
-0x1Pep1Pep0Pfp0Pfp 0x1PfP1PfP0PfP0PfP
-0xep0pep0pfp0pfp0p 0xep1Pep1pfp0Pfp0P
-0xepepepepepepepep 0xepfPepfPfpfPfpfP
-0xfP0pfP0pfP0pfP0p 0xfP1PfP1PfP0PfP0P
-0xfPepfPepfPepfPep 0xfPfPfPfPfPfPfPfP
-.Ed
-.Pp
-This is inherent in the DES algorithm (see Moore and Simmons,
-.Do
-Cycle structure of the DES with weak and semi-weak keys
-.Dc ,
-.Em "Advances in Cryptology \- Crypto '86 Proceedings" ,
-Springer-Verlag New York, \(co1987, pp. 9-32.)
+++ /dev/null
-/* $OpenBSD: bdes.c,v 1.18 2013/11/25 18:02:50 deraadt Exp $ */
-/* $NetBSD: bdes.c,v 1.2 1995/03/26 03:33:19 glass Exp $ */
-
-/*-
- * Copyright (c) 1991, 1993
- * The Regents of the University of California. All rights reserved.
- *
- * This code is derived from software contributed to Berkeley by
- * Matt Bishop of Dartmouth College.
- *
- * The United States Government has rights in this work pursuant
- * to contract no. NAG 2-680 between the National Aeronautics and
- * Space Administration and Dartmouth College.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
-
-/*
- * BDES -- DES encryption package for Berkeley Software Distribution 4.4
- * options:
- * -a key is in ASCII
- * -b use ECB (electronic code book) mode
- * -d invert (decrypt) input
- * -f b use b-bit CFB (cipher feedback) mode
- * -F b use b-bit CFB (cipher feedback) alternative mode
- * -k key use key as the cryptographic key
- * -m b generate a MAC of length b
- * -o b use b-bit OFB (output feedback) mode
- * -p don't reset the parity bit
- * -v v use v as the initialization vector (ignored for ECB)
- * note: the last character of the last block is the integer indicating
- * how many characters of that block are to be output
- *
- * Author: Matt Bishop
- * Department of Mathematics and Computer Science
- * Dartmouth College
- * Hanover, NH 03755
- * Email: Matt.Bishop@dartmouth.edu
- * ...!decvax!dartvax!Matt.Bishop
- *
- * See Technical Report PCS-TR91-158, Department of Mathematics and Computer
- * Science, Dartmouth College, for a detailed description of the implemen-
- * tation and differences between it and Sun's. The DES is described in
- * FIPS PUB 46, and the modes in FIPS PUB 81 (see either the manual page
- * or the technical report for a complete reference).
- */
-
-#include <err.h>
-#include <errno.h>
-#include <unistd.h>
-#include <stdio.h>
-#include <ctype.h>
-#include <stdlib.h>
-#include <string.h>
-
-typedef char Desbuf[8];
-int tobinhex(char, int);
-void cvtkey(char *, char *);
-int setbits(char *, int);
-void makekey(Desbuf);
-void ecbenc(void);
-void ecbdec(void);
-void cbcenc(void);
-void cbcdec(void);
-void cbcauth(void);
-void cfbenc(void);
-void cfbdec(void);
-void cfbaenc(void);
-void cfbadec(void);
-void cfbauth(void);
-void ofbdec(void);
-void ofbenc(void);
-void usage(void);
-
-/*
- * BSD and System V systems offer special library calls that do
- * block moves and fills, so if possible we take advantage of them
- */
-#define MEMCPY(dest,src,len) bcopy((src),(dest),(len))
-#define MEMZERO(dest,len) bzero((dest),(len))
-
