+++ /dev/null
-/* $OpenBSD: vmm.c,v 1.341 2023/04/26 09:39:56 dv Exp $ */
-/*
- * Copyright (c) 2014 Mike Larkin <mlarkin@openbsd.org>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
-
-#include <sys/param.h>
-#include <sys/systm.h>
-#include <sys/signalvar.h>
-#include <sys/malloc.h>
-#include <sys/device.h>
-#include <sys/pool.h>
-#include <sys/proc.h>
-#include <sys/user.h>
-#include <sys/ioctl.h>
-#include <sys/queue.h>
-#include <sys/refcnt.h>
-#include <sys/rwlock.h>
-#include <sys/pledge.h>
-#include <sys/memrange.h>
-#include <sys/tracepoint.h>
-
-#include <uvm/uvm_extern.h>
-
-#include <machine/fpu.h>
-#include <machine/pmap.h>
-#include <machine/biosvar.h>
-#include <machine/segments.h>
-#include <machine/cpufunc.h>
-#include <machine/vmmvar.h>
-
-#include <dev/isa/isareg.h>
-#include <dev/pv/pvreg.h>
-
-#ifdef MP_LOCKDEBUG
-#include <ddb/db_output.h>
-extern int __mp_lock_spinout;
-#endif /* MP_LOCKDEBUG */
-
-/* #define VMM_DEBUG */
-
-void *l1tf_flush_region;
-
-#ifdef VMM_DEBUG
-#define DPRINTF(x...) do { printf(x); } while(0)
-#else
-#define DPRINTF(x...)
-#endif /* VMM_DEBUG */
-
-#define DEVNAME(s) ((s)->sc_dev.dv_xname)
-
-#define CTRL_DUMP(x,y,z) printf(" %s: Can set:%s Can clear:%s\n", #z , \
- vcpu_vmx_check_cap(x, IA32_VMX_##y ##_CTLS, \
- IA32_VMX_##z, 1) ? "Yes" : "No", \
- vcpu_vmx_check_cap(x, IA32_VMX_##y ##_CTLS, \
- IA32_VMX_##z, 0) ? "Yes" : "No");
-
-#define VMX_EXIT_INFO_HAVE_RIP 0x1
-#define VMX_EXIT_INFO_HAVE_REASON 0x2
-#define VMX_EXIT_INFO_COMPLETE \
- (VMX_EXIT_INFO_HAVE_RIP | VMX_EXIT_INFO_HAVE_REASON)
-
-/*
- * Virtual Machine
- *
- * Methods used to protect vm struct members:
- * a atomic operations
- * I immutable after create
- * K kernel lock
- * r reference count
- * v vcpu list rwlock (vm_vcpu_list)
- * V vmm_softc's vm_lock
- */
-struct vm {
- struct vmspace *vm_vmspace; /* [K] */
- vm_map_t vm_map; /* [K] */
- uint32_t vm_id; /* [I] */
- pid_t vm_creator_pid; /* [I] */
- size_t vm_nmemranges; /* [I] */
- size_t vm_memory_size; /* [I] */
- char vm_name[VMM_MAX_NAME_LEN];
- struct vm_mem_range vm_memranges[VMM_MAX_MEM_RANGES];
- struct refcnt vm_refcnt; /* [a] */
-
- struct vcpu_head vm_vcpu_list; /* [v] */
- uint32_t vm_vcpu_ct; /* [v] */
- struct rwlock vm_vcpu_lock;
-
- SLIST_ENTRY(vm) vm_link; /* [V] */
-};
-
-SLIST_HEAD(vmlist_head, vm);
-
-/*
- * Virtual Machine Monitor
- *
- * Methods used to protect struct members in the global vmm device:
- * a atomic opererations
- * I immutable operations
- * K kernel lock
- * p virtual process id (vpid/asid) rwlock
- * r reference count
- * v vm list rwlock (vm_lock)
- */
-struct vmm_softc {
- struct device sc_dev; /* [r] */
-
- /* Suspend/Resume Synchronization */
- struct rwlock sc_slock;
- struct refcnt sc_refcnt;
- volatile unsigned int sc_status; /* [a] */
-#define VMM_SUSPENDED (unsigned int) 0
-#define VMM_ACTIVE (unsigned int) 1
-
- /* Capabilities */
- uint32_t nr_vmx_cpus; /* [I] */
- uint32_t nr_svm_cpus; /* [I] */
- uint32_t nr_rvi_cpus; /* [I] */
- uint32_t nr_ept_cpus; /* [I] */
- uint8_t pkru_enabled; /* [I] */
-
- /* Managed VMs */
- struct vmlist_head vm_list; /* [v] */
-
- int mode; /* [I] */
-
- size_t vcpu_ct; /* [v] */
- size_t vcpu_max; /* [I] */
-
- struct rwlock vm_lock;
- size_t vm_ct; /* [v] no. of in-memory VMs */
- size_t vm_idx; /* [a] next unique VM index */
-
- struct rwlock vpid_lock;
- uint16_t max_vpid; /* [I] */
- uint8_t vpids[512]; /* [p] bitmap of VPID/ASIDs */
-};
-
-void vmx_dump_vmcs_field(uint16_t, const char *);
-int vmm_enabled(void);
-int vmm_probe(struct device *, void *, void *);
-void vmm_attach(struct device *, struct device *, void *);
-int vmm_activate(struct device *, int);
-int vmmopen(dev_t, int, int, struct proc *);
-int vmmioctl(dev_t, u_long, caddr_t, int, struct proc *);
-int vmmclose(dev_t, int, int, struct proc *);
-int vmm_quiesce_vmx(void);
-int vmm_start(void);
-int vmm_stop(void);
-size_t vm_create_check_mem_ranges(struct vm_create_params *);
-int vm_create(struct vm_create_params *, struct proc *);
-int vm_run(struct vm_run_params *);
-int vm_terminate(struct vm_terminate_params *);
-int vm_get_info(struct vm_info_params *);
-int vm_resetcpu(struct vm_resetcpu_params *);
-int vm_intr_pending(struct vm_intr_params *);
-int vm_rwregs(struct vm_rwregs_params *, int);
-int vm_mprotect_ept(struct vm_mprotect_ept_params *);
-int vm_rwvmparams(struct vm_rwvmparams_params *, int);
-int vm_find(uint32_t, struct vm **);
-int vcpu_readregs_vmx(struct vcpu *, uint64_t, int, struct vcpu_reg_state *);
-int vcpu_readregs_svm(struct vcpu *, uint64_t, struct vcpu_reg_state *);
-int vcpu_writeregs_vmx(struct vcpu *, uint64_t, int, struct vcpu_reg_state *);
-int vcpu_writeregs_svm(struct vcpu *, uint64_t, struct vcpu_reg_state *);
-int vcpu_reset_regs(struct vcpu *, struct vcpu_reg_state *);
-int vcpu_reset_regs_vmx(struct vcpu *, struct vcpu_reg_state *);
-int vcpu_reset_regs_svm(struct vcpu *, struct vcpu_reg_state *);
-int vcpu_reload_vmcs_vmx(struct vcpu *);
-int vcpu_init(struct vcpu *);
-int vcpu_init_vmx(struct vcpu *);
-int vcpu_init_svm(struct vcpu *);
-int vcpu_must_stop(struct vcpu *);
-int vcpu_run_vmx(struct vcpu *, struct vm_run_params *);
-int vcpu_run_svm(struct vcpu *, struct vm_run_params *);
-void vcpu_deinit(struct vcpu *);
-void vcpu_deinit_vmx(struct vcpu *);
-void vcpu_deinit_svm(struct vcpu *);
-int vm_impl_init(struct vm *, struct proc *);
-int vm_impl_init_vmx(struct vm *, struct proc *);
-int vm_impl_init_svm(struct vm *, struct proc *);
-void vm_impl_deinit(struct vm *);
-void vm_impl_deinit_vmx(struct vm *);
-void vm_impl_deinit_svm(struct vm *);
-void vm_teardown(struct vm **);
-int vcpu_vmx_check_cap(struct vcpu *, uint32_t, uint32_t, int);
-int vcpu_vmx_compute_ctrl(uint64_t, uint16_t, uint32_t, uint32_t, uint32_t *);
-int vmx_get_exit_info(uint64_t *, uint64_t *);
-int vmx_load_pdptes(struct vcpu *);
-int vmx_handle_exit(struct vcpu *);
-int svm_handle_exit(struct vcpu *);
-int svm_handle_msr(struct vcpu *);
-int vmm_handle_xsetbv(struct vcpu *, uint64_t *);
-int vmx_handle_xsetbv(struct vcpu *);
-int svm_handle_xsetbv(struct vcpu *);
-int vmm_handle_cpuid(struct vcpu *);
-int vmx_handle_rdmsr(struct vcpu *);
-int vmx_handle_wrmsr(struct vcpu *);
-int vmx_handle_cr0_write(struct vcpu *, uint64_t);
-int vmx_handle_cr4_write(struct vcpu *, uint64_t);
-int vmx_handle_cr(struct vcpu *);
-int svm_handle_inout(struct vcpu *);
-int vmx_handle_inout(struct vcpu *);
-int svm_handle_hlt(struct vcpu *);
-int vmx_handle_hlt(struct vcpu *);
-int vmm_inject_ud(struct vcpu *);
-int vmm_inject_gp(struct vcpu *);
-int vmm_inject_db(struct vcpu *);
-void vmx_handle_intr(struct vcpu *);
-void vmx_handle_intwin(struct vcpu *);
-void vmx_handle_misc_enable_msr(struct vcpu *);
-int vmm_get_guest_memtype(struct vm *, paddr_t);
-int vmx_get_guest_faulttype(void);
-int svm_get_guest_faulttype(struct vmcb *);
-int vmx_get_exit_qualification(uint64_t *);
-int vmm_get_guest_cpu_cpl(struct vcpu *);
-int vmm_get_guest_cpu_mode(struct vcpu *);
-int svm_fault_page(struct vcpu *, paddr_t);
-int vmx_fault_page(struct vcpu *, paddr_t);
-int vmx_handle_np_fault(struct vcpu *);
-int svm_handle_np_fault(struct vcpu *);
-int vmx_mprotect_ept(vm_map_t, paddr_t, paddr_t, int);
-pt_entry_t *vmx_pmap_find_pte_ept(pmap_t, paddr_t);
-int vmm_alloc_vpid(uint16_t *);
-void vmm_free_vpid(uint16_t);
-const char *vcpu_state_decode(u_int);
-const char *vmx_exit_reason_decode(uint32_t);
-const char *svm_exit_reason_decode(uint32_t);
-const char *vmx_instruction_error_decode(uint32_t);
-void svm_setmsrbr(struct vcpu *, uint32_t);
-void svm_setmsrbw(struct vcpu *, uint32_t);
-void svm_setmsrbrw(struct vcpu *, uint32_t);
-void vmx_setmsrbr(struct vcpu *, uint32_t);
-void vmx_setmsrbw(struct vcpu *, uint32_t);
-void vmx_setmsrbrw(struct vcpu *, uint32_t);
-void svm_set_clean(struct vcpu *, uint32_t);
-void svm_set_dirty(struct vcpu *, uint32_t);
-
-int vmm_gpa_is_valid(struct vcpu *vcpu, paddr_t gpa, size_t obj_size);
-void vmm_init_pvclock(struct vcpu *, paddr_t);
-int vmm_update_pvclock(struct vcpu *);
-int vmm_pat_is_valid(uint64_t);
-
-#ifdef MULTIPROCESSOR
-static int vmx_remote_vmclear(struct cpu_info*, struct vcpu *);
-#endif
-
-#ifdef VMM_DEBUG
-void dump_vcpu(struct vcpu *);
-void vmx_vcpu_dump_regs(struct vcpu *);
-void vmx_dump_vmcs(struct vcpu *);
-const char *msr_name_decode(uint32_t);
-void vmm_segment_desc_decode(uint64_t);
-void vmm_decode_cr0(uint64_t);
-void vmm_decode_cr3(uint64_t);
-void vmm_decode_cr4(uint64_t);
-void vmm_decode_msr_value(uint64_t, uint64_t);
-void vmm_decode_apicbase_msr_value(uint64_t);
-void vmm_decode_ia32_fc_value(uint64_t);
-void vmm_decode_mtrrcap_value(uint64_t);
-void vmm_decode_perf_status_value(uint64_t);
-void vmm_decode_perf_ctl_value(uint64_t);
-void vmm_decode_mtrrdeftype_value(uint64_t);
-void vmm_decode_efer_value(uint64_t);
-void vmm_decode_rflags(uint64_t);
-void vmm_decode_misc_enable_value(uint64_t);
-const char *vmm_decode_cpu_mode(struct vcpu *);
-
-extern int mtrr2mrt(int);
-
-struct vmm_reg_debug_info {
- uint64_t vrdi_bit;
- const char *vrdi_present;
- const char *vrdi_absent;
-};
-#endif /* VMM_DEBUG */
-
-extern uint64_t tsc_frequency;
-extern int tsc_is_invariant;
-
-const char *vmm_hv_signature = VMM_HV_SIGNATURE;
-
-const struct kmem_pa_mode vmm_kp_contig = {
- .kp_constraint = &no_constraint,
- .kp_maxseg = 1,
- .kp_align = 4096,
- .kp_zero = 1,
-};
-
-struct cfdriver vmm_cd = {
- NULL, "vmm", DV_DULL, CD_SKIPHIBERNATE
-};
-
-const struct cfattach vmm_ca = {
- sizeof(struct vmm_softc), vmm_probe, vmm_attach, NULL, vmm_activate
-};
-
-/*
- * Helper struct to easily get the VMCS field IDs needed in vmread/vmwrite
- * to access the individual fields of the guest segment registers. This
- * struct is indexed by VCPU_REGS_* id.
- */
-const struct {
- uint64_t selid;
- uint64_t limitid;
- uint64_t arid;
- uint64_t baseid;
-} vmm_vmx_sreg_vmcs_fields[] = {
- { VMCS_GUEST_IA32_CS_SEL, VMCS_GUEST_IA32_CS_LIMIT,
- VMCS_GUEST_IA32_CS_AR, VMCS_GUEST_IA32_CS_BASE },
- { VMCS_GUEST_IA32_DS_SEL, VMCS_GUEST_IA32_DS_LIMIT,
- VMCS_GUEST_IA32_DS_AR, VMCS_GUEST_IA32_DS_BASE },
- { VMCS_GUEST_IA32_ES_SEL, VMCS_GUEST_IA32_ES_LIMIT,
- VMCS_GUEST_IA32_ES_AR, VMCS_GUEST_IA32_ES_BASE },
- { VMCS_GUEST_IA32_FS_SEL, VMCS_GUEST_IA32_FS_LIMIT,
- VMCS_GUEST_IA32_FS_AR, VMCS_GUEST_IA32_FS_BASE },
- { VMCS_GUEST_IA32_GS_SEL, VMCS_GUEST_IA32_GS_LIMIT,
- VMCS_GUEST_IA32_GS_AR, VMCS_GUEST_IA32_GS_BASE },
- { VMCS_GUEST_IA32_SS_SEL, VMCS_GUEST_IA32_SS_LIMIT,
- VMCS_GUEST_IA32_SS_AR, VMCS_GUEST_IA32_SS_BASE },
- { VMCS_GUEST_IA32_LDTR_SEL, VMCS_GUEST_IA32_LDTR_LIMIT,
- VMCS_GUEST_IA32_LDTR_AR, VMCS_GUEST_IA32_LDTR_BASE },
- { VMCS_GUEST_IA32_TR_SEL, VMCS_GUEST_IA32_TR_LIMIT,
- VMCS_GUEST_IA32_TR_AR, VMCS_GUEST_IA32_TR_BASE }
-};
-
-/* Pools for VMs and VCPUs */
-struct pool vm_pool;
-struct pool vcpu_pool;
-
-struct vmm_softc *vmm_softc;
-
-/* IDT information used when populating host state area */
-extern vaddr_t idt_vaddr;
-extern struct gate_descriptor *idt;
-
-/* Constants used in "CR access exit" */
-#define CR_WRITE 0
-#define CR_READ 1
-#define CR_CLTS 2
-#define CR_LMSW 3
-
-/*
- * vmm_enabled
- *
- * Checks if we have at least one CPU with either VMX or SVM.
- * Returns 1 if we have at least one of either type, but not both, 0 otherwise.
- */
-int
-vmm_enabled(void)
-{
- struct cpu_info *ci;
- CPU_INFO_ITERATOR cii;
- int found_vmx = 0, found_svm = 0;
-
- /* Check if we have at least one CPU with either VMX or SVM */
- CPU_INFO_FOREACH(cii, ci) {
- if (ci->ci_vmm_flags & CI_VMM_VMX)
- found_vmx = 1;
- if (ci->ci_vmm_flags & CI_VMM_SVM)
- found_svm = 1;
- }
-
- /* Don't support both SVM and VMX at the same time */
- if (found_vmx && found_svm)
- return (0);
-
- if (found_vmx || found_svm)
- return 1;
-
- return 0;
-}
-
-int
-vmm_probe(struct device *parent, void *match, void *aux)
-{
- const char **busname = (const char **)aux;
-
- if (strcmp(*busname, vmm_cd.cd_name) != 0)
- return (0);
- return (1);
-}
-
-/*
- * vmm_attach
- *
- * Calculates how many of each type of CPU we have, prints this into dmesg
- * during attach. Initializes various locks, pools, and list structures for the
- * VMM.
- */
-void
-vmm_attach(struct device *parent, struct device *self, void *aux)
-{
- struct vmm_softc *sc = (struct vmm_softc *)self;
- struct cpu_info *ci;
- CPU_INFO_ITERATOR cii;
-
- rw_init(&sc->sc_slock, "vmmslk");
- sc->sc_status = VMM_ACTIVE;
- refcnt_init(&sc->sc_refcnt);
-
- sc->nr_vmx_cpus = 0;
- sc->nr_svm_cpus = 0;
- sc->nr_rvi_cpus = 0;
- sc->nr_ept_cpus = 0;
- sc->vcpu_ct = 0;
- sc->vcpu_max = VMM_MAX_VCPUS;
- sc->vm_ct = 0;
- sc->vm_idx = 0;
-
- /* Calculate CPU features */
- CPU_INFO_FOREACH(cii, ci) {
- if (ci->ci_vmm_flags & CI_VMM_VMX)
- sc->nr_vmx_cpus++;
- if (ci->ci_vmm_flags & CI_VMM_SVM)
- sc->nr_svm_cpus++;
- if (ci->ci_vmm_flags & CI_VMM_RVI)
- sc->nr_rvi_cpus++;
- if (ci->ci_vmm_flags & CI_VMM_EPT)
- sc->nr_ept_cpus++;
- }
-
- sc->pkru_enabled = 0;
- if (rcr4() & CR4_PKE)
- sc->pkru_enabled = 1;
-
- SLIST_INIT(&sc->vm_list);
- rw_init(&sc->vm_lock, "vm_list");
-
- if (sc->nr_ept_cpus) {
- printf(": VMX/EPT");
- sc->mode = VMM_MODE_EPT;
- } else if (sc->nr_vmx_cpus) {
- printf(": VMX");
- sc->mode = VMM_MODE_VMX;
- } else if (sc->nr_rvi_cpus) {
- printf(": SVM/RVI");
- sc->mode = VMM_MODE_RVI;
- } else if (sc->nr_svm_cpus) {
- printf(": SVM");
- sc->mode = VMM_MODE_SVM;
- } else {
- printf(": unknown");
- sc->mode = VMM_MODE_UNKNOWN;
- }
-
- if (sc->mode == VMM_MODE_EPT || sc->mode == VMM_MODE_VMX) {
- if (!(curcpu()->ci_vmm_cap.vcc_vmx.vmx_has_l1_flush_msr)) {
- l1tf_flush_region = km_alloc(VMX_L1D_FLUSH_SIZE,
- &kv_any, &vmm_kp_contig, &kd_waitok);
- if (!l1tf_flush_region) {
- printf(" (failing, no memory)");
- sc->mode = VMM_MODE_UNKNOWN;
- } else {
- printf(" (using slow L1TF mitigation)");
- memset(l1tf_flush_region, 0xcc,
- VMX_L1D_FLUSH_SIZE);
- }
- }
- }
- printf("\n");
-
- if (sc->mode == VMM_MODE_SVM || sc->mode == VMM_MODE_RVI) {
- sc->max_vpid = curcpu()->ci_vmm_cap.vcc_svm.svm_max_asid;
- } else {
- sc->max_vpid = 0xFFF;
- }
-
- bzero(&sc->vpids, sizeof(sc->vpids));
- rw_init(&sc->vpid_lock, "vpid");
-
- pool_init(&vm_pool, sizeof(struct vm), 0, IPL_MPFLOOR, PR_WAITOK,
- "vmpool", NULL);
- pool_init(&vcpu_pool, sizeof(struct vcpu), 64, IPL_MPFLOOR, PR_WAITOK,
- "vcpupl", NULL);
-
- vmm_softc = sc;
-}
-
-/*
- * vmm_quiesce_vmx
- *
- * Prepare the host for suspend by flushing all VMCS states.
- */
-int
-vmm_quiesce_vmx(void)
-{
- struct vm *vm;
- struct vcpu *vcpu;
- int err;
-
- /*
- * We should be only called from a quiescing device state so we
- * don't expect to sleep here. If we can't get all our locks,
- * something is wrong.
- */
- if ((err = rw_enter(&vmm_softc->vm_lock, RW_WRITE | RW_NOSLEEP)))
- return (err);
-
- /* Iterate over each vm... */
- SLIST_FOREACH(vm, &vmm_softc->vm_list, vm_link) {
- /* Iterate over each vcpu... */
- SLIST_FOREACH(vcpu, &vm->vm_vcpu_list, vc_vcpu_link) {
- err = rw_enter(&vcpu->vc_lock, RW_WRITE | RW_NOSLEEP);
- if (err)
- break;
-
- /* We can skip unlaunched VMCS. Nothing to flush. */
- if (atomic_load_int(&vcpu->vc_vmx_vmcs_state)
- != VMCS_LAUNCHED) {
- DPRINTF("%s: skipping vcpu %d for vm %d\n",
- __func__, vcpu->vc_id, vm->vm_id);
- rw_exit_write(&vcpu->vc_lock);
- continue;
- }
-
-#ifdef MULTIPROCESSOR
- if (vcpu->vc_last_pcpu != curcpu()) {
- /* Remote cpu vmclear via ipi. */
- err = vmx_remote_vmclear(vcpu->vc_last_pcpu,
- vcpu);
- if (err)
- printf("%s: failed to remote vmclear "
- "vcpu %d of vm %d\n", __func__,
- vcpu->vc_id, vm->vm_id);
- } else
-#endif
- {
- /* Local cpu vmclear instruction. */
- if ((err = vmclear(&vcpu->vc_control_pa)))
- printf("%s: failed to locally vmclear "
- "vcpu %d of vm %d\n", __func__,
- vcpu->vc_id, vm->vm_id);
- atomic_swap_uint(&vcpu->vc_vmx_vmcs_state,
- VMCS_CLEARED);
- }
-
- rw_exit_write(&vcpu->vc_lock);
- if (err)
- break;
- DPRINTF("%s: cleared vcpu %d for vm %d\n", __func__,
- vcpu->vc_id, vm->vm_id);
- }
- if (err)
- break;
- }
- rw_exit_write(&vmm_softc->vm_lock);
-
- if (err)
- return (err);
- return (0);
-}
-
-/*
- * vmm_activate
- */
-int
-vmm_activate(struct device *self, int act)
-{
- struct cpu_info *ci = curcpu();
-
- switch (act) {
- case DVACT_QUIESCE:
- /* Block device users as we're suspending operation. */
- rw_enter_write(&vmm_softc->sc_slock);
- KASSERT(vmm_softc->sc_status == VMM_ACTIVE);
- vmm_softc->sc_status = VMM_SUSPENDED;
- rw_exit_write(&vmm_softc->sc_slock);
-
- /* Wait for any device users to finish. */
- refcnt_finalize(&vmm_softc->sc_refcnt, "vmmsusp");
-
- /* If we're not in vmm mode, nothing to do. */
- if ((ci->ci_flags & CPUF_VMM) == 0)
- break;
-
- /* Intel systems need extra steps to sync vcpu state. */
- if (vmm_softc->mode == VMM_MODE_EPT ||
- vmm_softc->mode == VMM_MODE_VMX)
- if (vmm_quiesce_vmx())
- DPRINTF("%s: vmx quiesce failed\n", __func__);
-
- /* Stop virtualization mode on all cpus. */
- vmm_stop();
- break;
-
- case DVACT_WAKEUP:
- /* Restart virtualization mode on all cpu's. */
- if (vmm_softc->vm_ct > 0)
- vmm_start();
-
- /* Set the device back to active. */
- rw_enter_write(&vmm_softc->sc_slock);
- KASSERT(vmm_softc->sc_status == VMM_SUSPENDED);
- refcnt_init(&vmm_softc->sc_refcnt);
- vmm_softc->sc_status = VMM_ACTIVE;
- rw_exit_write(&vmm_softc->sc_slock);
-
- /* Notify any waiting device users. */
- wakeup(&vmm_softc->sc_status);
- break;
- }
-
- return (0);
-}
-
-/*
- * vmmopen
- *
- * Called during open of /dev/vmm.
- *
- * Parameters:
- * dev, flag, mode, p: These come from the character device and are
- * all unused for this function
- *
- * Return values:
- * ENODEV: if vmm(4) didn't attach or no supported CPUs detected
- * 0: successful open
- */
-int
-vmmopen(dev_t dev, int flag, int mode, struct proc *p)
-{
- /* Don't allow open if we didn't attach */
- if (vmm_softc == NULL)
- return (ENODEV);
-
- /* Don't allow open if we didn't detect any supported CPUs */
- if (vmm_softc->mode != VMM_MODE_EPT && vmm_softc->mode != VMM_MODE_RVI)
- return (ENODEV);
-
- return 0;
-}
-
-/*
- * vmmioctl
- *
- * Main ioctl dispatch routine for /dev/vmm. Parses ioctl type and calls
- * appropriate lower level handler routine. Returns result to ioctl caller.
- */
-int
-vmmioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
-{
- int ret;
-
- KERNEL_UNLOCK();
-
- ret = rw_enter(&vmm_softc->sc_slock, RW_READ | RW_INTR);
- if (ret != 0)
- goto out;
- while (vmm_softc->sc_status != VMM_ACTIVE) {
- ret = rwsleep_nsec(&vmm_softc->sc_status, &vmm_softc->sc_slock,
- PWAIT | PCATCH, "vmmresume", INFSLP);
- if (ret != 0) {
- rw_exit(&vmm_softc->sc_slock);
- goto out;
- }
- }
- refcnt_take(&vmm_softc->sc_refcnt);
- rw_exit(&vmm_softc->sc_slock);
-
- switch (cmd) {
- case VMM_IOC_CREATE:
- if ((ret = vmm_start()) != 0) {
- vmm_stop();
- break;
- }
- ret = vm_create((struct vm_create_params *)data, p);
- break;
- case VMM_IOC_RUN:
- ret = vm_run((struct vm_run_params *)data);
- break;
- case VMM_IOC_INFO:
- ret = vm_get_info((struct vm_info_params *)data);
- break;
- case VMM_IOC_TERM:
- ret = vm_terminate((struct vm_terminate_params *)data);
- break;
- case VMM_IOC_RESETCPU:
- ret = vm_resetcpu((struct vm_resetcpu_params *)data);
- break;
- case VMM_IOC_INTR:
- ret = vm_intr_pending((struct vm_intr_params *)data);
- break;
- case VMM_IOC_READREGS:
- ret = vm_rwregs((struct vm_rwregs_params *)data, 0);
- break;
- case VMM_IOC_WRITEREGS:
- ret = vm_rwregs((struct vm_rwregs_params *)data, 1);
- break;
- case VMM_IOC_MPROTECT_EPT:
- ret = vm_mprotect_ept((struct vm_mprotect_ept_params *)data);
- break;
- case VMM_IOC_READVMPARAMS:
- ret = vm_rwvmparams((struct vm_rwvmparams_params *)data, 0);
- break;
- case VMM_IOC_WRITEVMPARAMS:
- ret = vm_rwvmparams((struct vm_rwvmparams_params *)data, 1);
- break;
-
- default:
- DPRINTF("%s: unknown ioctl code 0x%lx\n", __func__, cmd);
- ret = ENOTTY;
- }
-
- refcnt_rele_wake(&vmm_softc->sc_refcnt);
-out:
- KERNEL_LOCK();
-
- return (ret);
-}
-
-/*
- * pledge_ioctl_vmm
- *
- * Restrict the allowed ioctls in a pledged process context.
- * Is called from pledge_ioctl().
- */
-int
-pledge_ioctl_vmm(struct proc *p, long com)
-{
- switch (com) {
- case VMM_IOC_CREATE:
- case VMM_IOC_INFO:
- /* The "parent" process in vmd forks and manages VMs */
- if (p->p_p->ps_pledge & PLEDGE_PROC)
- return (0);
- break;
- case VMM_IOC_TERM:
- /* XXX VM processes should only terminate themselves */
- case VMM_IOC_RUN:
- case VMM_IOC_RESETCPU:
- case VMM_IOC_INTR:
- case VMM_IOC_READREGS:
- case VMM_IOC_WRITEREGS:
- case VMM_IOC_MPROTECT_EPT:
- case VMM_IOC_READVMPARAMS:
- case VMM_IOC_WRITEVMPARAMS:
- return (0);
- }
-
- return (EPERM);
-}
-
-/*
- * vmmclose
- *
- * Called when /dev/vmm is closed. Presently unused.
- */
-int
-vmmclose(dev_t dev, int flag, int mode, struct proc *p)
-{
- return 0;
-}
-
-/*
- * vm_find_vcpu
- *
- * Lookup VMM VCPU by ID number
- *
- * Parameters:
- * vm: vm structure
- * id: index id of vcpu
- *
- * Returns pointer to vcpu structure if successful, NULL otherwise
- */
-static struct vcpu *
-vm_find_vcpu(struct vm *vm, uint32_t id)
-{
- struct vcpu *vcpu;
-
- if (vm == NULL)
- return (NULL);
-
- SLIST_FOREACH(vcpu, &vm->vm_vcpu_list, vc_vcpu_link) {
- if (vcpu->vc_id == id)
- return (vcpu);
- }
-
- return (NULL);
-}
-
-
-/*
- * vm_resetcpu
- *
- * Resets the vcpu defined in 'vrp' to power-on-init register state
- *
- * Parameters:
- * vrp: ioctl structure defining the vcpu to reset (see vmmvar.h)
- *
- * Returns 0 if successful, or various error codes on failure:
- * ENOENT if the VM id contained in 'vrp' refers to an unknown VM or
- * if vrp describes an unknown vcpu for this VM
- * EBUSY if the indicated VCPU is not stopped
- * EIO if the indicated VCPU failed to reset
- */
-int
-vm_resetcpu(struct vm_resetcpu_params *vrp)
-{
- struct vm *vm;
- struct vcpu *vcpu;
- int error, ret = 0;
-
- /* Find the desired VM */
- error = vm_find(vrp->vrp_vm_id, &vm);
-
- /* Not found? exit. */
- if (error != 0) {
- DPRINTF("%s: vm id %u not found\n", __func__,
- vrp->vrp_vm_id);
- return (error);
- }
-
- vcpu = vm_find_vcpu(vm, vrp->vrp_vcpu_id);
-
- if (vcpu == NULL) {
- DPRINTF("%s: vcpu id %u of vm %u not found\n", __func__,
- vrp->vrp_vcpu_id, vrp->vrp_vm_id);
- ret = ENOENT;
- goto out;
- }
-
- rw_enter_write(&vcpu->vc_lock);
- if (vcpu->vc_state != VCPU_STATE_STOPPED)
- ret = EBUSY;
- else {
- if (vcpu_reset_regs(vcpu, &vrp->vrp_init_state)) {
- printf("%s: failed\n", __func__);
-#ifdef VMM_DEBUG
- dump_vcpu(vcpu);
-#endif /* VMM_DEBUG */
- ret = EIO;
- }
- }
- rw_exit_write(&vcpu->vc_lock);
-out:
- refcnt_rele_wake(&vm->vm_refcnt);
-
- return (ret);
-}
-
-/*
- * vm_intr_pending
- *
- * IOCTL handler routine for VMM_IOC_INTR messages, sent from vmd when an
- * interrupt is pending and needs acknowledgment
- *
- * Parameters:
- * vip: Describes the vm/vcpu for which the interrupt is pending
- *
- * Return values:
- * 0: if successful
- * ENOENT: if the VM/VCPU defined by 'vip' cannot be found
- */
-int
-vm_intr_pending(struct vm_intr_params *vip)
-{
- struct vm *vm;
- struct vcpu *vcpu;
-#ifdef MULTIPROCESSOR
- struct cpu_info *ci;
-#endif
- int error, ret = 0;
-
- /* Find the desired VM */
- error = vm_find(vip->vip_vm_id, &vm);
-
- /* Not found? exit. */
- if (error != 0)
- return (error);
-
- vcpu = vm_find_vcpu(vm, vip->vip_vcpu_id);
-
- if (vcpu == NULL) {
- ret = ENOENT;
- goto out;
- }
-
- vcpu->vc_intr = vip->vip_intr;
-#ifdef MULTIPROCESSOR
- ci = READ_ONCE(vcpu->vc_curcpu);
- if (ci != NULL)
- x86_send_ipi(ci, X86_IPI_NOP);
-#endif
-
-out:
- refcnt_rele_wake(&vm->vm_refcnt);
- return (ret);
-}
-
-/*
- * vm_rwvmparams
- *
- * IOCTL handler to read/write the current vmm params like pvclock gpa, pvclock
- * version, etc.
- *
- * Parameters:
- * vrwp: Describes the VM and VCPU to get/set the params from
- * dir: 0 for reading, 1 for writing
- *
- * Return values:
- * 0: if successful
- * ENOENT: if the VM/VCPU defined by 'vpp' cannot be found
- * EINVAL: if an error occurred reading the registers of the guest
- */
-int
-vm_rwvmparams(struct vm_rwvmparams_params *vpp, int dir) {
- struct vm *vm;
- struct vcpu *vcpu;
- int error, ret = 0;
-
- /* Find the desired VM */
- error = vm_find(vpp->vpp_vm_id, &vm);
-
- /* Not found? exit. */
- if (error != 0)
- return (error);
-
- vcpu = vm_find_vcpu(vm, vpp->vpp_vcpu_id);
-
- if (vcpu == NULL) {
- ret = ENOENT;
- goto out;
- }
-
- if (dir == 0) {
- if (vpp->vpp_mask & VM_RWVMPARAMS_PVCLOCK_VERSION)
- vpp->vpp_pvclock_version = vcpu->vc_pvclock_version;
- if (vpp->vpp_mask & VM_RWVMPARAMS_PVCLOCK_SYSTEM_GPA)
- vpp->vpp_pvclock_system_gpa = \
- vcpu->vc_pvclock_system_gpa;
- } else {
- if (vpp->vpp_mask & VM_RWVMPARAMS_PVCLOCK_VERSION)
- vcpu->vc_pvclock_version = vpp->vpp_pvclock_version;
- if (vpp->vpp_mask & VM_RWVMPARAMS_PVCLOCK_SYSTEM_GPA) {
- vmm_init_pvclock(vcpu, vpp->vpp_pvclock_system_gpa);
- }
- }
-out:
- refcnt_rele_wake(&vm->vm_refcnt);
- return (ret);
-}
-
-/*
- * vm_readregs
- *
- * IOCTL handler to read/write the current register values of a guest VCPU.
- * The VCPU must not be running.
- *
- * Parameters:
- * vrwp: Describes the VM and VCPU to get/set the registers from. The
- * register values are returned here as well.
- * dir: 0 for reading, 1 for writing
- *
- * Return values:
- * 0: if successful
- * ENOENT: if the VM/VCPU defined by 'vrwp' cannot be found
- * EINVAL: if an error occurred accessing the registers of the guest
- * EPERM: if the vm cannot be accessed from the calling process
- */
-int
-vm_rwregs(struct vm_rwregs_params *vrwp, int dir)
-{
- struct vm *vm;
- struct vcpu *vcpu;
- struct vcpu_reg_state *vrs = &vrwp->vrwp_regs;
- int error, ret = 0;
-
- /* Find the desired VM */
- error = vm_find(vrwp->vrwp_vm_id, &vm);
-
- /* Not found? exit. */
- if (error != 0)
- return (error);
-
- vcpu = vm_find_vcpu(vm, vrwp->vrwp_vcpu_id);
-
- if (vcpu == NULL) {
- ret = ENOENT;
- goto out;
- }
-
- rw_enter_write(&vcpu->vc_lock);
- if (vmm_softc->mode == VMM_MODE_VMX ||
- vmm_softc->mode == VMM_MODE_EPT)
- ret = (dir == 0) ?
- vcpu_readregs_vmx(vcpu, vrwp->vrwp_mask, 1, vrs) :
- vcpu_writeregs_vmx(vcpu, vrwp->vrwp_mask, 1, vrs);
- else if (vmm_softc->mode == VMM_MODE_SVM ||
- vmm_softc->mode == VMM_MODE_RVI)
- ret = (dir == 0) ?
- vcpu_readregs_svm(vcpu, vrwp->vrwp_mask, vrs) :
- vcpu_writeregs_svm(vcpu, vrwp->vrwp_mask, vrs);
- else {
- DPRINTF("%s: unknown vmm mode", __func__);
- ret = EINVAL;
- }
- rw_exit_write(&vcpu->vc_lock);
-out:
- refcnt_rele_wake(&vm->vm_refcnt);
- return (ret);
-}
-
-/*
- * vm_mprotect_ept
- *
- * IOCTL handler to sets the access protections of the ept
- *
- * Parameters:
- * vmep: describes the memory for which the protect will be applied..
- *
- * Return values:
- * 0: if successful
- * ENOENT: if the VM defined by 'vmep' cannot be found
- * EINVAL: if the sgpa or size is not page aligned, the prot is invalid,
- * size is too large (512GB), there is wraparound
- * (like start = 512GB-1 and end = 512GB-2),
- * the address specified is not within the vm's mem range
- * or the address lies inside reserved (MMIO) memory
- */
-int
-vm_mprotect_ept(struct vm_mprotect_ept_params *vmep)
-{
- struct vm *vm;
- struct vcpu *vcpu;
- vaddr_t sgpa;
- size_t size;
- vm_prot_t prot;
- uint64_t msr;
- int ret = 0, memtype;
-
- /* If not EPT or RVI, nothing to do here */
- if (!(vmm_softc->mode == VMM_MODE_EPT
- || vmm_softc->mode == VMM_MODE_RVI))
- return (0);
-
- /* Find the desired VM */
- ret = vm_find(vmep->vmep_vm_id, &vm);
-
- /* Not found? exit. */
- if (ret != 0) {
- DPRINTF("%s: vm id %u not found\n", __func__,
- vmep->vmep_vm_id);
- return (ret);
- }
-
- vcpu = vm_find_vcpu(vm, vmep->vmep_vcpu_id);
-
- if (vcpu == NULL) {
- DPRINTF("%s: vcpu id %u of vm %u not found\n", __func__,
- vmep->vmep_vcpu_id, vmep->vmep_vm_id);
- ret = ENOENT;
- goto out_nolock;
- }
-
- rw_enter_write(&vcpu->vc_lock);
-
- if (vcpu->vc_state != VCPU_STATE_STOPPED) {
- DPRINTF("%s: mprotect_ept %u on vm %u attempted "
- "while vcpu was in state %u (%s)\n", __func__,
- vmep->vmep_vcpu_id, vmep->vmep_vm_id, vcpu->vc_state,
- vcpu_state_decode(vcpu->vc_state));
- ret = EBUSY;
- goto out;
- }
-
- /* Only proceed if the pmap is in the correct mode */
- KASSERT((vmm_softc->mode == VMM_MODE_EPT &&
- vm->vm_map->pmap->pm_type == PMAP_TYPE_EPT) ||
- (vmm_softc->mode == VMM_MODE_RVI &&
- vm->vm_map->pmap->pm_type == PMAP_TYPE_RVI));
-
- sgpa = vmep->vmep_sgpa;
- size = vmep->vmep_size;
- prot = vmep->vmep_prot;
-
- /* No W^X permissions */
- if ((prot & PROT_MASK) != prot &&
- (prot & (PROT_WRITE | PROT_EXEC)) == (PROT_WRITE | PROT_EXEC)) {
- DPRINTF("%s: W+X permission requested\n", __func__);
- ret = EINVAL;
- goto out;
- }
-
- /* No Write only permissions */
- if ((prot & (PROT_READ | PROT_WRITE | PROT_EXEC)) == PROT_WRITE) {
- DPRINTF("%s: No Write only permissions\n", __func__);
- ret = EINVAL;
- goto out;
- }
-
- /* No empty permissions */
- if (prot == 0) {
- DPRINTF("%s: No empty permissions\n", __func__);
- ret = EINVAL;
- goto out;
- }
-
- /* No execute only on EPT CPUs that don't have that capability */
- if (vmm_softc->mode == VMM_MODE_EPT) {
- msr = rdmsr(IA32_VMX_EPT_VPID_CAP);
- if (prot == PROT_EXEC &&
- (msr & IA32_EPT_VPID_CAP_XO_TRANSLATIONS) == 0) {
- DPRINTF("%s: Execute only permissions unsupported,"
- " adding read permission\n", __func__);
-
- prot |= PROT_READ;
- }
- }
-
- /* Must be page aligned */
- if ((sgpa & PAGE_MASK) || (size & PAGE_MASK) || size == 0) {
- ret = EINVAL;
- goto out;
- }
-
- /* size must be less then 512GB */
- if (size >= NBPD_L4) {
- ret = EINVAL;
- goto out;
- }
-
- /* no wraparound */
- if (sgpa + size < sgpa) {
- ret = EINVAL;
- goto out;
- }
-
- /*
- * Specifying addresses within the PCI MMIO space is forbidden.
- * Disallow addresses that start inside the MMIO space:
- * [VMM_PCI_MMIO_BAR_BASE .. VMM_PCI_MMIO_BAR_END]
- */
- if (sgpa >= VMM_PCI_MMIO_BAR_BASE && sgpa <= VMM_PCI_MMIO_BAR_END) {
- ret = EINVAL;
- goto out;
- }
-
- /*
- * ... and disallow addresses that end inside the MMIO space:
- * (VMM_PCI_MMIO_BAR_BASE .. VMM_PCI_MMIO_BAR_END]
- */
- if (sgpa + size > VMM_PCI_MMIO_BAR_BASE &&
- sgpa + size <= VMM_PCI_MMIO_BAR_END) {
- ret = EINVAL;
- goto out;
- }
-
- memtype = vmm_get_guest_memtype(vm, sgpa);
- if (memtype == VMM_MEM_TYPE_UNKNOWN) {
- ret = EINVAL;
- goto out;
- }
-
- if (vmm_softc->mode == VMM_MODE_EPT)
- ret = vmx_mprotect_ept(vm->vm_map, sgpa, sgpa + size, prot);
- else if (vmm_softc->mode == VMM_MODE_RVI) {
- pmap_write_protect(vm->vm_map->pmap, sgpa, sgpa + size, prot);
- /* XXX requires a invlpga */
- ret = 0;
- } else
- ret = EINVAL;
-out:
- if (vcpu != NULL)
- rw_exit_write(&vcpu->vc_lock);
-out_nolock:
- refcnt_rele_wake(&vm->vm_refcnt);
- return (ret);
-}
-
-/*
- * vmx_mprotect_ept
- *
- * apply the ept protections to the requested pages, faulting in the page if
- * required.
- */
-int
-vmx_mprotect_ept(vm_map_t vm_map, paddr_t sgpa, paddr_t egpa, int prot)
-{
- struct vmx_invept_descriptor vid;
- pmap_t pmap;
- pt_entry_t *pte;
- paddr_t addr;
- int ret = 0;
-
- pmap = vm_map->pmap;
-
- KERNEL_LOCK();
-
- for (addr = sgpa; addr < egpa; addr += PAGE_SIZE) {
- pte = vmx_pmap_find_pte_ept(pmap, addr);
- if (pte == NULL) {
- ret = uvm_fault(vm_map, addr, VM_FAULT_WIRE,
- PROT_READ | PROT_WRITE | PROT_EXEC);
- if (ret)
- printf("%s: uvm_fault returns %d, GPA=0x%llx\n",
- __func__, ret, (uint64_t)addr);
-
- pte = vmx_pmap_find_pte_ept(pmap, addr);
- if (pte == NULL) {
- KERNEL_UNLOCK();
- return EFAULT;
- }
- }
-
- if (prot & PROT_READ)
- *pte |= EPT_R;
- else
- *pte &= ~EPT_R;
-
- if (prot & PROT_WRITE)
- *pte |= EPT_W;
- else
- *pte &= ~EPT_W;
-
- if (prot & PROT_EXEC)
- *pte |= EPT_X;
- else
- *pte &= ~EPT_X;
- }
-
- /*
- * SDM 3C: 28.3.3.4 Guidelines for Use of the INVEPT Instruction
- * the first bullet point seems to say we should call invept.
- *
- * Software should use the INVEPT instruction with the “single-context”
- * INVEPT type after making any of the following changes to an EPT
- * paging-structure entry (the INVEPT descriptor should contain an
- * EPTP value that references — directly or indirectly
- * — the modified EPT paging structure):
- * — Changing any of the privilege bits 2:0 from 1 to 0.
- * */
- if (pmap->eptp != 0) {
- memset(&vid, 0, sizeof(vid));
- vid.vid_eptp = pmap->eptp;
- DPRINTF("%s: flushing EPT TLB for EPTP 0x%llx\n", __func__,
- vid.vid_eptp);
- invept(IA32_VMX_INVEPT_SINGLE_CTX, &vid);
- }
-
- KERNEL_UNLOCK();
-
- return ret;
-}
-
-/*
- * vmx_pmap_find_pte_ept
- *
- * find the page table entry specified by addr in the pmap supplied.