-/* Hide the calls to the primitive encryption routines. */
-#define DES_KEY(buf) \
- if (des_setkey(buf)) \
- err(1, "des_setkey");
-#define DES_XFORM(buf) \
- if (des_cipher(buf, buf, 0L, (inverse ? -1 : 1))) \
- err(1, "des_cipher");
-
-/*
- * this does an error-checking write
- */
-#define READ(buf, n) fread(buf, sizeof(char), n, stdin)
-#define WRITE(buf,n) \
- if (fwrite(buf, sizeof(char), n, stdout) != n) \
- err(1, "block %d", bn);
-
-/*
- * some things to make references easier
- */
-#define CHAR(x,i) (x[i])
-#define UCHAR(x,i) (x[i])
-#define BUFFER(x) (x)
-#define UBUFFER(x) (x)
-
-/*
- * global variables and related macros
- */
-#define KEY_DEFAULT 0 /* interpret radix of key from key */
-#define KEY_ASCII 1 /* key is in ASCII characters */
-int keybase = KEY_DEFAULT; /* how to interpret the key */
-
-enum { /* encrypt, decrypt, authenticate */
- MODE_ENCRYPT, MODE_DECRYPT, MODE_AUTHENTICATE
-} mode = MODE_ENCRYPT;
-enum { /* ecb, cbc, cfb, cfba, ofb? */
- ALG_ECB, ALG_CBC, ALG_CFB, ALG_OFB, ALG_CFBA
-} alg = ALG_CBC;
-
-Desbuf ivec; /* initialization vector */
-char bits[] = { /* used to extract bits from a char */
- '\200', '\100', '\040', '\020', '\010', '\004', '\002', '\001'
-};
-int inverse; /* 0 to encrypt, 1 to decrypt */
-int macbits = -1; /* number of bits in authentication */
-int fbbits = -1; /* number of feedback bits */
-int pflag; /* 1 to preserve parity bits */
-
-
-int
-main(int ac, char *av[])
-{
- extern int optind; /* option (argument) number */
- extern char *optarg; /* argument to option if any */
- int i; /* counter in a for loop */
- char *p; /* used to obtain the key */
- Desbuf msgbuf; /* I/O buffer */
- int kflag; /* command-line encryption key */
- int argc; /* the real arg count */
- char **argv; /* the real argument vector */
-
- /*
- * Hide the arguments from ps(1) by making private copies of them
- * and clobbering the global (visible to ps(1)) ones.
- */
- argc = ac;
- ac = 1;
- argv = calloc(argc + 1, sizeof(char *));
- if (argv == NULL)
- errx(1, "out of memory");
- for (i = 0; i < argc; ++i) {
- argv[i] = strdup(av[i]);
- MEMZERO(av[i], strlen(av[i]));
- }
- argv[argc] = NULL;
-
- /* initialize the initialization vector */
- MEMZERO(ivec, 8);
-
- /* process the argument list */
- kflag = 0;
- while ((i = getopt(argc, argv, "abdF:f:k:m:o:pv:")) != -1)
- switch (i) {
- case 'a': /* key is ASCII */
- keybase = KEY_ASCII;
- break;
- case 'b': /* use ECB mode */
- alg = ALG_ECB;
- break;
- case 'd': /* decrypt */
- mode = MODE_DECRYPT;
- break;
- case 'F': /* use alternative CFB mode */
- alg = ALG_CFBA;
- if ((fbbits = setbits(optarg, 7)) > 56 || fbbits == 0)
- err(1, "-F: number must be 1-56 inclusive");
- else if (fbbits == -1)
- err(1, "-F: number must be a multiple of 7");
- break;
- case 'f': /* use CFB mode */
- alg = ALG_CFB;
- if ((fbbits = setbits(optarg, 8)) > 64 || fbbits == 0)
- err(1, "-f: number must be 1-64 inclusive");
- else if (fbbits == -1)
- err(1, "-f: number must be a multiple of 8");
- break;
- case 'k': /* encryption key */