- */
-pt_entry_t *
-vmx_pmap_find_pte_ept(pmap_t pmap, paddr_t addr)
-{
- int l4idx, l3idx, l2idx, l1idx;
- pd_entry_t *pd;
- paddr_t pdppa;
- pt_entry_t *ptes, *pte;
-
- l4idx = (addr & L4_MASK) >> L4_SHIFT; /* PML4E idx */
- l3idx = (addr & L3_MASK) >> L3_SHIFT; /* PDPTE idx */
- l2idx = (addr & L2_MASK) >> L2_SHIFT; /* PDE idx */
- l1idx = (addr & L1_MASK) >> L1_SHIFT; /* PTE idx */
-
- pd = (pd_entry_t *)pmap->pm_pdir;
- if (pd == NULL)
- return NULL;
-
- /*
- * l4idx should always be 0 since we don't support more than 512GB
- * guest physical memory.
- */
- if (l4idx > 0)
- return NULL;
-
- /*
- * l3idx should always be < MAXDSIZ/1GB because we don't support more
- * than MAXDSIZ guest phys mem.
- */
- if (l3idx >= MAXDSIZ / ((paddr_t)1024 * 1024 * 1024))
- return NULL;
-
- pdppa = pd[l4idx] & PG_FRAME;
- if (pdppa == 0)
- return NULL;
-
- ptes = (pt_entry_t *)PMAP_DIRECT_MAP(pdppa);
-
- pdppa = ptes[l3idx] & PG_FRAME;
- if (pdppa == 0)
- return NULL;
-
- ptes = (pt_entry_t *)PMAP_DIRECT_MAP(pdppa);
-
- pdppa = ptes[l2idx] & PG_FRAME;
- if (pdppa == 0)
- return NULL;
-
- ptes = (pt_entry_t *)PMAP_DIRECT_MAP(pdppa);
-
- pte = &ptes[l1idx];
- if (*pte == 0)
- return NULL;
-
- return pte;
-}
-
-/*
- * vm_find
- *
- * Function to find an existing VM by its identifier.
- * Must be called under the global vm_lock.
- *
- * Parameters:
- * id: The VM identifier.
- * *res: A pointer to the VM or NULL if not found
- *
- * Return values:
- * 0: if successful
- * ENOENT: if the VM defined by 'id' cannot be found
- * EPERM: if the VM cannot be accessed by the current process
- */
-int
-vm_find(uint32_t id, struct vm **res)
-{
- struct proc *p = curproc;
- struct vm *vm;
- int ret = ENOENT;
-
- *res = NULL;
-
- rw_enter_read(&vmm_softc->vm_lock);
- SLIST_FOREACH(vm, &vmm_softc->vm_list, vm_link) {
- if (vm->vm_id == id) {
- /*
- * In the pledged VM process, only allow to find
- * the VM that is running in the current process.
- * The managing vmm parent process can lookup all
- * all VMs and is indicated by PLEDGE_PROC.
- */
- if (((p->p_p->ps_pledge &
- (PLEDGE_VMM | PLEDGE_PROC)) == PLEDGE_VMM) &&
- (vm->vm_creator_pid != p->p_p->ps_pid))
- ret = EPERM;
- else {
- refcnt_take(&vm->vm_refcnt);
- *res = vm;
- ret = 0;
- }
- break;
- }
- }
- rw_exit_read(&vmm_softc->vm_lock);
-
- if (ret == EPERM)
- return (pledge_fail(p, EPERM, PLEDGE_VMM));
- return (ret);
-}
-
-/*
- * vmm_start
- *
- * Starts VMM mode on the system
- */
-int
-vmm_start(void)
-{
- struct cpu_info *self = curcpu();
-#ifdef MULTIPROCESSOR
- struct cpu_info *ci;
- CPU_INFO_ITERATOR cii;
-#ifdef MP_LOCKDEBUG
- int nticks;
-#endif /* MP_LOCKDEBUG */
-#endif /* MULTIPROCESSOR */
-
- /* VMM is already running */
- if (self->ci_flags & CPUF_VMM)
- return (0);
-
- /* Start VMM on this CPU */
- start_vmm_on_cpu(self);
- if (!(self->ci_flags & CPUF_VMM)) {
- printf("%s: failed to enter VMM mode\n",
- self->ci_dev->dv_xname);
- return (EIO);
- }
-
-#ifdef MULTIPROCESSOR
- /* Broadcast start VMM IPI */
- x86_broadcast_ipi(X86_IPI_START_VMM);
-
- CPU_INFO_FOREACH(cii, ci) {
- if (ci == self)
- continue;
-#ifdef MP_LOCKDEBUG
- nticks = __mp_lock_spinout;
-#endif /* MP_LOCKDEBUG */
- while (!(ci->ci_flags & CPUF_VMM)) {
- CPU_BUSY_CYCLE();
-#ifdef MP_LOCKDEBUG
- if (--nticks <= 0) {
- db_printf("%s: spun out", __func__);
- db_enter();
- nticks = __mp_lock_spinout;
- }
-#endif /* MP_LOCKDEBUG */
- }
- }
-#endif /* MULTIPROCESSOR */
-
- return (0);
-}
-
-/*
- * vmm_stop
- *
- * Stops VMM mode on the system
- */
-int
-vmm_stop(void)
-{
- struct cpu_info *self = curcpu();
-#ifdef MULTIPROCESSOR
- struct cpu_info *ci;
- CPU_INFO_ITERATOR cii;
-#ifdef MP_LOCKDEBUG
- int nticks;
-#endif /* MP_LOCKDEBUG */
-#endif /* MULTIPROCESSOR */
-
- /* VMM is not running */
- if (!(self->ci_flags & CPUF_VMM))
- return (0);
-
- /* Stop VMM on this CPU */
- stop_vmm_on_cpu(self);
- if (self->ci_flags & CPUF_VMM) {
- printf("%s: failed to exit VMM mode\n",
- self->ci_dev->dv_xname);
- return (EIO);
- }
-
-#ifdef MULTIPROCESSOR
- /* Stop VMM on other CPUs */
- x86_broadcast_ipi(X86_IPI_STOP_VMM);
-
- CPU_INFO_FOREACH(cii, ci) {
- if (ci == self)
- continue;
-#ifdef MP_LOCKDEBUG
- nticks = __mp_lock_spinout;
-#endif /* MP_LOCKDEBUG */
- while ((ci->ci_flags & CPUF_VMM)) {
- CPU_BUSY_CYCLE();
-#ifdef MP_LOCKDEBUG
- if (--nticks <= 0) {
- db_printf("%s: spunout", __func__);
- db_enter();
- nticks = __mp_lock_spinout;
- }
-#endif /* MP_LOCKDEBUG */
- }
- }
-#endif /* MULTIPROCESSOR */
-
- return (0);
-}
-
-/*
- * start_vmm_on_cpu
- *
- * Starts VMM mode on 'ci' by executing the appropriate CPU-specific insn
- * sequence to enter VMM mode (eg, VMXON)
- */
-void
-start_vmm_on_cpu(struct cpu_info *ci)
-{
- uint64_t msr;
- uint32_t cr4;
-
- /* No VMM mode? exit. */
- if ((ci->ci_vmm_flags & CI_VMM_VMX) == 0 &&
- (ci->ci_vmm_flags & CI_VMM_SVM) == 0)
- return;
-
- /*
- * AMD SVM
- */
- if (ci->ci_vmm_flags & CI_VMM_SVM) {
- msr = rdmsr(MSR_EFER);
- msr |= EFER_SVME;
- wrmsr(MSR_EFER, msr);
- }
-
- /*
- * Intel VMX
- */
- if (ci->ci_vmm_flags & CI_VMM_VMX) {
- if (ci->ci_vmxon_region == 0)
- return;
- else {
- bzero(ci->ci_vmxon_region, PAGE_SIZE);
- ci->ci_vmxon_region->vr_revision =
- ci->ci_vmm_cap.vcc_vmx.vmx_vmxon_revision;
-
- /* Set CR4.VMXE */
- cr4 = rcr4();
- cr4 |= CR4_VMXE;
- lcr4(cr4);
-
- /* Enable VMX */
- msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
- if (msr & IA32_FEATURE_CONTROL_LOCK) {
- if (!(msr & IA32_FEATURE_CONTROL_VMX_EN))
- return;
- } else {
- msr |= IA32_FEATURE_CONTROL_VMX_EN |
- IA32_FEATURE_CONTROL_LOCK;
- wrmsr(MSR_IA32_FEATURE_CONTROL, msr);
- }
-
- /* Enter VMX mode */
- if (vmxon((uint64_t *)&ci->ci_vmxon_region_pa))
- return;
- }
- }
-
- atomic_setbits_int(&ci->ci_flags, CPUF_VMM);
-}
-
-/*
- * stop_vmm_on_cpu
- *
- * Stops VMM mode on 'ci' by executing the appropriate CPU-specific insn
- * sequence to exit VMM mode (eg, VMXOFF)
- */
-void
-stop_vmm_on_cpu(struct cpu_info *ci)
-{
- uint64_t msr;
- uint32_t cr4;
-
- if (!(ci->ci_flags & CPUF_VMM))
- return;
-
- /*
- * AMD SVM
- */
- if (ci->ci_vmm_flags & CI_VMM_SVM) {
- msr = rdmsr(MSR_EFER);
- msr &= ~EFER_SVME;
- wrmsr(MSR_EFER, msr);
- }
-
- /*
- * Intel VMX
- */
- if (ci->ci_vmm_flags & CI_VMM_VMX) {
- if (vmxoff())
- panic("VMXOFF failed");
-
- cr4 = rcr4();
- cr4 &= ~CR4_VMXE;
- lcr4(cr4);
- }
-
- atomic_clearbits_int(&ci->ci_flags, CPUF_VMM);
-}
-
-/*
- * vmclear_on_cpu
- *
- * Flush and clear VMCS on 'ci' by executing vmclear.
- *
- */
-void
-vmclear_on_cpu(struct cpu_info *ci)
-{
- if ((ci->ci_flags & CPUF_VMM) && (ci->ci_vmm_flags & CI_VMM_VMX)) {
- if (vmclear(&ci->ci_vmcs_pa))
- panic("VMCLEAR ipi failed");
- atomic_swap_ulong(&ci->ci_vmcs_pa, VMX_VMCS_PA_CLEAR);
- }
-}
-
-#ifdef MULTIPROCESSOR
-static int
-vmx_remote_vmclear(struct cpu_info *ci, struct vcpu *vcpu)
-{
-#ifdef MP_LOCKDEBUG
- int nticks = __mp_lock_spinout;
-#endif /* MP_LOCKDEBUG */
-
- rw_enter_write(&ci->ci_vmcs_lock);
- atomic_swap_ulong(&ci->ci_vmcs_pa, vcpu->vc_control_pa);
- x86_send_ipi(ci, X86_IPI_VMCLEAR_VMM);
-
- while (ci->ci_vmcs_pa != VMX_VMCS_PA_CLEAR) {
- CPU_BUSY_CYCLE();
-#ifdef MP_LOCKDEBUG
- if (--nticks <= 0) {
- db_printf("%s: spun out\n", __func__);
- db_enter();
- nticks = __mp_lock_spinout;
- }
-#endif /* MP_LOCKDEBUG */
- }
- atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_CLEARED);
- rw_exit_write(&ci->ci_vmcs_lock);
-
- return (0);
-}
-#endif /* MULTIPROCESSOR */
-
-/*
- * vm_create_check_mem_ranges
- *
- * Make sure that the guest physical memory ranges given by the user process
- * do not overlap and are in ascending order.
- *
- * The last physical address may not exceed VMM_MAX_VM_MEM_SIZE.
- *
- * Return Values:
- * The total memory size in bytes if the checks were successful
- * 0: One of the memory ranges was invalid or VMM_MAX_VM_MEM_SIZE was
- * exceeded
- */
-size_t
-vm_create_check_mem_ranges(struct vm_create_params *vcp)
-{
- size_t i, memsize = 0;
- struct vm_mem_range *vmr, *pvmr;
- const paddr_t maxgpa = VMM_MAX_VM_MEM_SIZE;
-
- if (vcp->vcp_nmemranges == 0 ||
- vcp->vcp_nmemranges > VMM_MAX_MEM_RANGES) {
- DPRINTF("invalid number of guest memory ranges\n");
- return (0);
- }
-
- for (i = 0; i < vcp->vcp_nmemranges; i++) {
- vmr = &vcp->vcp_memranges[i];
-
- /* Only page-aligned addresses and sizes are permitted */
- if ((vmr->vmr_gpa & PAGE_MASK) || (vmr->vmr_va & PAGE_MASK) ||
- (vmr->vmr_size & PAGE_MASK) || vmr->vmr_size == 0) {
- DPRINTF("memory range %zu is not page aligned\n", i);
- return (0);
- }
-
- /* Make sure that VMM_MAX_VM_MEM_SIZE is not exceeded */
- if (vmr->vmr_gpa >= maxgpa ||
- vmr->vmr_size > maxgpa - vmr->vmr_gpa) {
- DPRINTF("exceeded max memory size\n");
- return (0);
- }
-
- /*
- * Make sure that all virtual addresses are within the address
- * space of the process and that they do not wrap around.
- * Calling uvm_share() when creating the VM will take care of
- * further checks.
- */
- if (vmr->vmr_va < VM_MIN_ADDRESS ||
- vmr->vmr_va >= VM_MAXUSER_ADDRESS ||
- vmr->vmr_size >= VM_MAXUSER_ADDRESS - vmr->vmr_va) {
- DPRINTF("guest va not within range or wraps\n");
- return (0);
- }
-
- /*
- * Make sure that guest physical memory ranges do not overlap
- * and that they are ascending.
- */
- if (i > 0 && pvmr->vmr_gpa + pvmr->vmr_size > vmr->vmr_gpa) {
- DPRINTF("guest range %zu overlaps or !ascending\n", i);
- return (0);
- }
-
- /*
- * No memory is mappable in MMIO ranges, so don't count towards
- * the total guest memory size.
- */
- if (vmr->vmr_type != VM_MEM_MMIO)
- memsize += vmr->vmr_size;
- pvmr = vmr;
- }
-
- return (memsize);
-}
-
-/*
- * vm_create
- *
- * Creates the in-memory VMM structures for the VM defined by 'vcp'. The
- * parent of this VM shall be the process defined by 'p'.
- * This function does not start the VCPU(s) - see vm_start.
- *
- * Return Values:
- * 0: the create operation was successful
- * ENOMEM: out of memory
- * various other errors from vcpu_init/vm_impl_init
- */
-int
-vm_create(struct vm_create_params *vcp, struct proc *p)
-{
- int i, ret;
- size_t memsize;
- struct vm *vm;
- struct vcpu *vcpu;
-
- if (!(curcpu()->ci_flags & CPUF_VMM))
- return (EINVAL);
-
- memsize = vm_create_check_mem_ranges(vcp);
- if (memsize == 0)
- return (EINVAL);
-
- /* XXX - support UP only (for now) */
- if (vcp->vcp_ncpus != 1)
- return (EINVAL);
-
- /* Bail early if we're already at vcpu capacity. */
- rw_enter_read(&vmm_softc->vm_lock);
- if (vmm_softc->vcpu_ct + vcp->vcp_ncpus > vmm_softc->vcpu_max) {
- DPRINTF("%s: maximum vcpus (%lu) reached\n", __func__,
- vmm_softc->vcpu_max);
- rw_exit_read(&vmm_softc->vm_lock);
- return (ENOMEM);
- }
- rw_exit_read(&vmm_softc->vm_lock);
-
- /* Instantiate and configure the new vm. */
- vm = pool_get(&vm_pool, PR_WAITOK | PR_ZERO);
-
- vm->vm_creator_pid = p->p_p->ps_pid;
- vm->vm_nmemranges = vcp->vcp_nmemranges;
- memcpy(vm->vm_memranges, vcp->vcp_memranges,
- vm->vm_nmemranges * sizeof(vm->vm_memranges[0]));
- vm->vm_memory_size = memsize;
- strncpy(vm->vm_name, vcp->vcp_name, VMM_MAX_NAME_LEN - 1);
-
- if (vm_impl_init(vm, p)) {
- printf("failed to init arch-specific features for vm %p\n", vm);
- vm_teardown(&vm);
- return (ENOMEM);
- }
-
- vm->vm_vcpu_ct = 0;
-
- /* Initialize each VCPU defined in 'vcp' */
- SLIST_INIT(&vm->vm_vcpu_list);
- for (i = 0; i < vcp->vcp_ncpus; i++) {
- vcpu = pool_get(&vcpu_pool, PR_WAITOK | PR_ZERO);
-
- vcpu->vc_parent = vm;
- if ((ret = vcpu_init(vcpu)) != 0) {
- printf("failed to init vcpu %d for vm %p\n", i, vm);
- vm_teardown(&vm);
- return (ret);
- }
- vcpu->vc_id = vm->vm_vcpu_ct;
- vm->vm_vcpu_ct++;
- /* Publish vcpu to list, inheriting the reference. */
- SLIST_INSERT_HEAD(&vm->vm_vcpu_list, vcpu, vc_vcpu_link);
- }
-
- /* XXX init various other hardware parts (vlapic, vioapic, etc) */
-
- /* Attempt to register the vm now that it's configured. */
- rw_enter_write(&vmm_softc->vm_lock);
-
- if (vmm_softc->vcpu_ct + vm->vm_vcpu_ct > vmm_softc->vcpu_max) {
- /* Someone already took our capacity. */
- printf("%s: maximum vcpus (%lu) reached\n", __func__,
- vmm_softc->vcpu_max);
- rw_exit_write(&vmm_softc->vm_lock);
- vm_teardown(&vm);
- return (ENOMEM);
- }
-
- /* Update the global index and identify the vm. */
- vmm_softc->vm_idx++;
- vm->vm_id = vmm_softc->vm_idx;
- vcp->vcp_id = vm->vm_id;
-
- /* Publish the vm into the list and update counts. */
- refcnt_init(&vm->vm_refcnt);
- SLIST_INSERT_HEAD(&vmm_softc->vm_list, vm, vm_link);
- vmm_softc->vm_ct++;
- vmm_softc->vcpu_ct += vm->vm_vcpu_ct;
-
- rw_exit_write(&vmm_softc->vm_lock);
-
- return (0);
-}
-
-/*
- * vm_impl_init_vmx
- *
- * Intel VMX specific VM initialization routine
- *
- * Parameters:
- * vm: the VM being initialized
- * p: vmd process owning the VM
- *
- * Return values:
- * 0: the initialization was successful
- * ENOMEM: the initialization failed (lack of resources)
- */
-int
-vm_impl_init_vmx(struct vm *vm, struct proc *p)
-{
- int i, ret;
- vaddr_t mingpa, maxgpa;
- struct vm_mem_range *vmr;
-
- /* If not EPT, nothing to do here */
- if (vmm_softc->mode != VMM_MODE_EPT)
- return (0);
-
- vmr = &vm->vm_memranges[0];
- mingpa = vmr->vmr_gpa;
- vmr = &vm->vm_memranges[vm->vm_nmemranges - 1];
- maxgpa = vmr->vmr_gpa + vmr->vmr_size;
-
- /*
- * uvmspace_alloc (currently) always returns a valid vmspace
- */
- vm->vm_vmspace = uvmspace_alloc(mingpa, maxgpa, TRUE, FALSE);
- vm->vm_map = &vm->vm_vmspace->vm_map;
-
- /* Map the new map with an anon */
- DPRINTF("%s: created vm_map @ %p\n", __func__, vm->vm_map);
- for (i = 0; i < vm->vm_nmemranges; i++) {
- vmr = &vm->vm_memranges[i];
- ret = uvm_share(vm->vm_map, vmr->vmr_gpa,
- PROT_READ | PROT_WRITE | PROT_EXEC,
- &p->p_vmspace->vm_map, vmr->vmr_va, vmr->vmr_size);
- if (ret) {
- printf("%s: uvm_share failed (%d)\n", __func__, ret);
- /* uvmspace_free calls pmap_destroy for us */
- uvmspace_free(vm->vm_vmspace);
- vm->vm_vmspace = NULL;
- return (ENOMEM);
- }
- }
-
- pmap_convert(vm->vm_map->pmap, PMAP_TYPE_EPT);
-
- return (0);
-}
-
-/*
- * vm_impl_init_svm
- *
- * AMD SVM specific VM initialization routine
- *
- * Parameters:
- * vm: the VM being initialized
- * p: vmd process owning the VM
- *
- * Return values:
- * 0: the initialization was successful
- * ENOMEM: the initialization failed (lack of resources)
- */
-int
-vm_impl_init_svm(struct vm *vm, struct proc *p)
-{
- int i, ret;
- vaddr_t mingpa, maxgpa;
- struct vm_mem_range *vmr;
-
- /* If not RVI, nothing to do here */
- if (vmm_softc->mode != VMM_MODE_RVI)
- return (0);
-
- vmr = &vm->vm_memranges[0];
- mingpa = vmr->vmr_gpa;
- vmr = &vm->vm_memranges[vm->vm_nmemranges - 1];
- maxgpa = vmr->vmr_gpa + vmr->vmr_size;
-
- /*
- * uvmspace_alloc (currently) always returns a valid vmspace
- */
- vm->vm_vmspace = uvmspace_alloc(mingpa, maxgpa, TRUE, FALSE);
- vm->vm_map = &vm->vm_vmspace->vm_map;
-
- /* Map the new map with an anon */
- DPRINTF("%s: created vm_map @ %p\n", __func__, vm->vm_map);
- for (i = 0; i < vm->vm_nmemranges; i++) {
- vmr = &vm->vm_memranges[i];
- ret = uvm_share(vm->vm_map, vmr->vmr_gpa,
- PROT_READ | PROT_WRITE | PROT_EXEC,
- &p->p_vmspace->vm_map, vmr->vmr_va, vmr->vmr_size);
- if (ret) {
- printf("%s: uvm_share failed (%d)\n", __func__, ret);
- /* uvmspace_free calls pmap_destroy for us */
- uvmspace_free(vm->vm_vmspace);
- vm->vm_vmspace = NULL;
- return (ENOMEM);
- }
- }
-
- /* Convert pmap to RVI */
- pmap_convert(vm->vm_map->pmap, PMAP_TYPE_RVI);
-
- return (0);
-}
-
-/*
- * vm_impl_init
- *
- * Calls the architecture-specific VM init routine
- *
- * Parameters:
- * vm: the VM being initialized
- * p: vmd process owning the VM
- *
- * Return values (from architecture-specific init routines):
- * 0: the initialization was successful
- * ENOMEM: the initialization failed (lack of resources)
- */
-int
-vm_impl_init(struct vm *vm, struct proc *p)
-{
- int ret;
-
- KERNEL_LOCK();
- if (vmm_softc->mode == VMM_MODE_VMX ||
- vmm_softc->mode == VMM_MODE_EPT)
- ret = vm_impl_init_vmx(vm, p);
- else if (vmm_softc->mode == VMM_MODE_SVM ||
- vmm_softc->mode == VMM_MODE_RVI)
- ret = vm_impl_init_svm(vm, p);
- else
- panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
- KERNEL_UNLOCK();
-
- return (ret);
-}
-
-/*
- * vm_impl_deinit_vmx
- *
- * Intel VMX specific VM deinitialization routine
- *
- * Parameters:
- * vm: VM to deinit
- */
-void
-vm_impl_deinit_vmx(struct vm *vm)
-{
- /* Unused */
-}
-
-/*
- * vm_impl_deinit_svm
- *
- * AMD SVM specific VM deinitialization routine
- *
- * Parameters:
- * vm: VM to deinit
- */
-void
-vm_impl_deinit_svm(struct vm *vm)
-{
- /* Unused */
-}
-
-/*
- * vm_impl_deinit
- *
- * Calls the architecture-specific VM init routine
- *
- * Parameters:
- * vm: VM to deinit
- */
-void
-vm_impl_deinit(struct vm *vm)
-{
- if (vmm_softc->mode == VMM_MODE_VMX ||
- vmm_softc->mode == VMM_MODE_EPT)
- vm_impl_deinit_vmx(vm);
- else if (vmm_softc->mode == VMM_MODE_SVM ||
- vmm_softc->mode == VMM_MODE_RVI)
- vm_impl_deinit_svm(vm);
- else
- panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
-}
-
-/*
- * vcpu_reload_vmcs_vmx
- *
- * (Re)load the VMCS on the current cpu. Must be called with the VMCS write
- * lock acquired. If the VMCS is determined to be loaded on a remote cpu, an
- * ipi will be used to remotely flush it before loading the VMCS locally.
- *
- * Parameters:
- * vcpu: Pointer to the vcpu needing its VMCS
- *
- * Return values:
- * 0: if successful
- * EINVAL: an error occurred during flush or reload
- */
-int
-vcpu_reload_vmcs_vmx(struct vcpu *vcpu)
-{
- struct cpu_info *ci, *last_ci;
-
- rw_assert_wrlock(&vcpu->vc_lock);
-
- ci = curcpu();
- last_ci = vcpu->vc_last_pcpu;
-
- if (last_ci == NULL) {
- /* First launch */
- if (vmclear(&vcpu->vc_control_pa))
- return (EINVAL);
- atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_CLEARED);
-#ifdef MULTIPROCESSOR
- } else if (last_ci != ci) {
- /* We've moved CPUs at some point, so remote VMCLEAR */
- if (vmx_remote_vmclear(last_ci, vcpu))
- return (EINVAL);
- KASSERT(vcpu->vc_vmx_vmcs_state == VMCS_CLEARED);
-#endif /* MULTIPROCESSOR */
- }
-
- if (vmptrld(&vcpu->vc_control_pa)) {
- printf("%s: vmptrld\n", __func__);
- return (EINVAL);
- }
-
- return (0);
-}
-
-/*
- * vcpu_readregs_vmx
- *
- * Reads 'vcpu's registers
- *
- * Parameters:
- * vcpu: the vcpu to read register values from
- * regmask: the types of registers to read
- * loadvmcs: bit to indicate whether the VMCS has to be loaded first
- * vrs: output parameter where register values are stored
- *
- * Return values:
- * 0: if successful
- * EINVAL: an error reading registers occurred
- */
-int
-vcpu_readregs_vmx(struct vcpu *vcpu, uint64_t regmask, int loadvmcs,
- struct vcpu_reg_state *vrs)
-{
- int i, ret = 0;
- uint64_t sel, limit, ar;
- uint64_t *gprs = vrs->vrs_gprs;
- uint64_t *crs = vrs->vrs_crs;
- uint64_t *msrs = vrs->vrs_msrs;
- uint64_t *drs = vrs->vrs_drs;
- struct vcpu_segment_info *sregs = vrs->vrs_sregs;
- struct vmx_msr_store *msr_store;
-
- if (loadvmcs) {
- if (vcpu_reload_vmcs_vmx(vcpu))
- return (EINVAL);
- }
-
-#ifdef VMM_DEBUG
- /* VMCS should be loaded... */
- paddr_t pa = 0ULL;
- if (vmptrst(&pa))
- panic("%s: vmptrst", __func__);
- KASSERT(pa == vcpu->vc_control_pa);
-#endif /* VMM_DEBUG */
-
- if (regmask & VM_RWREGS_GPRS) {
- gprs[VCPU_REGS_RAX] = vcpu->vc_gueststate.vg_rax;
- gprs[VCPU_REGS_RBX] = vcpu->vc_gueststate.vg_rbx;
- gprs[VCPU_REGS_RCX] = vcpu->vc_gueststate.vg_rcx;
- gprs[VCPU_REGS_RDX] = vcpu->vc_gueststate.vg_rdx;
- gprs[VCPU_REGS_RSI] = vcpu->vc_gueststate.vg_rsi;
- gprs[VCPU_REGS_RDI] = vcpu->vc_gueststate.vg_rdi;
- gprs[VCPU_REGS_R8] = vcpu->vc_gueststate.vg_r8;
- gprs[VCPU_REGS_R9] = vcpu->vc_gueststate.vg_r9;
- gprs[VCPU_REGS_R10] = vcpu->vc_gueststate.vg_r10;
- gprs[VCPU_REGS_R11] = vcpu->vc_gueststate.vg_r11;
- gprs[VCPU_REGS_R12] = vcpu->vc_gueststate.vg_r12;
- gprs[VCPU_REGS_R13] = vcpu->vc_gueststate.vg_r13;
- gprs[VCPU_REGS_R14] = vcpu->vc_gueststate.vg_r14;
- gprs[VCPU_REGS_R15] = vcpu->vc_gueststate.vg_r15;
- gprs[VCPU_REGS_RBP] = vcpu->vc_gueststate.vg_rbp;
- gprs[VCPU_REGS_RIP] = vcpu->vc_gueststate.vg_rip;
- if (vmread(VMCS_GUEST_IA32_RSP, &gprs[VCPU_REGS_RSP]))
- goto errout;
- if (vmread(VMCS_GUEST_IA32_RFLAGS, &gprs[VCPU_REGS_RFLAGS]))
- goto errout;
- }
-
- if (regmask & VM_RWREGS_SREGS) {
- for (i = 0; i < nitems(vmm_vmx_sreg_vmcs_fields); i++) {
- if (vmread(vmm_vmx_sreg_vmcs_fields[i].selid, &sel))
- goto errout;
- if (vmread(vmm_vmx_sreg_vmcs_fields[i].limitid, &limit))
- goto errout;
- if (vmread(vmm_vmx_sreg_vmcs_fields[i].arid, &ar))
- goto errout;
- if (vmread(vmm_vmx_sreg_vmcs_fields[i].baseid,
- &sregs[i].vsi_base))
- goto errout;
-
- sregs[i].vsi_sel = sel;
- sregs[i].vsi_limit = limit;
- sregs[i].vsi_ar = ar;
- }
-
- if (vmread(VMCS_GUEST_IA32_GDTR_LIMIT, &limit))
- goto errout;
- if (vmread(VMCS_GUEST_IA32_GDTR_BASE,
- &vrs->vrs_gdtr.vsi_base))
- goto errout;
- vrs->vrs_gdtr.vsi_limit = limit;
-
- if (vmread(VMCS_GUEST_IA32_IDTR_LIMIT, &limit))
- goto errout;
- if (vmread(VMCS_GUEST_IA32_IDTR_BASE,
- &vrs->vrs_idtr.vsi_base))
- goto errout;
- vrs->vrs_idtr.vsi_limit = limit;
- }
-
- if (regmask & VM_RWREGS_CRS) {
- crs[VCPU_REGS_CR2] = vcpu->vc_gueststate.vg_cr2;
- crs[VCPU_REGS_XCR0] = vcpu->vc_gueststate.vg_xcr0;
- if (vmread(VMCS_GUEST_IA32_CR0, &crs[VCPU_REGS_CR0]))
- goto errout;
- if (vmread(VMCS_GUEST_IA32_CR3, &crs[VCPU_REGS_CR3]))
- goto errout;
- if (vmread(VMCS_GUEST_IA32_CR4, &crs[VCPU_REGS_CR4]))
- goto errout;
- if (vmread(VMCS_GUEST_PDPTE0, &crs[VCPU_REGS_PDPTE0]))
- goto errout;
- if (vmread(VMCS_GUEST_PDPTE1, &crs[VCPU_REGS_PDPTE1]))
- goto errout;
- if (vmread(VMCS_GUEST_PDPTE2, &crs[VCPU_REGS_PDPTE2]))
- goto errout;
- if (vmread(VMCS_GUEST_PDPTE3, &crs[VCPU_REGS_PDPTE3]))
- goto errout;
- }
-
- msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
-
- if (regmask & VM_RWREGS_MSRS) {
- for (i = 0; i < VCPU_REGS_NMSRS; i++) {
- msrs[i] = msr_store[i].vms_data;
- }
- }
-
- if (regmask & VM_RWREGS_DRS) {
- drs[VCPU_REGS_DR0] = vcpu->vc_gueststate.vg_dr0;
- drs[VCPU_REGS_DR1] = vcpu->vc_gueststate.vg_dr1;
- drs[VCPU_REGS_DR2] = vcpu->vc_gueststate.vg_dr2;
- drs[VCPU_REGS_DR3] = vcpu->vc_gueststate.vg_dr3;
- drs[VCPU_REGS_DR6] = vcpu->vc_gueststate.vg_dr6;
- if (vmread(VMCS_GUEST_IA32_DR7, &drs[VCPU_REGS_DR7]))
- goto errout;
- }
-
- goto out;
-
-errout:
- ret = EINVAL;
-out:
- return (ret);
-}
-
-/*
- * vcpu_readregs_svm
- *
- * Reads 'vcpu's registers
- *
- * Parameters:
- * vcpu: the vcpu to read register values from
- * regmask: the types of registers to read
- * vrs: output parameter where register values are stored
- *
- * Return values:
- * 0: if successful
- */
-int
-vcpu_readregs_svm(struct vcpu *vcpu, uint64_t regmask,
- struct vcpu_reg_state *vrs)
-{
- uint64_t *gprs = vrs->vrs_gprs;
- uint64_t *crs = vrs->vrs_crs;
- uint64_t *msrs = vrs->vrs_msrs;
- uint64_t *drs = vrs->vrs_drs;
- uint32_t attr;
- struct vcpu_segment_info *sregs = vrs->vrs_sregs;
- struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
-
- if (regmask & VM_RWREGS_GPRS) {
- gprs[VCPU_REGS_RAX] = vmcb->v_rax;
- gprs[VCPU_REGS_RBX] = vcpu->vc_gueststate.vg_rbx;
- gprs[VCPU_REGS_RCX] = vcpu->vc_gueststate.vg_rcx;
- gprs[VCPU_REGS_RDX] = vcpu->vc_gueststate.vg_rdx;
- gprs[VCPU_REGS_RSI] = vcpu->vc_gueststate.vg_rsi;
- gprs[VCPU_REGS_RDI] = vcpu->vc_gueststate.vg_rdi;
- gprs[VCPU_REGS_R8] = vcpu->vc_gueststate.vg_r8;
- gprs[VCPU_REGS_R9] = vcpu->vc_gueststate.vg_r9;
- gprs[VCPU_REGS_R10] = vcpu->vc_gueststate.vg_r10;
- gprs[VCPU_REGS_R11] = vcpu->vc_gueststate.vg_r11;
- gprs[VCPU_REGS_R12] = vcpu->vc_gueststate.vg_r12;
- gprs[VCPU_REGS_R13] = vcpu->vc_gueststate.vg_r13;
- gprs[VCPU_REGS_R14] = vcpu->vc_gueststate.vg_r14;
- gprs[VCPU_REGS_R15] = vcpu->vc_gueststate.vg_r15;
- gprs[VCPU_REGS_RBP] = vcpu->vc_gueststate.vg_rbp;
- gprs[VCPU_REGS_RIP] = vmcb->v_rip;
- gprs[VCPU_REGS_RSP] = vmcb->v_rsp;
- gprs[VCPU_REGS_RFLAGS] = vmcb->v_rflags;
- }
-
- if (regmask & VM_RWREGS_SREGS) {
- sregs[VCPU_REGS_CS].vsi_sel = vmcb->v_cs.vs_sel;
- sregs[VCPU_REGS_CS].vsi_limit = vmcb->v_cs.vs_lim;
- attr = vmcb->v_cs.vs_attr;
- sregs[VCPU_REGS_CS].vsi_ar = (attr & 0xff) | ((attr << 4) &
- 0xf000);
- sregs[VCPU_REGS_CS].vsi_base = vmcb->v_cs.vs_base;
-
- sregs[VCPU_REGS_DS].vsi_sel = vmcb->v_ds.vs_sel;
- sregs[VCPU_REGS_DS].vsi_limit = vmcb->v_ds.vs_lim;
- attr = vmcb->v_ds.vs_attr;
- sregs[VCPU_REGS_DS].vsi_ar = (attr & 0xff) | ((attr << 4) &
- 0xf000);
- sregs[VCPU_REGS_DS].vsi_base = vmcb->v_ds.vs_base;
-
- sregs[VCPU_REGS_ES].vsi_sel = vmcb->v_es.vs_sel;
- sregs[VCPU_REGS_ES].vsi_limit = vmcb->v_es.vs_lim;
- attr = vmcb->v_es.vs_attr;
- sregs[VCPU_REGS_ES].vsi_ar = (attr & 0xff) | ((attr << 4) &
- 0xf000);
- sregs[VCPU_REGS_ES].vsi_base = vmcb->v_es.vs_base;
-
- sregs[VCPU_REGS_FS].vsi_sel = vmcb->v_fs.vs_sel;
- sregs[VCPU_REGS_FS].vsi_limit = vmcb->v_fs.vs_lim;
- attr = vmcb->v_fs.vs_attr;
- sregs[VCPU_REGS_FS].vsi_ar = (attr & 0xff) | ((attr << 4) &
- 0xf000);
- sregs[VCPU_REGS_FS].vsi_base = vmcb->v_fs.vs_base;
-
- sregs[VCPU_REGS_GS].vsi_sel = vmcb->v_gs.vs_sel;
- sregs[VCPU_REGS_GS].vsi_limit = vmcb->v_gs.vs_lim;
- attr = vmcb->v_gs.vs_attr;
- sregs[VCPU_REGS_GS].vsi_ar = (attr & 0xff) | ((attr << 4) &
- 0xf000);
- sregs[VCPU_REGS_GS].vsi_base = vmcb->v_gs.vs_base;
-
- sregs[VCPU_REGS_SS].vsi_sel = vmcb->v_ss.vs_sel;
- sregs[VCPU_REGS_SS].vsi_limit = vmcb->v_ss.vs_lim;
- attr = vmcb->v_ss.vs_attr;
- sregs[VCPU_REGS_SS].vsi_ar = (attr & 0xff) | ((attr << 4) &
- 0xf000);
- sregs[VCPU_REGS_SS].vsi_base = vmcb->v_ss.vs_base;
-
- sregs[VCPU_REGS_LDTR].vsi_sel = vmcb->v_ldtr.vs_sel;
- sregs[VCPU_REGS_LDTR].vsi_limit = vmcb->v_ldtr.vs_lim;
- attr = vmcb->v_ldtr.vs_attr;
- sregs[VCPU_REGS_LDTR].vsi_ar = (attr & 0xff) | ((attr << 4)
- & 0xf000);
- sregs[VCPU_REGS_LDTR].vsi_base = vmcb->v_ldtr.vs_base;
-
- sregs[VCPU_REGS_TR].vsi_sel = vmcb->v_tr.vs_sel;
- sregs[VCPU_REGS_TR].vsi_limit = vmcb->v_tr.vs_lim;
- attr = vmcb->v_tr.vs_attr;
- sregs[VCPU_REGS_TR].vsi_ar = (attr & 0xff) | ((attr << 4) &
- 0xf000);
- sregs[VCPU_REGS_TR].vsi_base = vmcb->v_tr.vs_base;
-
- vrs->vrs_gdtr.vsi_limit = vmcb->v_gdtr.vs_lim;
- vrs->vrs_gdtr.vsi_base = vmcb->v_gdtr.vs_base;
- vrs->vrs_idtr.vsi_limit = vmcb->v_idtr.vs_lim;
- vrs->vrs_idtr.vsi_base = vmcb->v_idtr.vs_base;
- }
-
- if (regmask & VM_RWREGS_CRS) {
- crs[VCPU_REGS_CR0] = vmcb->v_cr0;
- crs[VCPU_REGS_CR3] = vmcb->v_cr3;
- crs[VCPU_REGS_CR4] = vmcb->v_cr4;
- crs[VCPU_REGS_CR2] = vcpu->vc_gueststate.vg_cr2;
- crs[VCPU_REGS_XCR0] = vcpu->vc_gueststate.vg_xcr0;
- }
-
- if (regmask & VM_RWREGS_MSRS) {
- msrs[VCPU_REGS_EFER] = vmcb->v_efer;
- msrs[VCPU_REGS_STAR] = vmcb->v_star;
- msrs[VCPU_REGS_LSTAR] = vmcb->v_lstar;
- msrs[VCPU_REGS_CSTAR] = vmcb->v_cstar;
- msrs[VCPU_REGS_SFMASK] = vmcb->v_sfmask;
- msrs[VCPU_REGS_KGSBASE] = vmcb->v_kgsbase;
- }
-
- if (regmask & VM_RWREGS_DRS) {
- drs[VCPU_REGS_DR0] = vcpu->vc_gueststate.vg_dr0;
- drs[VCPU_REGS_DR1] = vcpu->vc_gueststate.vg_dr1;
- drs[VCPU_REGS_DR2] = vcpu->vc_gueststate.vg_dr2;
- drs[VCPU_REGS_DR3] = vcpu->vc_gueststate.vg_dr3;
- drs[VCPU_REGS_DR6] = vmcb->v_dr6;
- drs[VCPU_REGS_DR7] = vmcb->v_dr7;
- }
-
- return (0);
-}
-
-/*
- * vcpu_writeregs_vmx
- *
- * Writes VCPU registers
- *
- * Parameters:
- * vcpu: the vcpu that has to get its registers written to
- * regmask: the types of registers to write
- * loadvmcs: bit to indicate whether the VMCS has to be loaded first
- * vrs: the register values to write
- *
- * Return values:
- * 0: if successful
- * EINVAL an error writing registers occurred
- */
-int
-vcpu_writeregs_vmx(struct vcpu *vcpu, uint64_t regmask, int loadvmcs,
- struct vcpu_reg_state *vrs)
-{
- int i, ret = 0;
- uint16_t sel;
- uint64_t limit, ar;
- uint64_t *gprs = vrs->vrs_gprs;
- uint64_t *crs = vrs->vrs_crs;
- uint64_t *msrs = vrs->vrs_msrs;
- uint64_t *drs = vrs->vrs_drs;
- struct vcpu_segment_info *sregs = vrs->vrs_sregs;
- struct vmx_msr_store *msr_store;
-
- if (loadvmcs) {
- if (vcpu_reload_vmcs_vmx(vcpu))
- return (EINVAL);
- }
-
-#ifdef VMM_DEBUG
- /* VMCS should be loaded... */
- paddr_t pa = 0ULL;
- if (vmptrst(&pa))
- panic("%s: vmptrst", __func__);
- KASSERT(pa == vcpu->vc_control_pa);
-#endif /* VMM_DEBUG */
-
- if (regmask & VM_RWREGS_GPRS) {
- vcpu->vc_gueststate.vg_rax = gprs[VCPU_REGS_RAX];
- vcpu->vc_gueststate.vg_rbx = gprs[VCPU_REGS_RBX];
- vcpu->vc_gueststate.vg_rcx = gprs[VCPU_REGS_RCX];
- vcpu->vc_gueststate.vg_rdx = gprs[VCPU_REGS_RDX];
- vcpu->vc_gueststate.vg_rsi = gprs[VCPU_REGS_RSI];
- vcpu->vc_gueststate.vg_rdi = gprs[VCPU_REGS_RDI];
- vcpu->vc_gueststate.vg_r8 = gprs[VCPU_REGS_R8];
- vcpu->vc_gueststate.vg_r9 = gprs[VCPU_REGS_R9];
- vcpu->vc_gueststate.vg_r10 = gprs[VCPU_REGS_R10];
- vcpu->vc_gueststate.vg_r11 = gprs[VCPU_REGS_R11];
- vcpu->vc_gueststate.vg_r12 = gprs[VCPU_REGS_R12];
- vcpu->vc_gueststate.vg_r13 = gprs[VCPU_REGS_R13];
- vcpu->vc_gueststate.vg_r14 = gprs[VCPU_REGS_R14];
- vcpu->vc_gueststate.vg_r15 = gprs[VCPU_REGS_R15];
- vcpu->vc_gueststate.vg_rbp = gprs[VCPU_REGS_RBP];
- vcpu->vc_gueststate.vg_rip = gprs[VCPU_REGS_RIP];
- if (vmwrite(VMCS_GUEST_IA32_RIP, gprs[VCPU_REGS_RIP]))
- goto errout;
- if (vmwrite(VMCS_GUEST_IA32_RSP, gprs[VCPU_REGS_RSP]))
- goto errout;
- if (vmwrite(VMCS_GUEST_IA32_RFLAGS, gprs[VCPU_REGS_RFLAGS]))
- goto errout;
- }
-
- if (regmask & VM_RWREGS_SREGS) {
- for (i = 0; i < nitems(vmm_vmx_sreg_vmcs_fields); i++) {
- sel = sregs[i].vsi_sel;
- limit = sregs[i].vsi_limit;
- ar = sregs[i].vsi_ar;
-
- if (vmwrite(vmm_vmx_sreg_vmcs_fields[i].selid, sel))
- goto errout;
- if (vmwrite(vmm_vmx_sreg_vmcs_fields[i].limitid, limit))
- goto errout;
- if (vmwrite(vmm_vmx_sreg_vmcs_fields[i].arid, ar))
- goto errout;
- if (vmwrite(vmm_vmx_sreg_vmcs_fields[i].baseid,
- sregs[i].vsi_base))
- goto errout;
- }
-
- if (vmwrite(VMCS_GUEST_IA32_GDTR_LIMIT,
- vrs->vrs_gdtr.vsi_limit))
- goto errout;
- if (vmwrite(VMCS_GUEST_IA32_GDTR_BASE,
- vrs->vrs_gdtr.vsi_base))
- goto errout;
- if (vmwrite(VMCS_GUEST_IA32_IDTR_LIMIT,
- vrs->vrs_idtr.vsi_limit))
- goto errout;
- if (vmwrite(VMCS_GUEST_IA32_IDTR_BASE,
- vrs->vrs_idtr.vsi_base))
- goto errout;
- }
-
- if (regmask & VM_RWREGS_CRS) {
- vcpu->vc_gueststate.vg_xcr0 = crs[VCPU_REGS_XCR0];
- if (vmwrite(VMCS_GUEST_IA32_CR0, crs[VCPU_REGS_CR0]))
- goto errout;
- if (vmwrite(VMCS_GUEST_IA32_CR3, crs[VCPU_REGS_CR3]))
- goto errout;
- if (vmwrite(VMCS_GUEST_IA32_CR4, crs[VCPU_REGS_CR4]))
- goto errout;
- if (vmwrite(VMCS_GUEST_PDPTE0, crs[VCPU_REGS_PDPTE0]))
- goto errout;
- if (vmwrite(VMCS_GUEST_PDPTE1, crs[VCPU_REGS_PDPTE1]))
- goto errout;
- if (vmwrite(VMCS_GUEST_PDPTE2, crs[VCPU_REGS_PDPTE2]))
- goto errout;
- if (vmwrite(VMCS_GUEST_PDPTE3, crs[VCPU_REGS_PDPTE3]))
- goto errout;
- }
-
- msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
-
- if (regmask & VM_RWREGS_MSRS) {
- for (i = 0; i < VCPU_REGS_NMSRS; i++) {
- msr_store[i].vms_data = msrs[i];
- }
- }
-
- if (regmask & VM_RWREGS_DRS) {
- vcpu->vc_gueststate.vg_dr0 = drs[VCPU_REGS_DR0];
- vcpu->vc_gueststate.vg_dr1 = drs[VCPU_REGS_DR1];
- vcpu->vc_gueststate.vg_dr2 = drs[VCPU_REGS_DR2];
- vcpu->vc_gueststate.vg_dr3 = drs[VCPU_REGS_DR3];
- vcpu->vc_gueststate.vg_dr6 = drs[VCPU_REGS_DR6];
- if (vmwrite(VMCS_GUEST_IA32_DR7, drs[VCPU_REGS_DR7]))
- goto errout;
- }
-
- goto out;
-
-errout:
- ret = EINVAL;
-out:
- if (loadvmcs) {
- if (vmclear(&vcpu->vc_control_pa))