- kflag = 1;
- cvtkey(BUFFER(msgbuf), optarg);
- break;
- case 'm': /* number of bits for MACing */
- mode = MODE_AUTHENTICATE;
- if ((macbits = setbits(optarg, 1)) > 64)
- err(1, "-m: number must be 0-64 inclusive");
- break;
- case 'o': /* use OFB mode */
- alg = ALG_OFB;
- if ((fbbits = setbits(optarg, 8)) > 64 || fbbits == 0)
- err(1, "-o: number must be 1-64 inclusive");
- else if (fbbits == -1)
- err(1, "-o: number must be a multiple of 8");
- break;
- case 'p': /* preserve parity bits */
- pflag = 1;
- break;
- case 'v': /* set initialization vector */
- cvtkey(BUFFER(ivec), optarg);
- break;
- default: /* error */
- usage();
- }
-
- if (!kflag) {
- /*
- * if the key's not ASCII, assume it is
- */
- keybase = KEY_ASCII;
- /*
- * get the key
- */
- if ((p = getpass("Enter key: ")) == NULL)
- err(1, "getpass");
- /*
- * copy it, nul-padded, into the key area
- */
- cvtkey(BUFFER(msgbuf), p);
- }
-
- makekey(msgbuf);
- inverse = (alg == ALG_CBC || alg == ALG_ECB) && mode == MODE_DECRYPT;
-
- switch (alg) {
- case ALG_CBC:
- switch (mode) {
- case MODE_AUTHENTICATE: /* authenticate using CBC mode */
- cbcauth();
- break;
- case MODE_DECRYPT: /* decrypt using CBC mode */
- cbcdec();
- break;
- case MODE_ENCRYPT: /* encrypt using CBC mode */
- cbcenc();
- break;
- }
- break;
- case ALG_CFB:
- switch (mode) {
- case MODE_AUTHENTICATE: /* authenticate using CFB mode */
- cfbauth();
- break;
- case MODE_DECRYPT: /* decrypt using CFB mode */
- cfbdec();
- break;
- case MODE_ENCRYPT: /* encrypt using CFB mode */
- cfbenc();
- break;
- }
- break;
- case ALG_CFBA:
- switch (mode) {
- case MODE_AUTHENTICATE: /* authenticate using CFBA mode */
- err(1, "can't authenticate with CFBA mode");
- break;
- case MODE_DECRYPT: /* decrypt using CFBA mode */
- cfbadec();
- break;
- case MODE_ENCRYPT: /* encrypt using CFBA mode */
- cfbaenc();
- break;
- }
- break;
- case ALG_ECB:
- switch (mode) {
- case MODE_AUTHENTICATE: /* authenticate using ECB mode */
- err(1, "can't authenticate with ECB mode");
- break;
- case MODE_DECRYPT: /* decrypt using ECB mode */
- ecbdec();
- break;
- case MODE_ENCRYPT: /* encrypt using ECB mode */
- ecbenc();
- break;
- }
- break;
- case ALG_OFB:
- switch (mode) {
- case MODE_AUTHENTICATE: /* authenticate using OFB mode */
- err(1, "can't authenticate with OFB mode");
- break;
- case MODE_DECRYPT: /* decrypt using OFB mode */
- ofbdec();
- break;
- case MODE_ENCRYPT: /* encrypt using OFB mode */
- ofbenc();
- break;
- }
- break;
- }
- exit(0);
-}
-
-/*
- * map a hex character to an integer
- */
-int
-tobinhex(char c, int radix)
-{
- switch (c) {
- case '0': return(0x0);
- case '1': return(0x1);
- case '2': return(radix > 2 ? 0x2 : -1);
- case '3': return(radix > 3 ? 0x3 : -1);
- case '4': return(radix > 4 ? 0x4 : -1);
- case '5': return(radix > 5 ? 0x5 : -1);
- case '6': return(radix > 6 ? 0x6 : -1);
- case '7': return(radix > 7 ? 0x7 : -1);
- case '8': return(radix > 8 ? 0x8 : -1);
- case '9': return(radix > 9 ? 0x9 : -1);
- case 'A': case 'a': return(radix > 10 ? 0xa : -1);