- ret = EINVAL;
- atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_CLEARED);
- }
- return (ret);
-}
-
-/*
- * vcpu_writeregs_svm
- *
- * Writes 'vcpu's registers
- *
- * Parameters:
- * vcpu: the vcpu that has to get its registers written to
- * regmask: the types of registers to write
- * vrs: the register values to write
- *
- * Return values:
- * 0: if successful
- * EINVAL an error writing registers occurred
- */
-int
-vcpu_writeregs_svm(struct vcpu *vcpu, uint64_t regmask,
- struct vcpu_reg_state *vrs)
-{
- uint64_t *gprs = vrs->vrs_gprs;
- uint64_t *crs = vrs->vrs_crs;
- uint16_t attr;
- uint64_t *msrs = vrs->vrs_msrs;
- uint64_t *drs = vrs->vrs_drs;
- struct vcpu_segment_info *sregs = vrs->vrs_sregs;
- struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
-
- if (regmask & VM_RWREGS_GPRS) {
- vcpu->vc_gueststate.vg_rax = gprs[VCPU_REGS_RAX];
- vcpu->vc_gueststate.vg_rbx = gprs[VCPU_REGS_RBX];
- vcpu->vc_gueststate.vg_rcx = gprs[VCPU_REGS_RCX];
- vcpu->vc_gueststate.vg_rdx = gprs[VCPU_REGS_RDX];
- vcpu->vc_gueststate.vg_rsi = gprs[VCPU_REGS_RSI];
- vcpu->vc_gueststate.vg_rdi = gprs[VCPU_REGS_RDI];
- vcpu->vc_gueststate.vg_r8 = gprs[VCPU_REGS_R8];
- vcpu->vc_gueststate.vg_r9 = gprs[VCPU_REGS_R9];
- vcpu->vc_gueststate.vg_r10 = gprs[VCPU_REGS_R10];
- vcpu->vc_gueststate.vg_r11 = gprs[VCPU_REGS_R11];
- vcpu->vc_gueststate.vg_r12 = gprs[VCPU_REGS_R12];
- vcpu->vc_gueststate.vg_r13 = gprs[VCPU_REGS_R13];
- vcpu->vc_gueststate.vg_r14 = gprs[VCPU_REGS_R14];
- vcpu->vc_gueststate.vg_r15 = gprs[VCPU_REGS_R15];
- vcpu->vc_gueststate.vg_rbp = gprs[VCPU_REGS_RBP];
- vcpu->vc_gueststate.vg_rip = gprs[VCPU_REGS_RIP];
-
- vmcb->v_rax = gprs[VCPU_REGS_RAX];
- vmcb->v_rip = gprs[VCPU_REGS_RIP];
- vmcb->v_rsp = gprs[VCPU_REGS_RSP];
- vmcb->v_rflags = gprs[VCPU_REGS_RFLAGS];
- }
-
- if (regmask & VM_RWREGS_SREGS) {
- vmcb->v_cs.vs_sel = sregs[VCPU_REGS_CS].vsi_sel;
- vmcb->v_cs.vs_lim = sregs[VCPU_REGS_CS].vsi_limit;
- attr = sregs[VCPU_REGS_CS].vsi_ar;
- vmcb->v_cs.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
- vmcb->v_cs.vs_base = sregs[VCPU_REGS_CS].vsi_base;
- vmcb->v_ds.vs_sel = sregs[VCPU_REGS_DS].vsi_sel;
- vmcb->v_ds.vs_lim = sregs[VCPU_REGS_DS].vsi_limit;
- attr = sregs[VCPU_REGS_DS].vsi_ar;
- vmcb->v_ds.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
- vmcb->v_ds.vs_base = sregs[VCPU_REGS_DS].vsi_base;
- vmcb->v_es.vs_sel = sregs[VCPU_REGS_ES].vsi_sel;
- vmcb->v_es.vs_lim = sregs[VCPU_REGS_ES].vsi_limit;
- attr = sregs[VCPU_REGS_ES].vsi_ar;
- vmcb->v_es.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
- vmcb->v_es.vs_base = sregs[VCPU_REGS_ES].vsi_base;
- vmcb->v_fs.vs_sel = sregs[VCPU_REGS_FS].vsi_sel;
- vmcb->v_fs.vs_lim = sregs[VCPU_REGS_FS].vsi_limit;
- attr = sregs[VCPU_REGS_FS].vsi_ar;
- vmcb->v_fs.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
- vmcb->v_fs.vs_base = sregs[VCPU_REGS_FS].vsi_base;
- vmcb->v_gs.vs_sel = sregs[VCPU_REGS_GS].vsi_sel;
- vmcb->v_gs.vs_lim = sregs[VCPU_REGS_GS].vsi_limit;
- attr = sregs[VCPU_REGS_GS].vsi_ar;
- vmcb->v_gs.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
- vmcb->v_gs.vs_base = sregs[VCPU_REGS_GS].vsi_base;
- vmcb->v_ss.vs_sel = sregs[VCPU_REGS_SS].vsi_sel;
- vmcb->v_ss.vs_lim = sregs[VCPU_REGS_SS].vsi_limit;
- attr = sregs[VCPU_REGS_SS].vsi_ar;
- vmcb->v_ss.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
- vmcb->v_ss.vs_base = sregs[VCPU_REGS_SS].vsi_base;
- vmcb->v_ldtr.vs_sel = sregs[VCPU_REGS_LDTR].vsi_sel;
- vmcb->v_ldtr.vs_lim = sregs[VCPU_REGS_LDTR].vsi_limit;
- attr = sregs[VCPU_REGS_LDTR].vsi_ar;
- vmcb->v_ldtr.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
- vmcb->v_ldtr.vs_base = sregs[VCPU_REGS_LDTR].vsi_base;
- vmcb->v_tr.vs_sel = sregs[VCPU_REGS_TR].vsi_sel;
- vmcb->v_tr.vs_lim = sregs[VCPU_REGS_TR].vsi_limit;
- attr = sregs[VCPU_REGS_TR].vsi_ar;
- vmcb->v_tr.vs_attr = (attr & 0xff) | ((attr >> 4) & 0xf00);
- vmcb->v_tr.vs_base = sregs[VCPU_REGS_TR].vsi_base;
- vmcb->v_gdtr.vs_lim = vrs->vrs_gdtr.vsi_limit;
- vmcb->v_gdtr.vs_base = vrs->vrs_gdtr.vsi_base;
- vmcb->v_idtr.vs_lim = vrs->vrs_idtr.vsi_limit;
- vmcb->v_idtr.vs_base = vrs->vrs_idtr.vsi_base;
- }
-
- if (regmask & VM_RWREGS_CRS) {
- vmcb->v_cr0 = crs[VCPU_REGS_CR0];
- vmcb->v_cr3 = crs[VCPU_REGS_CR3];
- vmcb->v_cr4 = crs[VCPU_REGS_CR4];
- vcpu->vc_gueststate.vg_cr2 = crs[VCPU_REGS_CR2];
- vcpu->vc_gueststate.vg_xcr0 = crs[VCPU_REGS_XCR0];
- }
-
- if (regmask & VM_RWREGS_MSRS) {
- vmcb->v_efer |= msrs[VCPU_REGS_EFER];
- vmcb->v_star = msrs[VCPU_REGS_STAR];
- vmcb->v_lstar = msrs[VCPU_REGS_LSTAR];
- vmcb->v_cstar = msrs[VCPU_REGS_CSTAR];
- vmcb->v_sfmask = msrs[VCPU_REGS_SFMASK];
- vmcb->v_kgsbase = msrs[VCPU_REGS_KGSBASE];
- }
-
- if (regmask & VM_RWREGS_DRS) {
- vcpu->vc_gueststate.vg_dr0 = drs[VCPU_REGS_DR0];
- vcpu->vc_gueststate.vg_dr1 = drs[VCPU_REGS_DR1];
- vcpu->vc_gueststate.vg_dr2 = drs[VCPU_REGS_DR2];
- vcpu->vc_gueststate.vg_dr3 = drs[VCPU_REGS_DR3];
- vmcb->v_dr6 = drs[VCPU_REGS_DR6];
- vmcb->v_dr7 = drs[VCPU_REGS_DR7];
- }
-
- return (0);
-}
-
-/*
- * vcpu_reset_regs_svm
- *
- * Initializes 'vcpu's registers to supplied state
- *
- * Parameters:
- * vcpu: the vcpu whose register state is to be initialized
- * vrs: the register state to set
- *
- * Return values:
- * 0: registers init'ed successfully
- * EINVAL: an error occurred setting register state
- */
-int
-vcpu_reset_regs_svm(struct vcpu *vcpu, struct vcpu_reg_state *vrs)
-{
- struct vmcb *vmcb;
- int ret;
- uint16_t asid;
-
- vmcb = (struct vmcb *)vcpu->vc_control_va;
-
- /*
- * Intercept controls
- *
- * External Interrupt exiting (SVM_INTERCEPT_INTR)
- * External NMI exiting (SVM_INTERCEPT_NMI)
- * CPUID instruction (SVM_INTERCEPT_CPUID)
- * HLT instruction (SVM_INTERCEPT_HLT)
- * I/O instructions (SVM_INTERCEPT_INOUT)
- * MSR access (SVM_INTERCEPT_MSR)
- * shutdown events (SVM_INTERCEPT_SHUTDOWN)
- *
- * VMRUN instruction (SVM_INTERCEPT_VMRUN)
- * VMMCALL instruction (SVM_INTERCEPT_VMMCALL)
- * VMLOAD instruction (SVM_INTERCEPT_VMLOAD)
- * VMSAVE instruction (SVM_INTERCEPT_VMSAVE)
- * STGI instruction (SVM_INTERCEPT_STGI)
- * CLGI instruction (SVM_INTERCEPT_CLGI)
- * SKINIT instruction (SVM_INTERCEPT_SKINIT)
- * ICEBP instruction (SVM_INTERCEPT_ICEBP)
- * MWAIT instruction (SVM_INTERCEPT_MWAIT_UNCOND)
- * MWAIT instruction (SVM_INTERCEPT_MWAIT_COND)
- * MONITOR instruction (SVM_INTERCEPT_MONITOR)
- * RDTSCP instruction (SVM_INTERCEPT_RDTSCP)
- * INVLPGA instruction (SVM_INTERCEPT_INVLPGA)
- * XSETBV instruction (SVM_INTERCEPT_XSETBV) (if available)
- */
- vmcb->v_intercept1 = SVM_INTERCEPT_INTR | SVM_INTERCEPT_NMI |
- SVM_INTERCEPT_CPUID | SVM_INTERCEPT_HLT | SVM_INTERCEPT_INOUT |
- SVM_INTERCEPT_MSR | SVM_INTERCEPT_SHUTDOWN;
-
- vmcb->v_intercept2 = SVM_INTERCEPT_VMRUN | SVM_INTERCEPT_VMMCALL |
- SVM_INTERCEPT_VMLOAD | SVM_INTERCEPT_VMSAVE | SVM_INTERCEPT_STGI |
- SVM_INTERCEPT_CLGI | SVM_INTERCEPT_SKINIT | SVM_INTERCEPT_ICEBP |
- SVM_INTERCEPT_MWAIT_UNCOND | SVM_INTERCEPT_MONITOR |
- SVM_INTERCEPT_MWAIT_COND | SVM_INTERCEPT_RDTSCP |
- SVM_INTERCEPT_INVLPGA;
-
- if (xsave_mask)
- vmcb->v_intercept2 |= SVM_INTERCEPT_XSETBV;
-
- /* Setup I/O bitmap */
- memset((uint8_t *)vcpu->vc_svm_ioio_va, 0xFF, 3 * PAGE_SIZE);
- vmcb->v_iopm_pa = (uint64_t)(vcpu->vc_svm_ioio_pa);
-
- /* Setup MSR bitmap */
- memset((uint8_t *)vcpu->vc_msr_bitmap_va, 0xFF, 2 * PAGE_SIZE);
- vmcb->v_msrpm_pa = (uint64_t)(vcpu->vc_msr_bitmap_pa);
- svm_setmsrbrw(vcpu, MSR_IA32_FEATURE_CONTROL);
- svm_setmsrbrw(vcpu, MSR_SYSENTER_CS);
- svm_setmsrbrw(vcpu, MSR_SYSENTER_ESP);
- svm_setmsrbrw(vcpu, MSR_SYSENTER_EIP);
- svm_setmsrbrw(vcpu, MSR_STAR);
- svm_setmsrbrw(vcpu, MSR_LSTAR);
- svm_setmsrbrw(vcpu, MSR_CSTAR);
- svm_setmsrbrw(vcpu, MSR_SFMASK);
- svm_setmsrbrw(vcpu, MSR_FSBASE);
- svm_setmsrbrw(vcpu, MSR_GSBASE);
- svm_setmsrbrw(vcpu, MSR_KERNELGSBASE);
-
- /* EFER is R/O so we can ensure the guest always has SVME */
- svm_setmsrbr(vcpu, MSR_EFER);
-
- /* allow reading TSC */
- svm_setmsrbr(vcpu, MSR_TSC);
-
- /* allow reading HWCR and PSTATEDEF to determine TSC frequency */
- svm_setmsrbr(vcpu, MSR_HWCR);
- svm_setmsrbr(vcpu, MSR_PSTATEDEF(0));
-
- /* Guest VCPU ASID */
- if (vmm_alloc_vpid(&asid)) {
- DPRINTF("%s: could not allocate asid\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- vmcb->v_asid = asid;
- vcpu->vc_vpid = asid;
-
- /* TLB Control - First time in, flush all*/
- vmcb->v_tlb_control = SVM_TLB_CONTROL_FLUSH_ALL;
-
- /* INTR masking */
- vmcb->v_intr_masking = 1;
-
- /* PAT */
- vmcb->v_g_pat = PATENTRY(0, PAT_WB) | PATENTRY(1, PAT_WC) |
- PATENTRY(2, PAT_UCMINUS) | PATENTRY(3, PAT_UC) |
- PATENTRY(4, PAT_WB) | PATENTRY(5, PAT_WC) |
- PATENTRY(6, PAT_UCMINUS) | PATENTRY(7, PAT_UC);
-
- /* NPT */
- if (vmm_softc->mode == VMM_MODE_RVI) {
- vmcb->v_np_enable = 1;
- vmcb->v_n_cr3 = vcpu->vc_parent->vm_map->pmap->pm_pdirpa;
- }
-
- /* Enable SVME in EFER (must always be set) */
- vmcb->v_efer |= EFER_SVME;
-
- ret = vcpu_writeregs_svm(vcpu, VM_RWREGS_ALL, vrs);
-
- /* xcr0 power on default sets bit 0 (x87 state) */
- vcpu->vc_gueststate.vg_xcr0 = XFEATURE_X87 & xsave_mask;
-
- vcpu->vc_parent->vm_map->pmap->eptp = 0;
-
-exit:
- return ret;
-}
-
-/*
- * svm_setmsrbr
- *
- * Allow read access to the specified msr on the supplied vcpu.
- *
- * Parameters:
- * vcpu: the VCPU to allow access
- * msr: the MSR number to allow access to
- */
-void
-svm_setmsrbr(struct vcpu *vcpu, uint32_t msr)
-{
- uint8_t *msrs;
- uint16_t idx;
-
- msrs = (uint8_t *)vcpu->vc_msr_bitmap_va;
-
- /*
- * MSR Read bitmap layout:
- * Pentium MSRs (0x0 - 0x1fff) @ 0x0
- * Gen6 and Syscall MSRs (0xc0000000 - 0xc0001fff) @ 0x800
- * Gen7 and Gen8 MSRs (0xc0010000 - 0xc0011fff) @ 0x1000
- *
- * Read enable bit is low order bit of 2-bit pair
- * per MSR (eg, MSR 0x0 write bit is at bit 0 @ 0x0)
- */
- if (msr <= 0x1fff) {
- idx = SVM_MSRIDX(msr);
- msrs[idx] &= ~(SVM_MSRBIT_R(msr));
- } else if (msr >= 0xc0000000 && msr <= 0xc0001fff) {
- idx = SVM_MSRIDX(msr - 0xc0000000) + 0x800;
- msrs[idx] &= ~(SVM_MSRBIT_R(msr - 0xc0000000));
- } else if (msr >= 0xc0010000 && msr <= 0xc0011fff) {
- idx = SVM_MSRIDX(msr - 0xc0010000) + 0x1000;
- msrs[idx] &= ~(SVM_MSRBIT_R(msr - 0xc0010000));
- } else {
- printf("%s: invalid msr 0x%x\n", __func__, msr);
- return;
- }
-}
-
-/*
- * svm_setmsrbw
- *
- * Allow write access to the specified msr on the supplied vcpu
- *
- * Parameters:
- * vcpu: the VCPU to allow access
- * msr: the MSR number to allow access to
- */
-void
-svm_setmsrbw(struct vcpu *vcpu, uint32_t msr)
-{
- uint8_t *msrs;
- uint16_t idx;
-
- msrs = (uint8_t *)vcpu->vc_msr_bitmap_va;
-
- /*
- * MSR Write bitmap layout:
- * Pentium MSRs (0x0 - 0x1fff) @ 0x0
- * Gen6 and Syscall MSRs (0xc0000000 - 0xc0001fff) @ 0x800
- * Gen7 and Gen8 MSRs (0xc0010000 - 0xc0011fff) @ 0x1000
- *
- * Write enable bit is high order bit of 2-bit pair
- * per MSR (eg, MSR 0x0 write bit is at bit 1 @ 0x0)
- */
- if (msr <= 0x1fff) {
- idx = SVM_MSRIDX(msr);
- msrs[idx] &= ~(SVM_MSRBIT_W(msr));
- } else if (msr >= 0xc0000000 && msr <= 0xc0001fff) {
- idx = SVM_MSRIDX(msr - 0xc0000000) + 0x800;
- msrs[idx] &= ~(SVM_MSRBIT_W(msr - 0xc0000000));
- } else if (msr >= 0xc0010000 && msr <= 0xc0011fff) {
- idx = SVM_MSRIDX(msr - 0xc0010000) + 0x1000;
- msrs[idx] &= ~(SVM_MSRBIT_W(msr - 0xc0010000));
- } else {
- printf("%s: invalid msr 0x%x\n", __func__, msr);
- return;
- }
-}
-
-/*
- * svm_setmsrbrw
- *
- * Allow read/write access to the specified msr on the supplied vcpu
- *
- * Parameters:
- * vcpu: the VCPU to allow access
- * msr: the MSR number to allow access to
- */
-void
-svm_setmsrbrw(struct vcpu *vcpu, uint32_t msr)
-{
- svm_setmsrbr(vcpu, msr);
- svm_setmsrbw(vcpu, msr);
-}
-
-/*
- * vmx_setmsrbr
- *
- * Allow read access to the specified msr on the supplied vcpu.
- *
- * Parameters:
- * vcpu: the VCPU to allow access
- * msr: the MSR number to allow access to
- */
-void
-vmx_setmsrbr(struct vcpu *vcpu, uint32_t msr)
-{
- uint8_t *msrs;
- uint16_t idx;
-
- msrs = (uint8_t *)vcpu->vc_msr_bitmap_va;
-
- /*
- * MSR Read bitmap layout:
- * "Low" MSRs (0x0 - 0x1fff) @ 0x0
- * "High" MSRs (0xc0000000 - 0xc0001fff) @ 0x400
- */
- if (msr <= 0x1fff) {
- idx = VMX_MSRIDX(msr);
- msrs[idx] &= ~(VMX_MSRBIT(msr));
- } else if (msr >= 0xc0000000 && msr <= 0xc0001fff) {
- idx = VMX_MSRIDX(msr - 0xc0000000) + 0x400;
- msrs[idx] &= ~(VMX_MSRBIT(msr - 0xc0000000));
- } else
- printf("%s: invalid msr 0x%x\n", __func__, msr);
-}
-
-/*
- * vmx_setmsrbw
- *
- * Allow write access to the specified msr on the supplied vcpu
- *
- * Parameters:
- * vcpu: the VCPU to allow access
- * msr: the MSR number to allow access to
- */
-void
-vmx_setmsrbw(struct vcpu *vcpu, uint32_t msr)
-{
- uint8_t *msrs;
- uint16_t idx;
-
- msrs = (uint8_t *)vcpu->vc_msr_bitmap_va;
-
- /*
- * MSR Write bitmap layout:
- * "Low" MSRs (0x0 - 0x1fff) @ 0x800
- * "High" MSRs (0xc0000000 - 0xc0001fff) @ 0xc00
- */
- if (msr <= 0x1fff) {
- idx = VMX_MSRIDX(msr) + 0x800;
- msrs[idx] &= ~(VMX_MSRBIT(msr));
- } else if (msr >= 0xc0000000 && msr <= 0xc0001fff) {
- idx = VMX_MSRIDX(msr - 0xc0000000) + 0xc00;
- msrs[idx] &= ~(VMX_MSRBIT(msr - 0xc0000000));
- } else
- printf("%s: invalid msr 0x%x\n", __func__, msr);
-}
-
-/*
- * vmx_setmsrbrw
- *
- * Allow read/write access to the specified msr on the supplied vcpu
- *
- * Parameters:
- * vcpu: the VCPU to allow access
- * msr: the MSR number to allow access to
- */
-void
-vmx_setmsrbrw(struct vcpu *vcpu, uint32_t msr)
-{
- vmx_setmsrbr(vcpu, msr);
- vmx_setmsrbw(vcpu, msr);
-}
-
-/*
- * svm_set_clean
- *
- * Sets (mark as unmodified) the VMCB clean bit set in 'value'.
- * For example, to set the clean bit for the VMCB intercepts (bit position 0),
- * the caller provides 'SVM_CLEANBITS_I' (0x1) for the 'value' argument.
- * Multiple cleanbits can be provided in 'value' at the same time (eg,
- * "SVM_CLEANBITS_I | SVM_CLEANBITS_TPR").
- *
- * Note that this function does not clear any bits; to clear bits in the
- * vmcb cleanbits bitfield, use 'svm_set_dirty'.