- case 'B': case 'b': return(radix > 11 ? 0xb : -1);
- case 'C': case 'c': return(radix > 12 ? 0xc : -1);
- case 'D': case 'd': return(radix > 13 ? 0xd : -1);
- case 'E': case 'e': return(radix > 14 ? 0xe : -1);
- case 'F': case 'f': return(radix > 15 ? 0xf : -1);
- }
- /*
- * invalid character
- */
- return(-1);
-}
-
-/*
- * convert the key to a bit pattern
- */
-void
-cvtkey(char *obuf, char *ibuf)
-{
- int i, j; /* counter in a for loop */
- int nbuf[64]; /* used for hex/key translation */
-
- /*
- * just switch on the key base
- */
- switch (keybase) {
- case KEY_ASCII: /* ASCII to integer */
- (void)strncpy(obuf, ibuf, 8);
- return;
- case KEY_DEFAULT: /* tell from context */
- /*
- * leading '0x' or '0X' == hex key
- */
- if (ibuf[0] == '0' && (ibuf[1] == 'x' || ibuf[1] == 'X')) {
- ibuf = &ibuf[2];
- /*
- * now translate it, bombing on any illegal hex digit
- */
- for (i = 0; ibuf[i] && i < 16; i++)
- if ((nbuf[i] = tobinhex(ibuf[i], 16)) == -1)
- err(1, "bad hex digit in key");
- while (i < 16)
- nbuf[i++] = 0;
- for (i = 0; i < 8; i++)
- obuf[i] =
- ((nbuf[2*i]&0xf)<<4) | (nbuf[2*i+1]&0xf);
- /* preserve parity bits */
- pflag = 1;
- return;
- }
- /*
- * leading '0b' or '0B' == binary key
- */
- if (ibuf[0] == '0' && (ibuf[1] == 'b' || ibuf[1] == 'B')) {
- ibuf = &ibuf[2];
- /*
- * now translate it, bombing on any illegal binary digit
- */
- for (i = 0; ibuf[i] && i < 16; i++)
- if ((nbuf[i] = tobinhex(ibuf[i], 2)) == -1)
- err(1, "bad binary digit in key");
- while (i < 64)
- nbuf[i++] = 0;
- for (i = 0; i < 8; i++)
- for (j = 0; j < 8; j++)
- obuf[i] = (obuf[i]<<1)|nbuf[8*i+j];
- /* preserve parity bits */
- pflag = 1;
- return;
- }
- /*
- * no special leader -- ASCII
- */
- (void)strncpy(obuf, ibuf, 8);
- }
-}
-
-/*
- * convert an ASCII string into a decimal number:
- * 1. must be between 0 and 64 inclusive
- * 2. must be a valid decimal number
- * 3. must be a multiple of mult
- */
-int
-setbits(char *s, int mult)
-{
- char *p; /* pointer in a for loop */
- int n = 0; /* the integer collected */
-
- /*
- * skip white space
- */
- while (isspace((unsigned char)*s))
- s++;
- /*
- * get the integer
- */
- for (p = s; *p; p++) {
- if (isdigit((unsigned char)*p))
- n = n * 10 + *p - '0';
- else {
- err(1, "bad decimal digit in MAC length");
- }
- }
- /*
- * be sure it's a multiple of mult
- */
- return((n % mult != 0) ? -1 : n);
-}
-
-/*****************
- * DES FUNCTIONS *
- *****************/
-/*
- * This sets the DES key and (if you're using the deszip version)
- * the direction of the transformation. This uses the Sun
- * to map the 64-bit key onto the 56 bits that the key schedule
- * generation routines use: the old way, which just uses the user-
- * supplied 64 bits as is, and the new way, which resets the parity
- * bit to be the same as the low-order bit in each character. The
- * new way generates a greater variety of key schedules, since many
- * systems set the parity (high) bit of each character to 0, and the
- * DES ignores the low order bit of each character.
- */
-void
-makekey(Desbuf buf)
-{
- int i, j; /* counter in a for loop */
- int par; /* parity counter */
-
- /*
- * if the parity is not preserved, flip it
- */
- if (!pflag) {
- for (i = 0; i < 8; i++) {
- par = 0;
- for (j = 1; j < 8; j++)
- if ((bits[j]&UCHAR(buf, i)) != 0)
- par++;
- if ((par&01) == 01)
- UCHAR(buf, i) = UCHAR(buf, i)&0177;
- else
- UCHAR(buf, i) = (UCHAR(buf, i)&0177)|0200;
- }
- }
-
- DES_KEY(UBUFFER(buf));
-}
-
-/*
- * This encrypts using the Electronic Code Book mode of DES
- */
-void
-ecbenc(void)
-{
- int n; /* number of bytes actually read */
- int bn; /* block number */
- Desbuf msgbuf; /* I/O buffer */
-
- for (bn = 0; (n = READ(BUFFER(msgbuf), 8)) == 8; bn++) {
- /*
- * do the transformation
- */
- DES_XFORM(UBUFFER(msgbuf));
- WRITE(BUFFER(msgbuf), 8);
- }
- /*
- * at EOF or last block -- in either ase, the last byte contains
- * the character representation of the number of bytes in it
- */
- bn++;
- MEMZERO(&CHAR(msgbuf, n), 8 - n);
- CHAR(msgbuf, 7) = n;
- DES_XFORM(UBUFFER(msgbuf));
- WRITE(BUFFER(msgbuf), 8);
-
-}
-
-/*
- * This decrypts using the Electronic Code Book mode of DES
- */
-void
-ecbdec(void)
-{
- int n; /* number of bytes actually read */
- int c; /* used to test for EOF */
- int bn; /* block number */
- Desbuf msgbuf; /* I/O buffer */
-
- for (bn = 1; (n = READ(BUFFER(msgbuf), 8)) == 8; bn++) {
- /*
- * do the transformation
- */
- DES_XFORM(UBUFFER(msgbuf));
- /*
- * if the last one, handle it specially
- */
- if ((c = getchar()) == EOF) {
- n = CHAR(msgbuf, 7);
- if (n < 0 || n > 7)
- err(1, "decryption failed (block %d corrupted)", bn);
- }
- else
- (void)ungetc(c, stdin);
- WRITE(BUFFER(msgbuf), n);
- }
- if (n > 0)
- err(1, "decryption failed (block %d incomplete)", bn);
-}
-
-/*
- * This encrypts using the Cipher Block Chaining mode of DES
- */
-void
-cbcenc(void)
-{
- int n; /* number of bytes actually read */
- int bn; /* block number */
- Desbuf msgbuf; /* I/O buffer */
-
- /*
- * do the transformation
- */
- for (bn = 1; (n = READ(BUFFER(msgbuf), 8)) == 8; bn++) {
- for (n = 0; n < 8; n++)
- CHAR(msgbuf, n) ^= CHAR(ivec, n);
- DES_XFORM(UBUFFER(msgbuf));
- MEMCPY(BUFFER(ivec), BUFFER(msgbuf), 8);
- WRITE(BUFFER(msgbuf), 8);
- }
- /*
- * at EOF or last block -- in either case, the last byte contains
- * the character representation of the number of bytes in it
- */
- bn++;
- MEMZERO(&CHAR(msgbuf, n), 8 - n);
- CHAR(msgbuf, 7) = n;
- for (n = 0; n < 8; n++)
- CHAR(msgbuf, n) ^= CHAR(ivec, n);
- DES_XFORM(UBUFFER(msgbuf));
- WRITE(BUFFER(msgbuf), 8);
-
-}
-
-/*
- * This decrypts using the Cipher Block Chaining mode of DES
- */
-void
-cbcdec(void)
-{
- int n; /* number of bytes actually read */
- Desbuf msgbuf; /* I/O buffer */
- Desbuf ibuf; /* temp buffer for initialization vector */
- int c; /* used to test for EOF */
- int bn; /* block number */
-
- for (bn = 0; (n = READ(BUFFER(msgbuf), 8)) == 8; bn++) {
- /*
- * do the transformation
- */
- MEMCPY(BUFFER(ibuf), BUFFER(msgbuf), 8);
- DES_XFORM(UBUFFER(msgbuf));
- for (c = 0; c < 8; c++)
- UCHAR(msgbuf, c) ^= UCHAR(ivec, c);
- MEMCPY(BUFFER(ivec), BUFFER(ibuf), 8);
- /*
- * if the last one, handle it specially
- */
- if ((c = getchar()) == EOF) {
- n = CHAR(msgbuf, 7);
- if (n < 0 || n > 7)
- err(1, "decryption failed (block %d corrupted)", bn);