- *
- * Parameters:
- * vmcs: the VCPU whose VMCB clean value should be set
- * value: the value(s) to enable in the cleanbits mask
- */
-void
-svm_set_clean(struct vcpu *vcpu, uint32_t value)
-{
- struct vmcb *vmcb;
-
- /* If no cleanbits support, do nothing */
- if (!curcpu()->ci_vmm_cap.vcc_svm.svm_vmcb_clean)
- return;
-
- vmcb = (struct vmcb *)vcpu->vc_control_va;
-
- vmcb->v_vmcb_clean_bits |= value;
-}
-
-/*
- * svm_set_dirty
- *
- * Clears (mark as modified) the VMCB clean bit set in 'value'.
- * For example, to clear the bit for the VMCB intercepts (bit position 0)
- * the caller provides 'SVM_CLEANBITS_I' (0x1) for the 'value' argument.
- * Multiple dirty bits can be provided in 'value' at the same time (eg,
- * "SVM_CLEANBITS_I | SVM_CLEANBITS_TPR").
- *
- * Parameters:
- * vmcs: the VCPU whose VMCB dirty value should be set
- * value: the value(s) to dirty in the cleanbits mask
- */
-void
-svm_set_dirty(struct vcpu *vcpu, uint32_t value)
-{
- struct vmcb *vmcb;
-
- /* If no cleanbits support, do nothing */
- if (!curcpu()->ci_vmm_cap.vcc_svm.svm_vmcb_clean)
- return;
-
- vmcb = (struct vmcb *)vcpu->vc_control_va;
-
- vmcb->v_vmcb_clean_bits &= ~value;
-}
-
-/*
- * vcpu_reset_regs_vmx
- *
- * Initializes 'vcpu's registers to supplied state
- *
- * Parameters:
- * vcpu: the vcpu whose register state is to be initialized
- * vrs: the register state to set
- *
- * Return values:
- * 0: registers init'ed successfully
- * EINVAL: an error occurred setting register state
- */
-int
-vcpu_reset_regs_vmx(struct vcpu *vcpu, struct vcpu_reg_state *vrs)
-{
- int ret = 0, ug = 0;
- uint32_t cr0, cr4;
- uint32_t pinbased, procbased, procbased2, exit, entry;
- uint32_t want1, want0;
- uint64_t ctrlval, cr3;
- uint16_t ctrl, vpid;
- struct vmx_msr_store *msr_store;
-
- rw_assert_wrlock(&vcpu->vc_lock);
-
- cr0 = vrs->vrs_crs[VCPU_REGS_CR0];
-
- if (vcpu_reload_vmcs_vmx(vcpu)) {
- DPRINTF("%s: error reloading VMCS\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
-#ifdef VMM_DEBUG
- /* VMCS should be loaded... */
- paddr_t pa = 0ULL;
- if (vmptrst(&pa))
- panic("%s: vmptrst", __func__);
- KASSERT(pa == vcpu->vc_control_pa);
-#endif /* VMM_DEBUG */
-
- /* Compute Basic Entry / Exit Controls */
- vcpu->vc_vmx_basic = rdmsr(IA32_VMX_BASIC);
- vcpu->vc_vmx_entry_ctls = rdmsr(IA32_VMX_ENTRY_CTLS);
- vcpu->vc_vmx_exit_ctls = rdmsr(IA32_VMX_EXIT_CTLS);
- vcpu->vc_vmx_pinbased_ctls = rdmsr(IA32_VMX_PINBASED_CTLS);
- vcpu->vc_vmx_procbased_ctls = rdmsr(IA32_VMX_PROCBASED_CTLS);
-
- /* Compute True Entry / Exit Controls (if applicable) */
- if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
- vcpu->vc_vmx_true_entry_ctls = rdmsr(IA32_VMX_TRUE_ENTRY_CTLS);
- vcpu->vc_vmx_true_exit_ctls = rdmsr(IA32_VMX_TRUE_EXIT_CTLS);
- vcpu->vc_vmx_true_pinbased_ctls =
- rdmsr(IA32_VMX_TRUE_PINBASED_CTLS);
- vcpu->vc_vmx_true_procbased_ctls =
- rdmsr(IA32_VMX_TRUE_PROCBASED_CTLS);
- }
-
- /* Compute Secondary Procbased Controls (if applicable) */
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
- IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1))
- vcpu->vc_vmx_procbased2_ctls = rdmsr(IA32_VMX_PROCBASED2_CTLS);
-
- /*
- * Pinbased ctrls
- *
- * We must be able to set the following:
- * IA32_VMX_EXTERNAL_INT_EXITING - exit on host interrupt
- * IA32_VMX_NMI_EXITING - exit on host NMI
- */
- want1 = IA32_VMX_EXTERNAL_INT_EXITING |
- IA32_VMX_NMI_EXITING;
- want0 = 0;
-
- if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
- ctrl = IA32_VMX_TRUE_PINBASED_CTLS;
- ctrlval = vcpu->vc_vmx_true_pinbased_ctls;
- } else {
- ctrl = IA32_VMX_PINBASED_CTLS;
- ctrlval = vcpu->vc_vmx_pinbased_ctls;
- }
-
- if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &pinbased)) {
- DPRINTF("%s: error computing pinbased controls\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_PINBASED_CTLS, pinbased)) {
- DPRINTF("%s: error setting pinbased controls\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- /*
- * Procbased ctrls
- *
- * We must be able to set the following:
- * IA32_VMX_HLT_EXITING - exit on HLT instruction
- * IA32_VMX_MWAIT_EXITING - exit on MWAIT instruction
- * IA32_VMX_UNCONDITIONAL_IO_EXITING - exit on I/O instructions
- * IA32_VMX_USE_MSR_BITMAPS - exit on various MSR accesses
- * IA32_VMX_CR8_LOAD_EXITING - guest TPR access
- * IA32_VMX_CR8_STORE_EXITING - guest TPR access
- * IA32_VMX_USE_TPR_SHADOW - guest TPR access (shadow)
- * IA32_VMX_MONITOR_EXITING - exit on MONITOR instruction
- *
- * If we have EPT, we must be able to clear the following
- * IA32_VMX_CR3_LOAD_EXITING - don't care about guest CR3 accesses
- * IA32_VMX_CR3_STORE_EXITING - don't care about guest CR3 accesses
- */
- want1 = IA32_VMX_HLT_EXITING |
- IA32_VMX_MWAIT_EXITING |
- IA32_VMX_UNCONDITIONAL_IO_EXITING |
- IA32_VMX_USE_MSR_BITMAPS |
- IA32_VMX_CR8_LOAD_EXITING |
- IA32_VMX_CR8_STORE_EXITING |
- IA32_VMX_MONITOR_EXITING |
- IA32_VMX_USE_TPR_SHADOW;
- want0 = 0;
-
- if (vmm_softc->mode == VMM_MODE_EPT) {
- want1 |= IA32_VMX_ACTIVATE_SECONDARY_CONTROLS;
- want0 |= IA32_VMX_CR3_LOAD_EXITING |
- IA32_VMX_CR3_STORE_EXITING;
- }
-
- if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
- ctrl = IA32_VMX_TRUE_PROCBASED_CTLS;
- ctrlval = vcpu->vc_vmx_true_procbased_ctls;
- } else {
- ctrl = IA32_VMX_PROCBASED_CTLS;
- ctrlval = vcpu->vc_vmx_procbased_ctls;
- }
-
- if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &procbased)) {
- DPRINTF("%s: error computing procbased controls\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_PROCBASED_CTLS, procbased)) {
- DPRINTF("%s: error setting procbased controls\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- /*
- * Secondary Procbased ctrls
- *
- * We want to be able to set the following, if available:
- * IA32_VMX_ENABLE_VPID - use VPIDs where available
- *
- * If we have EPT, we must be able to set the following:
- * IA32_VMX_ENABLE_EPT - enable EPT
- *
- * If we have unrestricted guest capability, we must be able to set
- * the following:
- * IA32_VMX_UNRESTRICTED_GUEST - enable unrestricted guest (if caller
- * specified CR0_PG | CR0_PE in %cr0 in the 'vrs' parameter)
- */
- want1 = 0;
-
- /* XXX checking for 2ndary controls can be combined here */
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
- IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1)) {
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_VPID, 1)) {
- want1 |= IA32_VMX_ENABLE_VPID;
- vcpu->vc_vmx_vpid_enabled = 1;
- }
- }
-
- if (vmm_softc->mode == VMM_MODE_EPT)
- want1 |= IA32_VMX_ENABLE_EPT;
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
- IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1)) {
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_UNRESTRICTED_GUEST, 1)) {
- if ((cr0 & (CR0_PE | CR0_PG)) == 0) {
- want1 |= IA32_VMX_UNRESTRICTED_GUEST;
- ug = 1;
- }
- }
- }
-
- want0 = ~want1;
- ctrlval = vcpu->vc_vmx_procbased2_ctls;
- ctrl = IA32_VMX_PROCBASED2_CTLS;
-
- if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &procbased2)) {
- DPRINTF("%s: error computing secondary procbased controls\n",
- __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_PROCBASED2_CTLS, procbased2)) {
- DPRINTF("%s: error setting secondary procbased controls\n",
- __func__);
- ret = EINVAL;
- goto exit;
- }
-
- /*
- * Exit ctrls
- *
- * We must be able to set the following:
- * IA32_VMX_SAVE_DEBUG_CONTROLS
- * IA32_VMX_HOST_SPACE_ADDRESS_SIZE - exit to long mode
- * IA32_VMX_ACKNOWLEDGE_INTERRUPT_ON_EXIT - ack interrupt on exit
- */
- want1 = IA32_VMX_HOST_SPACE_ADDRESS_SIZE |
- IA32_VMX_ACKNOWLEDGE_INTERRUPT_ON_EXIT |
- IA32_VMX_SAVE_DEBUG_CONTROLS;
- want0 = 0;
-
- if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
- ctrl = IA32_VMX_TRUE_EXIT_CTLS;
- ctrlval = vcpu->vc_vmx_true_exit_ctls;
- } else {
- ctrl = IA32_VMX_EXIT_CTLS;
- ctrlval = vcpu->vc_vmx_exit_ctls;
- }
-
- if (rcr4() & CR4_CET)
- want1 |= IA32_VMX_LOAD_HOST_CET_STATE;
- else
- want0 |= IA32_VMX_LOAD_HOST_CET_STATE;
-
- if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &exit)) {
- DPRINTF("%s: error computing exit controls\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_EXIT_CTLS, exit)) {
- DPRINTF("%s: error setting exit controls\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- /*
- * Entry ctrls
- *
- * We must be able to set the following:
- * IA32_VMX_IA32E_MODE_GUEST (if no unrestricted guest)
- * IA32_VMX_LOAD_DEBUG_CONTROLS
- * We must be able to clear the following:
- * IA32_VMX_ENTRY_TO_SMM - enter to SMM
- * IA32_VMX_DEACTIVATE_DUAL_MONITOR_TREATMENT
- * IA32_VMX_LOAD_IA32_PERF_GLOBAL_CTRL_ON_ENTRY
- */
- want1 = IA32_VMX_LOAD_DEBUG_CONTROLS;
- if (vrs->vrs_msrs[VCPU_REGS_EFER] & EFER_LMA)
- want1 |= IA32_VMX_IA32E_MODE_GUEST;
-
- want0 = IA32_VMX_ENTRY_TO_SMM |
- IA32_VMX_DEACTIVATE_DUAL_MONITOR_TREATMENT |
- IA32_VMX_LOAD_IA32_PERF_GLOBAL_CTRL_ON_ENTRY;
-
- if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
- ctrl = IA32_VMX_TRUE_ENTRY_CTLS;
- ctrlval = vcpu->vc_vmx_true_entry_ctls;
- } else {
- ctrl = IA32_VMX_ENTRY_CTLS;
- ctrlval = vcpu->vc_vmx_entry_ctls;
- }
-
- if (rcr4() & CR4_CET)
- want1 |= IA32_VMX_LOAD_GUEST_CET_STATE;
- else
- want0 |= IA32_VMX_LOAD_GUEST_CET_STATE;
-
- if (vcpu_vmx_compute_ctrl(ctrlval, ctrl, want1, want0, &entry)) {
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_ENTRY_CTLS, entry)) {
- ret = EINVAL;
- goto exit;
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
- IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1)) {
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_VPID, 1)) {
-
- /* We may sleep during allocation, so reload VMCS. */
- vcpu->vc_last_pcpu = curcpu();
- ret = vmm_alloc_vpid(&vpid);
- if (vcpu_reload_vmcs_vmx(vcpu)) {
- printf("%s: failed to reload vmcs\n", __func__);
- ret = EINVAL;
- goto exit;
- }
- if (ret) {
- DPRINTF("%s: could not allocate VPID\n",
- __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_GUEST_VPID, vpid)) {
- DPRINTF("%s: error setting guest VPID\n",
- __func__);
- ret = EINVAL;
- goto exit;
- }
-
- vcpu->vc_vpid = vpid;
- }
- }
-
- /*
- * Determine which bits in CR0 have to be set to a fixed
- * value as per Intel SDM A.7.
- * CR0 bits in the vrs parameter must match these.
- */
- want1 = (curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed0) &
- (curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed1);
- want0 = ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed0) &
- ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed1);
-
- /*
- * CR0_FIXED0 and CR0_FIXED1 may report the CR0_PG and CR0_PE bits as
- * fixed to 1 even if the CPU supports the unrestricted guest
- * feature. Update want1 and want0 accordingly to allow
- * any value for CR0_PG and CR0_PE in vrs->vrs_crs[VCPU_REGS_CR0] if
- * the CPU has the unrestricted guest capability.
- */
- if (ug) {
- want1 &= ~(CR0_PG | CR0_PE);
- want0 &= ~(CR0_PG | CR0_PE);
- }
-
- /*
- * VMX may require some bits to be set that userland should not have
- * to care about. Set those here.
- */
- if (want1 & CR0_NE)
- cr0 |= CR0_NE;
-
- if ((cr0 & want1) != want1) {
- ret = EINVAL;
- goto exit;
- }
-
- if ((~cr0 & want0) != want0) {
- ret = EINVAL;
- goto exit;
- }
-
- vcpu->vc_vmx_cr0_fixed1 = want1;
- vcpu->vc_vmx_cr0_fixed0 = want0;
- /*
- * Determine which bits in CR4 have to be set to a fixed
- * value as per Intel SDM A.8.
- * CR4 bits in the vrs parameter must match these, except
- * CR4_VMXE - we add that here since it must always be set.
- */
- want1 = (curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0) &
- (curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1);
- want0 = ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0) &
- ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1);
-
- cr4 = vrs->vrs_crs[VCPU_REGS_CR4] | CR4_VMXE;
-
- if ((cr4 & want1) != want1) {
- ret = EINVAL;
- goto exit;
- }
-
- if ((~cr4 & want0) != want0) {
- ret = EINVAL;
- goto exit;
- }
-
- cr3 = vrs->vrs_crs[VCPU_REGS_CR3];
-
- /* Restore PDPTEs if 32-bit PAE paging is being used */
- if (cr3 && (cr4 & CR4_PAE) &&
- !(vrs->vrs_msrs[VCPU_REGS_EFER] & EFER_LMA)) {
- if (vmwrite(VMCS_GUEST_PDPTE0,
- vrs->vrs_crs[VCPU_REGS_PDPTE0])) {
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_GUEST_PDPTE1,
- vrs->vrs_crs[VCPU_REGS_PDPTE1])) {
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_GUEST_PDPTE2,
- vrs->vrs_crs[VCPU_REGS_PDPTE2])) {
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_GUEST_PDPTE3,
- vrs->vrs_crs[VCPU_REGS_PDPTE3])) {
- ret = EINVAL;
- goto exit;
- }
- }
-
- vrs->vrs_crs[VCPU_REGS_CR0] = cr0;
- vrs->vrs_crs[VCPU_REGS_CR4] = cr4;
-
- /*
- * Select host MSRs to be loaded on exit
- */
- msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_load_va;
- msr_store[0].vms_index = MSR_EFER;
- msr_store[0].vms_data = rdmsr(MSR_EFER);
- msr_store[1].vms_index = MSR_STAR;
- msr_store[1].vms_data = rdmsr(MSR_STAR);
- msr_store[2].vms_index = MSR_LSTAR;
- msr_store[2].vms_data = rdmsr(MSR_LSTAR);
- msr_store[3].vms_index = MSR_CSTAR;
- msr_store[3].vms_data = rdmsr(MSR_CSTAR);
- msr_store[4].vms_index = MSR_SFMASK;
- msr_store[4].vms_data = rdmsr(MSR_SFMASK);
- msr_store[5].vms_index = MSR_KERNELGSBASE;
- msr_store[5].vms_data = rdmsr(MSR_KERNELGSBASE);
- msr_store[6].vms_index = MSR_MISC_ENABLE;
- msr_store[6].vms_data = rdmsr(MSR_MISC_ENABLE);
-
- /*
- * Select guest MSRs to be loaded on entry / saved on exit
- */
- msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
-
- msr_store[VCPU_REGS_EFER].vms_index = MSR_EFER;
- msr_store[VCPU_REGS_STAR].vms_index = MSR_STAR;
- msr_store[VCPU_REGS_LSTAR].vms_index = MSR_LSTAR;
- msr_store[VCPU_REGS_CSTAR].vms_index = MSR_CSTAR;
- msr_store[VCPU_REGS_SFMASK].vms_index = MSR_SFMASK;
- msr_store[VCPU_REGS_KGSBASE].vms_index = MSR_KERNELGSBASE;
- msr_store[VCPU_REGS_MISC_ENABLE].vms_index = MSR_MISC_ENABLE;
-
- /*
- * Initialize MSR_MISC_ENABLE as it can't be read and populated from vmd
- * and some of the content is based on the host.
- */
- msr_store[VCPU_REGS_MISC_ENABLE].vms_data = rdmsr(MSR_MISC_ENABLE);
- msr_store[VCPU_REGS_MISC_ENABLE].vms_data &=
- ~(MISC_ENABLE_TCC | MISC_ENABLE_PERF_MON_AVAILABLE |
- MISC_ENABLE_EIST_ENABLED | MISC_ENABLE_ENABLE_MONITOR_FSM |
- MISC_ENABLE_xTPR_MESSAGE_DISABLE);
- msr_store[VCPU_REGS_MISC_ENABLE].vms_data |=
- MISC_ENABLE_BTS_UNAVAILABLE | MISC_ENABLE_PEBS_UNAVAILABLE;
-
- /*
- * Currently we have the same count of entry/exit MSRs loads/stores
- * but this is not an architectural requirement.
- */
- if (vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_NUM_MSR_STORE)) {
- DPRINTF("%s: error setting guest MSR exit store count\n",
- __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_EXIT_MSR_LOAD_COUNT, VMX_NUM_MSR_STORE)) {
- DPRINTF("%s: error setting guest MSR exit load count\n",
- __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, VMX_NUM_MSR_STORE)) {
- DPRINTF("%s: error setting guest MSR entry load count\n",
- __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_EXIT_STORE_MSR_ADDRESS,
- vcpu->vc_vmx_msr_exit_save_pa)) {
- DPRINTF("%s: error setting guest MSR exit store address\n",
- __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_EXIT_LOAD_MSR_ADDRESS,
- vcpu->vc_vmx_msr_exit_load_pa)) {
- DPRINTF("%s: error setting guest MSR exit load address\n",
- __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_ENTRY_LOAD_MSR_ADDRESS,
- vcpu->vc_vmx_msr_exit_save_pa)) {
- DPRINTF("%s: error setting guest MSR entry load address\n",
- __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_MSR_BITMAP_ADDRESS,
- vcpu->vc_msr_bitmap_pa)) {
- DPRINTF("%s: error setting guest MSR bitmap address\n",
- __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_CR4_MASK, CR4_VMXE)) {
- DPRINTF("%s: error setting guest CR4 mask\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_CR0_MASK, CR0_NE)) {
- DPRINTF("%s: error setting guest CR0 mask\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- /*
- * Set up the VMCS for the register state we want during VCPU start.
- * This matches what the CPU state would be after a bootloader
- * transition to 'start'.
- */
- ret = vcpu_writeregs_vmx(vcpu, VM_RWREGS_ALL, 0, vrs);
-
- /*
- * Set up the MSR bitmap
- */
- memset((uint8_t *)vcpu->vc_msr_bitmap_va, 0xFF, PAGE_SIZE);
- vmx_setmsrbrw(vcpu, MSR_IA32_FEATURE_CONTROL);
- vmx_setmsrbrw(vcpu, MSR_SYSENTER_CS);
- vmx_setmsrbrw(vcpu, MSR_SYSENTER_ESP);
- vmx_setmsrbrw(vcpu, MSR_SYSENTER_EIP);
- vmx_setmsrbrw(vcpu, MSR_EFER);
- vmx_setmsrbrw(vcpu, MSR_STAR);
- vmx_setmsrbrw(vcpu, MSR_LSTAR);
- vmx_setmsrbrw(vcpu, MSR_CSTAR);
- vmx_setmsrbrw(vcpu, MSR_SFMASK);
- vmx_setmsrbrw(vcpu, MSR_FSBASE);
- vmx_setmsrbrw(vcpu, MSR_GSBASE);
- vmx_setmsrbrw(vcpu, MSR_KERNELGSBASE);
-
- vmx_setmsrbr(vcpu, MSR_MISC_ENABLE);
- vmx_setmsrbr(vcpu, MSR_TSC);
-
- /* If host supports CET, pass through access to the guest. */
- if (rcr4() & CR4_CET)
- vmx_setmsrbrw(vcpu, MSR_S_CET);
-
- /* XXX CR0 shadow */
- /* XXX CR4 shadow */
-
- /* xcr0 power on default sets bit 0 (x87 state) */
- vcpu->vc_gueststate.vg_xcr0 = XFEATURE_X87 & xsave_mask;
-
- /* XXX PAT shadow */
- vcpu->vc_shadow_pat = rdmsr(MSR_CR_PAT);
-
- /* Flush the VMCS */
- if (vmclear(&vcpu->vc_control_pa)) {
- DPRINTF("%s: vmclear failed\n", __func__);
- ret = EINVAL;
- }
- atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_CLEARED);
-
-exit:
- return (ret);
-}
-
-/*
- * vcpu_init_vmx
- *
- * Intel VMX specific VCPU initialization routine.
- *
- * This function allocates various per-VCPU memory regions, sets up initial
- * VCPU VMCS controls, and sets initial register values.
- *
- * Parameters:
- * vcpu: the VCPU structure being initialized
- *
- * Return values:
- * 0: the VCPU was initialized successfully
- * ENOMEM: insufficient resources
- * EINVAL: an error occurred during VCPU initialization
- */
-int
-vcpu_init_vmx(struct vcpu *vcpu)
-{
- struct vmcs *vmcs;
- uint64_t msr, eptp;
- uint32_t cr0, cr4;
- int ret = 0;
-
- /* Allocate VMCS VA */
- vcpu->vc_control_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page, &kp_zero,
- &kd_waitok);
- vcpu->vc_vmx_vmcs_state = VMCS_CLEARED;
-
- if (!vcpu->vc_control_va)
- return (ENOMEM);
-
- /* Compute VMCS PA */
- if (!pmap_extract(pmap_kernel(), vcpu->vc_control_va,
- (paddr_t *)&vcpu->vc_control_pa)) {
- ret = ENOMEM;
- goto exit;
- }
-
- /* Allocate MSR bitmap VA */
- vcpu->vc_msr_bitmap_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page, &kp_zero,
- &kd_waitok);
-
- if (!vcpu->vc_msr_bitmap_va) {
- ret = ENOMEM;
- goto exit;
- }
-
- /* Compute MSR bitmap PA */
- if (!pmap_extract(pmap_kernel(), vcpu->vc_msr_bitmap_va,
- (paddr_t *)&vcpu->vc_msr_bitmap_pa)) {
- ret = ENOMEM;
- goto exit;
- }
-
- /* Allocate MSR exit load area VA */
- vcpu->vc_vmx_msr_exit_load_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page,
- &kp_zero, &kd_waitok);
-
- if (!vcpu->vc_vmx_msr_exit_load_va) {
- ret = ENOMEM;
- goto exit;
- }
-
- /* Compute MSR exit load area PA */
- if (!pmap_extract(pmap_kernel(), vcpu->vc_vmx_msr_exit_load_va,
- &vcpu->vc_vmx_msr_exit_load_pa)) {
- ret = ENOMEM;
- goto exit;
- }
-
- /* Allocate MSR exit save area VA */
- vcpu->vc_vmx_msr_exit_save_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page,
- &kp_zero, &kd_waitok);
-
- if (!vcpu->vc_vmx_msr_exit_save_va) {
- ret = ENOMEM;
- goto exit;
- }
-
- /* Compute MSR exit save area PA */
- if (!pmap_extract(pmap_kernel(), vcpu->vc_vmx_msr_exit_save_va,
- &vcpu->vc_vmx_msr_exit_save_pa)) {
- ret = ENOMEM;
- goto exit;
- }
-
- /* Allocate MSR entry load area VA */
- vcpu->vc_vmx_msr_entry_load_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page,
- &kp_zero, &kd_waitok);
-
- if (!vcpu->vc_vmx_msr_entry_load_va) {
- ret = ENOMEM;
- goto exit;
- }
-
- /* Compute MSR entry load area PA */
- if (!pmap_extract(pmap_kernel(), vcpu->vc_vmx_msr_entry_load_va,
- &vcpu->vc_vmx_msr_entry_load_pa)) {
- ret = ENOMEM;
- goto exit;
- }
-
- vmcs = (struct vmcs *)vcpu->vc_control_va;
- vmcs->vmcs_revision = curcpu()->ci_vmm_cap.vcc_vmx.vmx_vmxon_revision;
-
- /*
- * Load the VMCS onto this PCPU so we can write registers
- */
- if (vmptrld(&vcpu->vc_control_pa)) {
- ret = EINVAL;
- goto exit;
- }
-
- /* Configure EPT Pointer */
- eptp = vcpu->vc_parent->vm_map->pmap->pm_pdirpa;
- msr = rdmsr(IA32_VMX_EPT_VPID_CAP);
- if (msr & IA32_EPT_VPID_CAP_PAGE_WALK_4) {
- /* Page walk length 4 supported */
- eptp |= ((IA32_EPT_PAGE_WALK_LENGTH - 1) << 3);
- } else {
- DPRINTF("EPT page walk length 4 not supported\n");
- ret = EINVAL;
- goto exit;
- }
-
- if (msr & IA32_EPT_VPID_CAP_WB) {
- /* WB cache type supported */
- eptp |= IA32_EPT_PAGING_CACHE_TYPE_WB;
- } else
- DPRINTF("%s: no WB cache type available, guest VM will run "
- "uncached\n", __func__);
-
- DPRINTF("Guest EPTP = 0x%llx\n", eptp);
- if (vmwrite(VMCS_GUEST_IA32_EPTP, eptp)) {
- DPRINTF("%s: error setting guest EPTP\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- vcpu->vc_parent->vm_map->pmap->eptp = eptp;
-
- /* Host CR0 */
- cr0 = rcr0() & ~CR0_TS;
- if (vmwrite(VMCS_HOST_IA32_CR0, cr0)) {
- DPRINTF("%s: error writing host CR0\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- /* Host CR4 */
- cr4 = rcr4();
- if (vmwrite(VMCS_HOST_IA32_CR4, cr4)) {
- DPRINTF("%s: error writing host CR4\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- /* Host Segment Selectors */
- if (vmwrite(VMCS_HOST_IA32_CS_SEL, GSEL(GCODE_SEL, SEL_KPL))) {
- DPRINTF("%s: error writing host CS selector\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_HOST_IA32_DS_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
- DPRINTF("%s: error writing host DS selector\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_HOST_IA32_ES_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
- DPRINTF("%s: error writing host ES selector\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_HOST_IA32_FS_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
- DPRINTF("%s: error writing host FS selector\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_HOST_IA32_GS_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
- DPRINTF("%s: error writing host GS selector\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_HOST_IA32_SS_SEL, GSEL(GDATA_SEL, SEL_KPL))) {
- DPRINTF("%s: error writing host SS selector\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_HOST_IA32_TR_SEL, GSYSSEL(GPROC0_SEL, SEL_KPL))) {
- DPRINTF("%s: error writing host TR selector\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- /* Host IDTR base */
- if (vmwrite(VMCS_HOST_IA32_IDTR_BASE, idt_vaddr)) {
- DPRINTF("%s: error writing host IDTR base\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- /* VMCS link */
- if (vmwrite(VMCS_LINK_POINTER, VMX_VMCS_PA_CLEAR)) {
- DPRINTF("%s: error writing VMCS link pointer\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- /* Flush the initial VMCS */
- if (vmclear(&vcpu->vc_control_pa)) {
- DPRINTF("%s: vmclear failed\n", __func__);
- ret = EINVAL;
- }
-
-exit:
- if (ret)
- vcpu_deinit_vmx(vcpu);
-
- return (ret);
-}
-
-/*
- * vcpu_reset_regs
- *
- * Resets a vcpu's registers to the provided state
- *
- * Parameters:
- * vcpu: the vcpu whose registers shall be reset
- * vrs: the desired register state
- *
- * Return values:
- * 0: the vcpu's registers were successfully reset
- * !0: the vcpu's registers could not be reset (see arch-specific reset
- * function for various values that can be returned here)
- */
-int
-vcpu_reset_regs(struct vcpu *vcpu, struct vcpu_reg_state *vrs)
-{
- int ret;
-
- if (vmm_softc->mode == VMM_MODE_VMX ||
- vmm_softc->mode == VMM_MODE_EPT)
- ret = vcpu_reset_regs_vmx(vcpu, vrs);
- else if (vmm_softc->mode == VMM_MODE_SVM ||
- vmm_softc->mode == VMM_MODE_RVI)
- ret = vcpu_reset_regs_svm(vcpu, vrs);
- else
- panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
-
- return (ret);
-}
-
-/*
- * vcpu_init_svm
- *
- * AMD SVM specific VCPU initialization routine.
- *
- * This function allocates various per-VCPU memory regions, sets up initial
- * VCPU VMCB controls, and sets initial register values.
- *
- * Parameters:
- * vcpu: the VCPU structure being initialized
- *
- * Return values:
- * 0: the VCPU was initialized successfully
- * ENOMEM: insufficient resources
- * EINVAL: an error occurred during VCPU initialization
- */
-int
-vcpu_init_svm(struct vcpu *vcpu)
-{
- int ret = 0;
-
- /* Allocate VMCB VA */
- vcpu->vc_control_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page, &kp_zero,
- &kd_waitok);
-
- if (!vcpu->vc_control_va)
- return (ENOMEM);
-
- /* Compute VMCB PA */
- if (!pmap_extract(pmap_kernel(), vcpu->vc_control_va,
- (paddr_t *)&vcpu->vc_control_pa)) {
- ret = ENOMEM;
- goto exit;
- }
-
- DPRINTF("%s: VMCB va @ 0x%llx, pa @ 0x%llx\n", __func__,
- (uint64_t)vcpu->vc_control_va,
- (uint64_t)vcpu->vc_control_pa);
-
-
- /* Allocate MSR bitmap VA (2 pages) */
- vcpu->vc_msr_bitmap_va = (vaddr_t)km_alloc(2 * PAGE_SIZE, &kv_any,
- &vmm_kp_contig, &kd_waitok);
-
- if (!vcpu->vc_msr_bitmap_va) {
- ret = ENOMEM;
- goto exit;
- }
-
- /* Compute MSR bitmap PA */
- if (!pmap_extract(pmap_kernel(), vcpu->vc_msr_bitmap_va,
- (paddr_t *)&vcpu->vc_msr_bitmap_pa)) {
- ret = ENOMEM;
- goto exit;
- }
-
- DPRINTF("%s: MSR bitmap va @ 0x%llx, pa @ 0x%llx\n", __func__,
- (uint64_t)vcpu->vc_msr_bitmap_va,
- (uint64_t)vcpu->vc_msr_bitmap_pa);
-
- /* Allocate host state area VA */
- vcpu->vc_svm_hsa_va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_page,
- &kp_zero, &kd_waitok);
-
- if (!vcpu->vc_svm_hsa_va) {
- ret = ENOMEM;
- goto exit;
- }
-
- /* Compute host state area PA */
- if (!pmap_extract(pmap_kernel(), vcpu->vc_svm_hsa_va,
- &vcpu->vc_svm_hsa_pa)) {
- ret = ENOMEM;
- goto exit;
- }
-
- DPRINTF("%s: HSA va @ 0x%llx, pa @ 0x%llx\n", __func__,
- (uint64_t)vcpu->vc_svm_hsa_va,
- (uint64_t)vcpu->vc_svm_hsa_pa);
-
- /* Allocate IOIO area VA (3 pages) */
- vcpu->vc_svm_ioio_va = (vaddr_t)km_alloc(3 * PAGE_SIZE, &kv_any,
- &vmm_kp_contig, &kd_waitok);
-
- if (!vcpu->vc_svm_ioio_va) {
- ret = ENOMEM;
- goto exit;
- }
-
- /* Compute IOIO area PA */
- if (!pmap_extract(pmap_kernel(), vcpu->vc_svm_ioio_va,
- &vcpu->vc_svm_ioio_pa)) {
- ret = ENOMEM;
- goto exit;
- }
-
- DPRINTF("%s: IOIO va @ 0x%llx, pa @ 0x%llx\n", __func__,
- (uint64_t)vcpu->vc_svm_ioio_va,
- (uint64_t)vcpu->vc_svm_ioio_pa);
-
-exit:
- if (ret)
- vcpu_deinit_svm(vcpu);
-
- return (ret);
-}
-
-/*
- * vcpu_init
- *
- * Calls the architecture-specific VCPU init routine
- */
-int
-vcpu_init(struct vcpu *vcpu)
-{
- int ret = 0;
-
- vcpu->vc_virt_mode = vmm_softc->mode;
- vcpu->vc_state = VCPU_STATE_STOPPED;
- vcpu->vc_vpid = 0;
- vcpu->vc_pvclock_system_gpa = 0;
- vcpu->vc_last_pcpu = NULL;
-
- rw_init(&vcpu->vc_lock, "vcpu");
-
- /* Shadow PAT MSR, starting with host's value. */
- vcpu->vc_shadow_pat = rdmsr(MSR_CR_PAT);
-
- if (vmm_softc->mode == VMM_MODE_VMX ||
- vmm_softc->mode == VMM_MODE_EPT)
- ret = vcpu_init_vmx(vcpu);
- else if (vmm_softc->mode == VMM_MODE_SVM ||
- vmm_softc->mode == VMM_MODE_RVI)
- ret = vcpu_init_svm(vcpu);
- else
- panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
-
- return (ret);
-}
-
-/*
- * vcpu_deinit_vmx
- *
- * Deinitializes the vcpu described by 'vcpu'
- *
- * Parameters:
- * vcpu: the vcpu to be deinited
- */
-void
-vcpu_deinit_vmx(struct vcpu *vcpu)
-{
- if (vcpu->vc_control_va) {
- km_free((void *)vcpu->vc_control_va, PAGE_SIZE,
- &kv_page, &kp_zero);
- vcpu->vc_control_va = 0;
- }
- if (vcpu->vc_vmx_msr_exit_save_va) {
- km_free((void *)vcpu->vc_vmx_msr_exit_save_va,
- PAGE_SIZE, &kv_page, &kp_zero);
- vcpu->vc_vmx_msr_exit_save_va = 0;
- }
- if (vcpu->vc_vmx_msr_exit_load_va) {
- km_free((void *)vcpu->vc_vmx_msr_exit_load_va,
- PAGE_SIZE, &kv_page, &kp_zero);
- vcpu->vc_vmx_msr_exit_load_va = 0;
- }
- if (vcpu->vc_vmx_msr_entry_load_va) {
- km_free((void *)vcpu->vc_vmx_msr_entry_load_va,
- PAGE_SIZE, &kv_page, &kp_zero);
- vcpu->vc_vmx_msr_entry_load_va = 0;
- }
-
- if (vcpu->vc_vmx_vpid_enabled)
- vmm_free_vpid(vcpu->vc_vpid);
-}
-
-/*
- * vcpu_deinit_svm
- *
- * Deinitializes the vcpu described by 'vcpu'
- *
- * Parameters:
- * vcpu: the vcpu to be deinited
- */
-void
-vcpu_deinit_svm(struct vcpu *vcpu)
-{
- if (vcpu->vc_control_va) {
- km_free((void *)vcpu->vc_control_va, PAGE_SIZE, &kv_page,
- &kp_zero);
- vcpu->vc_control_va = 0;
- }
- if (vcpu->vc_msr_bitmap_va) {
- km_free((void *)vcpu->vc_msr_bitmap_va, 2 * PAGE_SIZE, &kv_any,
- &vmm_kp_contig);
- vcpu->vc_msr_bitmap_va = 0;
- }
- if (vcpu->vc_svm_hsa_va) {
- km_free((void *)vcpu->vc_svm_hsa_va, PAGE_SIZE, &kv_page,
- &kp_zero);
- vcpu->vc_svm_hsa_va = 0;
- }
- if (vcpu->vc_svm_ioio_va) {
- km_free((void *)vcpu->vc_svm_ioio_va, 3 * PAGE_SIZE, &kv_any,
- &vmm_kp_contig);
- vcpu->vc_svm_ioio_va = 0;
- }
-
- vmm_free_vpid(vcpu->vc_vpid);
-}
-
-/*
- * vcpu_deinit
- *
- * Calls the architecture-specific VCPU deinit routine
- *
- * Parameters:
- * vcpu: the vcpu to be deinited
- */
-void
-vcpu_deinit(struct vcpu *vcpu)
-{
- if (vmm_softc->mode == VMM_MODE_VMX ||
- vmm_softc->mode == VMM_MODE_EPT)
- vcpu_deinit_vmx(vcpu);
- else if (vmm_softc->mode == VMM_MODE_SVM ||
- vmm_softc->mode == VMM_MODE_RVI)
- vcpu_deinit_svm(vcpu);
- else
- panic("%s: unknown vmm mode: %d", __func__, vmm_softc->mode);
-}
-
-/*
- * vm_teardown
- *
- * Tears down (destroys) the vm indicated by 'vm'.
- *
- * Assumes the vm is already removed from the global vm list (or was never
- * added).
- *
- * Parameters:
- * vm: vm to be torn down
- */
-void
-vm_teardown(struct vm **target)
-{
- size_t nvcpu = 0;
- struct vcpu *vcpu, *tmp;
- struct vm *vm = *target;
- struct vmspace *vm_vmspace;
-
- KERNEL_ASSERT_UNLOCKED();
-
- /* Free VCPUs */
- SLIST_FOREACH_SAFE(vcpu, &vm->vm_vcpu_list, vc_vcpu_link, tmp) {
- SLIST_REMOVE(&vm->vm_vcpu_list, vcpu, vcpu, vc_vcpu_link);
- vcpu_deinit(vcpu);
-
- pool_put(&vcpu_pool, vcpu);
- nvcpu++;
- }
-
- vm_impl_deinit(vm);
-
- /* teardown guest vmspace */
- KERNEL_LOCK();
- vm_vmspace = vm->vm_vmspace;
- if (vm_vmspace != NULL) {
- vm->vm_vmspace = NULL;
- uvmspace_free(vm_vmspace);
- }
- KERNEL_UNLOCK();
-
- pool_put(&vm_pool, vm);
- *target = NULL;
-}
-
-/*
- * vcpu_vmx_check_cap
- *
- * Checks if the 'cap' bit in the 'msr' MSR can be set or cleared (set = 1
- * or set = 0, respectively).
- *
- * When considering 'msr', we check to see if true controls are available,
- * and use those if so.
- *
- * Returns 1 of 'cap' can be set/cleared as requested, 0 otherwise.
- */
-int
-vcpu_vmx_check_cap(struct vcpu *vcpu, uint32_t msr, uint32_t cap, int set)
-{
- uint64_t ctl;
-
- if (vcpu->vc_vmx_basic & IA32_VMX_TRUE_CTLS_AVAIL) {
- switch (msr) {
- case IA32_VMX_PINBASED_CTLS:
- ctl = vcpu->vc_vmx_true_pinbased_ctls;
- break;
- case IA32_VMX_PROCBASED_CTLS:
- ctl = vcpu->vc_vmx_true_procbased_ctls;
- break;
- case IA32_VMX_PROCBASED2_CTLS:
- ctl = vcpu->vc_vmx_procbased2_ctls;
- break;
- case IA32_VMX_ENTRY_CTLS:
- ctl = vcpu->vc_vmx_true_entry_ctls;
- break;
- case IA32_VMX_EXIT_CTLS:
- ctl = vcpu->vc_vmx_true_exit_ctls;
- break;
- default:
- return (0);
- }
- } else {
- switch (msr) {
- case IA32_VMX_PINBASED_CTLS:
- ctl = vcpu->vc_vmx_pinbased_ctls;
- break;
- case IA32_VMX_PROCBASED_CTLS:
- ctl = vcpu->vc_vmx_procbased_ctls;
- break;
- case IA32_VMX_PROCBASED2_CTLS:
- ctl = vcpu->vc_vmx_procbased2_ctls;
- break;
- case IA32_VMX_ENTRY_CTLS:
- ctl = vcpu->vc_vmx_entry_ctls;
- break;
- case IA32_VMX_EXIT_CTLS:
- ctl = vcpu->vc_vmx_exit_ctls;
- break;
- default:
- return (0);
- }
- }
-
- if (set) {
- /* Check bit 'cap << 32', must be !0 */
- return (ctl & ((uint64_t)cap << 32)) != 0;
- } else {
- /* Check bit 'cap', must be 0 */
- return (ctl & cap) == 0;
- }
-}
-
-/*
- * vcpu_vmx_compute_ctrl
- *
- * Computes the appropriate control value, given the supplied parameters
- * and CPU capabilities.
- *
- * Intel has made somewhat of a mess of this computation - it is described
- * using no fewer than three different approaches, spread across many
- * pages of the SDM. Further compounding the problem is the fact that now
- * we have "true controls" for each type of "control", and each needs to
- * be examined to get the calculation right, but only if "true" controls
- * are present on the CPU we're on.
- *
- * Parameters:
- * ctrlval: the control value, as read from the CPU MSR
- * ctrl: which control is being set (eg, pinbased, procbased, etc)
- * want0: the set of desired 0 bits
- * want1: the set of desired 1 bits
- * out: (out) the correct value to write into the VMCS for this VCPU,
- * for the 'ctrl' desired.
- *
- * Returns 0 if successful, or EINVAL if the supplied parameters define
- * an unworkable control setup.
- */
-int
-vcpu_vmx_compute_ctrl(uint64_t ctrlval, uint16_t ctrl, uint32_t want1,
- uint32_t want0, uint32_t *out)
-{
- int i, set, clear;
-
- *out = 0;
-
- /*
- * The Intel SDM gives three formulae for determining which bits to
- * set/clear for a given control and desired functionality. Formula
- * 1 is the simplest but disallows use of newer features that are
- * enabled by functionality in later CPUs.
- *
- * Formulas 2 and 3 allow such extra functionality. We use formula
- * 2 - this requires us to know the identity of controls in the
- * "default1" class for each control register, but allows us to not
- * have to pass along and/or query both sets of capability MSRs for
- * each control lookup. This makes the code slightly longer,
- * however.
- */
- for (i = 0; i < 32; i++) {
- /* Figure out if we can set and / or clear this bit */
- set = (ctrlval & (1ULL << (i + 32))) != 0;
- clear = ((1ULL << i) & ((uint64_t)ctrlval)) == 0;
-
- /* If the bit can't be set nor cleared, something's wrong */
- if (!set && !clear)
- return (EINVAL);
-
- /*
- * Formula 2.c.i - "If the relevant VMX capability MSR
- * reports that a control has a single setting, use that
- * setting."
- */
- if (set && !clear) {
- if (want0 & (1ULL << i))
- return (EINVAL);
- else
- *out |= (1ULL << i);
- } else if (clear && !set) {
- if (want1 & (1ULL << i))
- return (EINVAL);
- else
- *out &= ~(1ULL << i);
- } else {
- /*
- * 2.c.ii - "If the relevant VMX capability MSR
- * reports that a control can be set to 0 or 1
- * and that control's meaning is known to the VMM,
- * set the control based on the functionality desired."
- */
- if (want1 & (1ULL << i))
- *out |= (1ULL << i);
- else if (want0 & (1 << i))
- *out &= ~(1ULL << i);
- else {
- /*
- * ... assuming the control's meaning is not
- * known to the VMM ...
- *
- * 2.c.iii - "If the relevant VMX capability
- * MSR reports that a control can be set to 0
- * or 1 and the control is not in the default1
- * class, set the control to 0."
- *
- * 2.c.iv - "If the relevant VMX capability
- * MSR reports that a control can be set to 0
- * or 1 and the control is in the default1
- * class, set the control to 1."
- */
- switch (ctrl) {
- case IA32_VMX_PINBASED_CTLS:
- case IA32_VMX_TRUE_PINBASED_CTLS:
- /*
- * A.3.1 - default1 class of pinbased
- * controls comprises bits 1,2,4
- */
- switch (i) {
- case 1:
- case 2:
- case 4:
- *out |= (1ULL << i);
- break;
- default:
- *out &= ~(1ULL << i);
- break;
- }
- break;
- case IA32_VMX_PROCBASED_CTLS:
- case IA32_VMX_TRUE_PROCBASED_CTLS:
- /*
- * A.3.2 - default1 class of procbased
- * controls comprises bits 1, 4-6, 8,
- * 13-16, 26
- */
- switch (i) {
- case 1:
- case 4 ... 6:
- case 8:
- case 13 ... 16:
- case 26:
- *out |= (1ULL << i);
- break;
- default:
- *out &= ~(1ULL << i);
- break;
- }
- break;
- /*
- * Unknown secondary procbased controls
- * can always be set to 0
- */
- case IA32_VMX_PROCBASED2_CTLS:
- *out &= ~(1ULL << i);
- break;
- case IA32_VMX_EXIT_CTLS:
- case IA32_VMX_TRUE_EXIT_CTLS:
- /*
- * A.4 - default1 class of exit
- * controls comprises bits 0-8, 10,
- * 11, 13, 14, 16, 17
- */
- switch (i) {
- case 0 ... 8:
- case 10 ... 11:
- case 13 ... 14:
- case 16 ... 17:
- *out |= (1ULL << i);
- break;
- default:
- *out &= ~(1ULL << i);
- break;
- }
- break;
- case IA32_VMX_ENTRY_CTLS:
- case IA32_VMX_TRUE_ENTRY_CTLS:
- /*
- * A.5 - default1 class of entry
- * controls comprises bits 0-8, 12
- */
- switch (i) {
- case 0 ... 8:
- case 12:
- *out |= (1ULL << i);
- break;
- default:
- *out &= ~(1ULL << i);
- break;
- }
- break;
- }
- }
- }
- }
-
- return (0);
-}
-
-/*
- * vm_get_info
- *
- * Returns information about the VM indicated by 'vip'. The 'vip_size' field
- * in the 'vip' parameter is used to indicate the size of the caller's buffer.