- }
- else
- (void)ungetc(c, stdin);
- WRITE(BUFFER(msgbuf), n);
- }
- if (n > 0)
- err(1, "decryption failed (block %d incomplete)", bn);
-}
-
-/*
- * This authenticates using the Cipher Block Chaining mode of DES
- */
-void
-cbcauth(void)
-{
- int n, j; /* number of bytes actually read */
- Desbuf msgbuf; /* I/O buffer */
- Desbuf encbuf; /* encryption buffer */
-
- /*
- * do the transformation
- * note we DISCARD the encrypted block;
- * we only care about the last one
- */
- while ((n = READ(BUFFER(msgbuf), 8)) == 8) {
- for (n = 0; n < 8; n++)
- CHAR(encbuf, n) = CHAR(msgbuf, n) ^ CHAR(ivec, n);
- DES_XFORM(UBUFFER(encbuf));
- MEMCPY(BUFFER(ivec), BUFFER(encbuf), 8);
- }
- /*
- * now compute the last one, right padding with '\0' if need be
- */
- if (n > 0) {
- MEMZERO(&CHAR(msgbuf, n), 8 - n);
- for (n = 0; n < 8; n++)
- CHAR(encbuf, n) = CHAR(msgbuf, n) ^ CHAR(ivec, n);
- DES_XFORM(UBUFFER(encbuf));
- }
- /*
- * drop the bits
- * we write chars until fewer than 7 bits,
- * and then pad the last one with 0 bits
- */
- for (n = 0; macbits > 7; n++, macbits -= 8)
- (void)putchar(CHAR(encbuf, n));
- if (macbits > 0) {
- CHAR(msgbuf, 0) = 0x00;
- for (j = 0; j < macbits; j++)
- CHAR(msgbuf, 0) |= (CHAR(encbuf, n)&bits[j]);
- (void)putchar(CHAR(msgbuf, 0));
- }
-}
-
-/*
- * This encrypts using the Cipher FeedBack mode of DES
- */
-void
-cfbenc(void)
-{
- int n; /* number of bytes actually read */
- int nbytes; /* number of bytes to read */
- int bn; /* block number */
- char ibuf[8]; /* input buffer */
- Desbuf msgbuf; /* encryption buffer */
-
- /*
- * do things in bytes, not bits
- */
- nbytes = fbbits / 8;
- /*
- * do the transformation
- */
- for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) {
- MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
- DES_XFORM(UBUFFER(msgbuf));
- for (n = 0; n < 8 - nbytes; n++)
- UCHAR(ivec, n) = UCHAR(ivec, n+nbytes);
- for (n = 0; n < nbytes; n++)
- UCHAR(ivec, 8-nbytes+n) = ibuf[n] ^ UCHAR(msgbuf, n);
- WRITE(&CHAR(ivec, 8-nbytes), nbytes);
- }
- /*
- * at EOF or last block -- in either case, the last byte contains
- * the character representation of the number of bytes in it
- */
- bn++;
- MEMZERO(&ibuf[n], nbytes - n);
- ibuf[nbytes - 1] = n;
- MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
- DES_XFORM(UBUFFER(msgbuf));
- for (n = 0; n < nbytes; n++)
- ibuf[n] ^= UCHAR(msgbuf, n);
- WRITE(ibuf, nbytes);
-}
-
-/*
- * This decrypts using the Cipher Block Chaining mode of DES
- */
-void
-cfbdec(void)
-{
- int n; /* number of bytes actually read */
- int c; /* used to test for EOF */
- int nbytes; /* number of bytes to read */
- int bn; /* block number */
- char ibuf[8]; /* input buffer */
- char obuf[8]; /* output buffer */
- Desbuf msgbuf; /* encryption buffer */
-
- /*
- * do things in bytes, not bits
- */
- nbytes = fbbits / 8;
- /*
- * do the transformation
- */
- for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) {
- MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
- DES_XFORM(UBUFFER(msgbuf));
- for (c = 0; c < 8 - nbytes; c++)
- CHAR(ivec, c) = CHAR(ivec, c+nbytes);
- for (c = 0; c < nbytes; c++) {
- CHAR(ivec, 8-nbytes+c) = ibuf[c];
- obuf[c] = ibuf[c] ^ UCHAR(msgbuf, c);
- }
- /*
- * if the last one, handle it specially
- */
- if ((c = getchar()) == EOF) {
- n = obuf[nbytes-1];
- if (n < 0 || n > nbytes-1)
- err(1, "decryption failed (block %d corrupted)", bn);
- }
- else
- (void)ungetc(c, stdin);
- WRITE(obuf, n);
- }
- if (n > 0)
- err(1, "decryption failed (block %d incomplete)", bn);
-}
-
-/*
- * This encrypts using the alternative Cipher FeedBack mode of DES
- */
-void
-cfbaenc(void)
-{
- int n; /* number of bytes actually read */
- int nbytes; /* number of bytes to read */
- int bn; /* block number */
- char ibuf[8]; /* input buffer */
- char obuf[8]; /* output buffer */
- Desbuf msgbuf; /* encryption buffer */
-
- /*
- * do things in bytes, not bits
- */
- nbytes = fbbits / 7;
- /*
- * do the transformation
- */
- for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) {
- MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
- DES_XFORM(UBUFFER(msgbuf));
- for (n = 0; n < 8 - nbytes; n++)
- UCHAR(ivec, n) = UCHAR(ivec, n+nbytes);
- for (n = 0; n < nbytes; n++)
- UCHAR(ivec, 8-nbytes+n) = (ibuf[n] ^ UCHAR(msgbuf, n))
- |0200;
- for (n = 0; n < nbytes; n++)
- obuf[n] = CHAR(ivec, 8-nbytes+n)&0177;
- WRITE(obuf, nbytes);
- }
- /*
- * at EOF or last block -- in either case, the last byte contains
- * the character representation of the number of bytes in it
- */
- bn++;
- MEMZERO(&ibuf[n], nbytes - n);
- ibuf[nbytes - 1] = ('0' + n)|0200;
- MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
- DES_XFORM(UBUFFER(msgbuf));
- for (n = 0; n < nbytes; n++)
- ibuf[n] ^= UCHAR(msgbuf, n);
- WRITE(ibuf, nbytes);
-}
-
-/*
- * This decrypts using the alternative Cipher Block Chaining mode of DES
- */
-void
-cfbadec(void)
-{
- int n; /* number of bytes actually read */
- int c; /* used to test for EOF */
- int nbytes; /* number of bytes to read */
- int bn; /* block number */
- char ibuf[8]; /* input buffer */
- char obuf[8]; /* output buffer */
- Desbuf msgbuf; /* encryption buffer */
-
- /*
- * do things in bytes, not bits
- */
- nbytes = fbbits / 7;
- /*
- * do the transformation
- */
- for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) {
- MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
- DES_XFORM(UBUFFER(msgbuf));
- for (c = 0; c < 8 - nbytes; c++)
- CHAR(ivec, c) = CHAR(ivec, c+nbytes);
- for (c = 0; c < nbytes; c++) {
- CHAR(ivec, 8-nbytes+c) = ibuf[c]|0200;
- obuf[c] = (ibuf[c] ^ UCHAR(msgbuf, c))&0177;
- }
- /*
- * if the last one, handle it specially
- */
- if ((c = getchar()) == EOF) {
- if ((n = (obuf[nbytes-1] - '0')) < 0
- || n > nbytes-1)
- err(1, "decryption failed (block %d corrupted)", bn);
- }
- else
- (void)ungetc(c, stdin);
- WRITE(obuf, n);
- }
- if (n > 0)
- err(1, "decryption failed (block %d incomplete)", bn);
-}
-
-
-/*
- * This encrypts using the Output FeedBack mode of DES
- */
-void
-ofbenc(void)
-{
- int n; /* number of bytes actually read */
- int c; /* used to test for EOF */
- int nbytes; /* number of bytes to read */
- int bn; /* block number */
- char ibuf[8]; /* input buffer */
- char obuf[8]; /* output buffer */
- Desbuf msgbuf; /* encryption buffer */
-
- /*
- * do things in bytes, not bits
- */
- nbytes = fbbits / 8;
- /*
- * do the transformation
- */
- for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) {
- MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
- DES_XFORM(UBUFFER(msgbuf));
- for (n = 0; n < 8 - nbytes; n++)
- UCHAR(ivec, n) = UCHAR(ivec, n+nbytes);
- for (n = 0; n < nbytes; n++) {
- UCHAR(ivec, 8-nbytes+n) = UCHAR(msgbuf, n);
- obuf[n] = ibuf[n] ^ UCHAR(msgbuf, n);
- }
- WRITE(obuf, nbytes);
- }
- /*
- * at EOF or last block -- in either case, the last byte contains
- * the character representation of the number of bytes in it
- */
- bn++;
- MEMZERO(&ibuf[n], nbytes - n);
- ibuf[nbytes - 1] = n;
- MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
- DES_XFORM(UBUFFER(msgbuf));
- for (c = 0; c < nbytes; c++)
- ibuf[c] ^= UCHAR(msgbuf, c);
- WRITE(ibuf, nbytes);
-}
-
-/*
- * This decrypts using the Output Block Chaining mode of DES
- */
-void
-ofbdec(void)
-{
- int n; /* number of bytes actually read */
- int c; /* used to test for EOF */
- int nbytes; /* number of bytes to read */
- int bn; /* block number */
- char ibuf[8]; /* input buffer */
- char obuf[8]; /* output buffer */
- Desbuf msgbuf; /* encryption buffer */
-
- /*
- * do things in bytes, not bits
- */
- nbytes = fbbits / 8;
- /*
- * do the transformation
- */
- for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) {
- MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
- DES_XFORM(UBUFFER(msgbuf));
- for (c = 0; c < 8 - nbytes; c++)
- CHAR(ivec, c) = CHAR(ivec, c+nbytes);
- for (c = 0; c < nbytes; c++) {
- CHAR(ivec, 8-nbytes+c) = UCHAR(msgbuf, c);
- obuf[c] = ibuf[c] ^ UCHAR(msgbuf, c);
- }
- /*
- * if the last one, handle it specially
- */
- if ((c = getchar()) == EOF) {
- n = obuf[nbytes-1];
- if (n < 0 || n > nbytes-1)
- err(1, "decryption failed (block %d corrupted)", bn);
- }
- else
- (void)ungetc(c, stdin);
- /*
- * dump it
- */
- WRITE(obuf, n);
- }
- if (n > 0)
- err(1, "decryption failed (block %d incomplete)", bn);
-}
-
-/*
- * This authenticates using the Cipher FeedBack mode of DES
- */
-void
-cfbauth(void)
-{
- int n, j; /* number of bytes actually read */
- int nbytes; /* number of bytes to read */
- char ibuf[8]; /* input buffer */
- Desbuf msgbuf; /* encryption buffer */
-
- /*
- * do things in bytes, not bits
- */
- nbytes = fbbits / 8;
- /*
- * do the transformation
- */
- while ((n = READ(ibuf, nbytes)) == nbytes) {
- MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
- DES_XFORM(UBUFFER(msgbuf));
- for (n = 0; n < 8 - nbytes; n++)
- UCHAR(ivec, n) = UCHAR(ivec, n+nbytes);
- for (n = 0; n < nbytes; n++)
- UCHAR(ivec, 8-nbytes+n) = ibuf[n] ^ UCHAR(msgbuf, n);
- }
- /*
- * at EOF or last block -- in either case, the last byte contains
- * the character representation of the number of bytes in it
- */
- MEMZERO(&ibuf[n], nbytes - n);
- ibuf[nbytes - 1] = '0' + n;
- MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8);
- DES_XFORM(UBUFFER(msgbuf));
- for (n = 0; n < nbytes; n++)
- ibuf[n] ^= UCHAR(msgbuf, n);
- /*
- * drop the bits
- * we write chars until fewer than 7 bits,
- * and then pad the last one with 0 bits
- */
- for (n = 0; macbits > 7; n++, macbits -= 8)
- (void)putchar(CHAR(msgbuf, n));
- if (macbits > 0) {
- CHAR(msgbuf, 0) = 0x00;
- for (j = 0; j < macbits; j++)
- CHAR(msgbuf, 0) |= (CHAR(msgbuf, n)&bits[j]);
- (void)putchar(CHAR(msgbuf, 0));
- }
-}
-
-extern char *__progname;
-/*
- * message about usage
- */
-void
-usage(void)
-{
- (void) fprintf(stderr, "usage: %s %s\n", __progname,
- "[-abdp] [-F N] [-f N] [-k key] [-m N] [-o N] [-v vector]");
- exit(1);
-}