- * If insufficient space exists in that buffer, the required size needed is
- * returned in vip_size and the number of VM information structures returned
- * in vip_info_count is set to 0. The caller should then try the ioctl again
- * after allocating a sufficiently large buffer.
- *
- * Parameters:
- * vip: information structure identifying the VM to query
- *
- * Return values:
- * 0: the operation succeeded
- * ENOMEM: memory allocation error during processing
- * EFAULT: error copying data to user process
- */
-int
-vm_get_info(struct vm_info_params *vip)
-{
- struct vm_info_result *out;
- struct vm *vm;
- struct vcpu *vcpu;
- int i = 0, j;
- size_t need, vm_ct;
-
- rw_enter_read(&vmm_softc->vm_lock);
- vm_ct = vmm_softc->vm_ct;
- rw_exit_read(&vmm_softc->vm_lock);
-
- need = vm_ct * sizeof(struct vm_info_result);
- if (vip->vip_size < need) {
- vip->vip_info_ct = 0;
- vip->vip_size = need;
- return (0);
- }
-
- out = malloc(need, M_DEVBUF, M_NOWAIT|M_ZERO);
- if (out == NULL) {
- vip->vip_info_ct = 0;
- return (ENOMEM);
- }
-
- vip->vip_info_ct = vm_ct;
-
- rw_enter_read(&vmm_softc->vm_lock);
- SLIST_FOREACH(vm, &vmm_softc->vm_list, vm_link) {
- refcnt_take(&vm->vm_refcnt);
-
- out[i].vir_memory_size = vm->vm_memory_size;
- out[i].vir_used_size =
- pmap_resident_count(vm->vm_map->pmap) * PAGE_SIZE;
- out[i].vir_ncpus = vm->vm_vcpu_ct;
- out[i].vir_id = vm->vm_id;
- out[i].vir_creator_pid = vm->vm_creator_pid;
- strlcpy(out[i].vir_name, vm->vm_name, VMM_MAX_NAME_LEN);
-
- for (j = 0; j < vm->vm_vcpu_ct; j++) {
- out[i].vir_vcpu_state[j] = VCPU_STATE_UNKNOWN;
- SLIST_FOREACH(vcpu, &vm->vm_vcpu_list,
- vc_vcpu_link) {
- if (vcpu->vc_id == j)
- out[i].vir_vcpu_state[j] =
- vcpu->vc_state;
- }
- }
-
- refcnt_rele_wake(&vm->vm_refcnt);
- i++;
- if (i == vm_ct)
- break; /* Truncate to keep within bounds of 'out'. */
- }
- rw_exit_read(&vmm_softc->vm_lock);
-
- if (copyout(out, vip->vip_info, need) == EFAULT) {
- free(out, M_DEVBUF, need);
- return (EFAULT);
- }
-
- free(out, M_DEVBUF, need);
- return (0);
-}
-
-/*
- * vm_terminate
- *
- * Terminates the VM indicated by 'vtp'.
- *
- * Parameters:
- * vtp: structure defining the VM to terminate
- *
- * Return values:
- * 0: the VM was terminated
- * !0: the VM could not be located
- */
-int
-vm_terminate(struct vm_terminate_params *vtp)
-{
- struct vm *vm;
- int error, nvcpu, vm_id;
-
- /*
- * Find desired VM
- */
- error = vm_find(vtp->vtp_vm_id, &vm);
- if (error)
- return (error);
-
- /* Pop the vm out of the global vm list. */
- rw_enter_write(&vmm_softc->vm_lock);
- SLIST_REMOVE(&vmm_softc->vm_list, vm, vm, vm_link);
- rw_exit_write(&vmm_softc->vm_lock);
-
- /* Drop the vm_list's reference to the vm. */
- if (refcnt_rele(&vm->vm_refcnt))
- panic("%s: vm %d(%p) vm_list refcnt drop was the last",
- __func__, vm->vm_id, vm);
-
- /* Wait for our reference (taken from vm_find) is the last active. */
- refcnt_finalize(&vm->vm_refcnt, __func__);
-
- vm_id = vm->vm_id;
- nvcpu = vm->vm_vcpu_ct;
-
- vm_teardown(&vm);
-
- if (vm_id > 0) {
- rw_enter_write(&vmm_softc->vm_lock);
- vmm_softc->vm_ct--;
- vmm_softc->vcpu_ct -= nvcpu;
- if (vmm_softc->vm_ct < 1)
- vmm_stop();
- rw_exit_write(&vmm_softc->vm_lock);
- }
-
- return (0);
-}
-
-/*
- * vm_run
- *
- * Run the vm / vcpu specified by 'vrp'
- *
- * Parameters:
- * vrp: structure defining the VM to run
- *
- * Return value:
- * ENOENT: the VM defined in 'vrp' could not be located
- * EBUSY: the VM defined in 'vrp' is already running
- * EFAULT: error copying data from userspace (vmd) on return from previous
- * exit.
- * EAGAIN: help is needed from vmd(8) (device I/O or exit vmm(4) cannot
- * handle in-kernel.)
- * 0: the run loop exited and no help is needed from vmd(8)
- */
-int
-vm_run(struct vm_run_params *vrp)
-{
- struct vm *vm;
- struct vcpu *vcpu;
- int ret = 0;
- u_int old, next;
-
- /*
- * Find desired VM
- */
- ret = vm_find(vrp->vrp_vm_id, &vm);
- if (ret)
- return (ret);
-
- vcpu = vm_find_vcpu(vm, vrp->vrp_vcpu_id);
- if (vcpu == NULL) {
- ret = ENOENT;
- goto out;
- }
-
- /*
- * Attempt to transition from VCPU_STATE_STOPPED -> VCPU_STATE_RUNNING.
- * Failure to make the transition indicates the VCPU is busy.
- */
- rw_enter_write(&vcpu->vc_lock);
- old = VCPU_STATE_STOPPED;
- next = VCPU_STATE_RUNNING;
- if (atomic_cas_uint(&vcpu->vc_state, old, next) != old) {
- ret = EBUSY;
- goto out_unlock;
- }
-
- /*
- * We may be returning from userland helping us from the last exit.
- * If so (vrp_continue == 1), copy in the exit data from vmd. The
- * exit data will be consumed before the next entry (this typically
- * comprises VCPU register changes as the result of vmd(8)'s actions).
- */
- if (vrp->vrp_continue) {
- if (copyin(vrp->vrp_exit, &vcpu->vc_exit,
- sizeof(struct vm_exit)) == EFAULT) {
- ret = EFAULT;
- goto out_unlock;
- }
- }
-
- WRITE_ONCE(vcpu->vc_curcpu, curcpu());
- /* Run the VCPU specified in vrp */
- if (vcpu->vc_virt_mode == VMM_MODE_VMX ||
- vcpu->vc_virt_mode == VMM_MODE_EPT) {
- ret = vcpu_run_vmx(vcpu, vrp);
- } else if (vcpu->vc_virt_mode == VMM_MODE_SVM ||
- vcpu->vc_virt_mode == VMM_MODE_RVI) {
- ret = vcpu_run_svm(vcpu, vrp);
- }
- WRITE_ONCE(vcpu->vc_curcpu, NULL);
-
- if (ret == 0 || ret == EAGAIN) {
- /* If we are exiting, populate exit data so vmd can help. */
- vrp->vrp_exit_reason = (ret == 0) ? VM_EXIT_NONE
- : vcpu->vc_gueststate.vg_exit_reason;
- vrp->vrp_irqready = vcpu->vc_irqready;
- vcpu->vc_state = VCPU_STATE_STOPPED;
-
- if (copyout(&vcpu->vc_exit, vrp->vrp_exit,
- sizeof(struct vm_exit)) == EFAULT) {
- ret = EFAULT;
- } else
- ret = 0;
- } else {
- vrp->vrp_exit_reason = VM_EXIT_TERMINATED;
- vcpu->vc_state = VCPU_STATE_TERMINATED;
- }
-out_unlock:
- rw_exit_write(&vcpu->vc_lock);
-out:
- refcnt_rele_wake(&vm->vm_refcnt);
- return (ret);
-}
-
-/*
- * vcpu_must_stop
- *
- * Check if we need to (temporarily) stop running the VCPU for some reason,
- * such as:
- * - the VM was requested to terminate
- * - the proc running this VCPU has pending signals
- *
- * Parameters:
- * vcpu: the VCPU to check
- *
- * Return values:
- * 1: the VM owning this VCPU should stop
- * 0: no stop is needed
- */
-int
-vcpu_must_stop(struct vcpu *vcpu)
-{
- struct proc *p = curproc;
-
- if (vcpu->vc_state == VCPU_STATE_REQTERM)
- return (1);
- if (SIGPENDING(p) != 0)
- return (1);
- return (0);
-}
-
-/*
- * vmm_fpurestore
- *
- * Restore the guest's FPU state, saving the existing userland thread's
- * FPU context if necessary. Must be called with interrupts disabled.
- */
-int
-vmm_fpurestore(struct vcpu *vcpu)
-{
- struct cpu_info *ci = curcpu();
-
- rw_assert_wrlock(&vcpu->vc_lock);
-
- /* save vmm's FPU state if we haven't already */
- if (ci->ci_pflags & CPUPF_USERXSTATE) {
- ci->ci_pflags &= ~CPUPF_USERXSTATE;
- fpusavereset(&curproc->p_addr->u_pcb.pcb_savefpu);
- }
-
- if (vcpu->vc_fpuinited) {
- if (xrstor_user(&vcpu->vc_g_fpu, xsave_mask)) {
- DPRINTF("%s: guest attempted to set invalid %s\n",
- __func__, "xsave/xrstor state");
- return EINVAL;
- }
- }
-
- if (xsave_mask) {
- /* Restore guest %xcr0 */
- if (xsetbv_user(0, vcpu->vc_gueststate.vg_xcr0)) {
- DPRINTF("%s: guest attempted to set invalid bits in "
- "xcr0 (guest %%xcr0=0x%llx, host %%xcr0=0x%llx)\n",
- __func__, vcpu->vc_gueststate.vg_xcr0, xsave_mask);
- return EINVAL;
- }
- }
-
- return 0;
-}
-
-/*
- * vmm_fpusave
- *
- * Save the guest's FPU state. Must be called with interrupts disabled.
- */
-void
-vmm_fpusave(struct vcpu *vcpu)
-{
- rw_assert_wrlock(&vcpu->vc_lock);
-
- if (xsave_mask) {
- /* Save guest %xcr0 */
- vcpu->vc_gueststate.vg_xcr0 = xgetbv(0);
-
- /* Restore host %xcr0 */
- xsetbv(0, xsave_mask);
- }
-
- /*
- * Save full copy of FPU state - guest content is always
- * a subset of host's save area (see xsetbv exit handler)
- */
- fpusavereset(&vcpu->vc_g_fpu);
- vcpu->vc_fpuinited = 1;
-}
-
-/*
- * vmm_translate_gva
- *
- * Translates a guest virtual address to a guest physical address by walking
- * the currently active page table (if needed).
- *
- * Note - this function can possibly alter the supplied VCPU state.
- * Specifically, it may inject exceptions depending on the current VCPU
- * configuration, and may alter %cr2 on #PF. Consequently, this function
- * should only be used as part of instruction emulation.
- *
- * Parameters:
- * vcpu: The VCPU this translation should be performed for (guest MMU settings
- * are gathered from this VCPU)
- * va: virtual address to translate
- * pa: pointer to paddr_t variable that will receive the translated physical
- * address. 'pa' is unchanged on error.
- * mode: one of PROT_READ, PROT_WRITE, PROT_EXEC indicating the mode in which
- * the address should be translated
- *
- * Return values:
- * 0: the address was successfully translated - 'pa' contains the physical
- * address currently mapped by 'va'.
- * EFAULT: the PTE for 'VA' is unmapped. A #PF will be injected in this case
- * and %cr2 set in the vcpu structure.
- * EINVAL: an error occurred reading paging table structures
- */
-int
-vmm_translate_gva(struct vcpu *vcpu, uint64_t va, uint64_t *pa, int mode)
-{
- int level, shift, pdidx;
- uint64_t pte, pt_paddr, pte_paddr, mask, low_mask, high_mask;
- uint64_t shift_width, pte_size, *hva;
- paddr_t hpa;
- struct vcpu_reg_state vrs;
-
- level = 0;
-
- if (vmm_softc->mode == VMM_MODE_EPT ||
- vmm_softc->mode == VMM_MODE_VMX) {
- if (vcpu_readregs_vmx(vcpu, VM_RWREGS_ALL, 1, &vrs))
- return (EINVAL);
- } else if (vmm_softc->mode == VMM_MODE_RVI ||
- vmm_softc->mode == VMM_MODE_SVM) {
- if (vcpu_readregs_svm(vcpu, VM_RWREGS_ALL, &vrs))
- return (EINVAL);
- } else {
- printf("%s: unknown vmm mode", __func__);
- return (EINVAL);
- }
-
- DPRINTF("%s: guest %%cr0=0x%llx, %%cr3=0x%llx\n", __func__,
- vrs.vrs_crs[VCPU_REGS_CR0], vrs.vrs_crs[VCPU_REGS_CR3]);
-
- if (!(vrs.vrs_crs[VCPU_REGS_CR0] & CR0_PG)) {
- DPRINTF("%s: unpaged, va=pa=0x%llx\n", __func__,
- va);
- *pa = va;
- return (0);
- }
-
- pt_paddr = vrs.vrs_crs[VCPU_REGS_CR3];
-
- if (vrs.vrs_crs[VCPU_REGS_CR0] & CR0_PE) {
- if (vrs.vrs_crs[VCPU_REGS_CR4] & CR4_PAE) {
- pte_size = sizeof(uint64_t);
- shift_width = 9;
-
- if (vrs.vrs_msrs[VCPU_REGS_EFER] & EFER_LMA) {
- level = 4;
- mask = L4_MASK;
- shift = L4_SHIFT;
- } else {
- level = 3;
- mask = L3_MASK;
- shift = L3_SHIFT;
- }
- } else {
- level = 2;
- shift_width = 10;
- mask = 0xFFC00000;
- shift = 22;
- pte_size = sizeof(uint32_t);
- }
- } else {
- return (EINVAL);
- }
-
- DPRINTF("%s: pte size=%lld level=%d mask=0x%llx, shift=%d, "
- "shift_width=%lld\n", __func__, pte_size, level, mask, shift,
- shift_width);
-
- /* XXX: Check for R bit in segment selector and set A bit */
-
- for (;level > 0; level--) {
- pdidx = (va & mask) >> shift;
- pte_paddr = (pt_paddr) + (pdidx * pte_size);
-
- DPRINTF("%s: read pte level %d @ GPA 0x%llx\n", __func__,
- level, pte_paddr);
- if (!pmap_extract(vcpu->vc_parent->vm_map->pmap, pte_paddr,
- &hpa)) {
- DPRINTF("%s: cannot extract HPA for GPA 0x%llx\n",
- __func__, pte_paddr);
- return (EINVAL);
- }
-
- hpa = hpa | (pte_paddr & 0xFFF);
- hva = (uint64_t *)PMAP_DIRECT_MAP(hpa);
- DPRINTF("%s: GPA 0x%llx -> HPA 0x%llx -> HVA 0x%llx\n",
- __func__, pte_paddr, (uint64_t)hpa, (uint64_t)hva);
- if (pte_size == 8)
- pte = *hva;
- else
- pte = *(uint32_t *)hva;
-
- DPRINTF("%s: PTE @ 0x%llx = 0x%llx\n", __func__, pte_paddr,
- pte);
-
- /* XXX: Set CR2 */
- if (!(pte & PG_V))
- return (EFAULT);
-
- /* XXX: Check for SMAP */
- if ((mode == PROT_WRITE) && !(pte & PG_RW))
- return (EPERM);
-
- if ((vcpu->vc_exit.cpl > 0) && !(pte & PG_u))
- return (EPERM);
-
- pte = pte | PG_U;
- if (mode == PROT_WRITE)
- pte = pte | PG_M;
- *hva = pte;
-
- /* XXX: EINVAL if in 32bit and PG_PS is 1 but CR4.PSE is 0 */
- if (pte & PG_PS)
- break;
-
- if (level > 1) {
- pt_paddr = pte & PG_FRAME;
- shift -= shift_width;
- mask = mask >> shift_width;
- }
- }
-
- low_mask = ((uint64_t)1ULL << shift) - 1;
- high_mask = (((uint64_t)1ULL << ((pte_size * 8) - 1)) - 1) ^ low_mask;
- *pa = (pte & high_mask) | (va & low_mask);
-
- DPRINTF("%s: final GPA for GVA 0x%llx = 0x%llx\n", __func__,
- va, *pa);
-
- return (0);
-}
-
-
-/*
- * vcpu_run_vmx
- *
- * VMX main loop used to run a VCPU.
- *
- * Parameters:
- * vcpu: The VCPU to run
- * vrp: run parameters
- *
- * Return values:
- * 0: The run loop exited and no help is needed from vmd
- * EAGAIN: The run loop exited and help from vmd is needed
- * EINVAL: an error occurred
- */
-int
-vcpu_run_vmx(struct vcpu *vcpu, struct vm_run_params *vrp)
-{
- int ret = 0, exitinfo;
- struct region_descriptor gdt;
- struct cpu_info *ci = curcpu();
- uint64_t exit_reason, cr3, insn_error;
- struct schedstate_percpu *spc;
- struct vmx_invvpid_descriptor vid;
- uint64_t eii, procbased, int_st;
- uint16_t irq, ldt_sel;
- u_long s;
- struct region_descriptor gdtr, idtr;
-
- rw_assert_wrlock(&vcpu->vc_lock);
-
- if (vcpu_reload_vmcs_vmx(vcpu)) {
- printf("%s: failed (re)loading vmcs\n", __func__);
- return (EINVAL);
- }
-
- /*
- * If we are returning from userspace (vmd) because we exited
- * last time, fix up any needed vcpu state first. Which state
- * needs to be fixed up depends on what vmd populated in the
- * exit data structure.
- */
- irq = vrp->vrp_irq;
-
- if (vrp->vrp_continue) {
- switch (vcpu->vc_gueststate.vg_exit_reason) {
- case VMX_EXIT_IO:
- if (vcpu->vc_exit.vei.vei_dir == VEI_DIR_IN)
- vcpu->vc_gueststate.vg_rax =
- vcpu->vc_exit.vei.vei_data;
- break;
- case VMX_EXIT_EPT_VIOLATION:
- ret = vcpu_writeregs_vmx(vcpu, VM_RWREGS_GPRS, 0,
- &vcpu->vc_exit.vrs);
- if (ret) {
- printf("%s: vm %d vcpu %d failed to update "
- "registers\n", __func__,
- vcpu->vc_parent->vm_id, vcpu->vc_id);
- return (EINVAL);
- }
- break;
- case VM_EXIT_NONE:
- case VMX_EXIT_HLT:
- case VMX_EXIT_INT_WINDOW:
- case VMX_EXIT_EXTINT:
- case VMX_EXIT_CPUID:
- case VMX_EXIT_XSETBV:
- break;
-#ifdef VMM_DEBUG
- case VMX_EXIT_TRIPLE_FAULT:
- DPRINTF("%s: vm %d vcpu %d triple fault\n",
- __func__, vcpu->vc_parent->vm_id,
- vcpu->vc_id);
- vmx_vcpu_dump_regs(vcpu);
- dump_vcpu(vcpu);
- vmx_dump_vmcs(vcpu);
- break;
- case VMX_EXIT_ENTRY_FAILED_GUEST_STATE:
- DPRINTF("%s: vm %d vcpu %d failed entry "
- "due to invalid guest state\n",
- __func__, vcpu->vc_parent->vm_id,
- vcpu->vc_id);
- vmx_vcpu_dump_regs(vcpu);
- dump_vcpu(vcpu);
- return (EINVAL);
- default:
- DPRINTF("%s: unimplemented exit type %d (%s)\n",
- __func__,
- vcpu->vc_gueststate.vg_exit_reason,
- vmx_exit_reason_decode(
- vcpu->vc_gueststate.vg_exit_reason));
- vmx_vcpu_dump_regs(vcpu);
- dump_vcpu(vcpu);
- break;
-#endif /* VMM_DEBUG */
- }
- memset(&vcpu->vc_exit, 0, sizeof(vcpu->vc_exit));
- }
-
- setregion(&gdt, ci->ci_gdt, GDT_SIZE - 1);
- if (gdt.rd_base == 0) {
- printf("%s: setregion\n", __func__);
- return (EINVAL);
- }
-
- /* Host GDTR base */
- if (vmwrite(VMCS_HOST_IA32_GDTR_BASE, gdt.rd_base)) {
- printf("%s: vmwrite(0x%04X, 0x%llx)\n", __func__,
- VMCS_HOST_IA32_GDTR_BASE, gdt.rd_base);
- return (EINVAL);
- }
-
- /* Host TR base */
- if (vmwrite(VMCS_HOST_IA32_TR_BASE, (uint64_t)ci->ci_tss)) {
- printf("%s: vmwrite(0x%04X, 0x%llx)\n", __func__,
- VMCS_HOST_IA32_TR_BASE, (uint64_t)ci->ci_tss);
- return (EINVAL);
- }
-
- /* Host CR3 */
- cr3 = rcr3();
- if (vmwrite(VMCS_HOST_IA32_CR3, cr3)) {
- printf("%s: vmwrite(0x%04X, 0x%llx)\n", __func__,
- VMCS_HOST_IA32_CR3, cr3);
- return (EINVAL);
- }
-
- /* Handle vmd(8) injected interrupts */
- /* Is there an interrupt pending injection? */
- if (irq != 0xFFFF) {
- if (vmread(VMCS_GUEST_INTERRUPTIBILITY_ST, &int_st)) {
- printf("%s: can't get interruptibility state\n",
- __func__);
- return (EINVAL);
- }
-
- /* Interruptibility state 0x3 covers NMIs and STI */
- if (!(int_st & 0x3) && vcpu->vc_irqready) {
- eii = (irq & 0xFF);
- eii |= (1ULL << 31); /* Valid */
- eii |= (0ULL << 8); /* Hardware Interrupt */
- if (vmwrite(VMCS_ENTRY_INTERRUPTION_INFO, eii)) {
- printf("vcpu_run_vmx: can't vector "
- "interrupt to guest\n");
- return (EINVAL);
- }
-
- irq = 0xFFFF;
- }
- } else if (!vcpu->vc_intr) {
- /*
- * Disable window exiting
- */
- if (vmread(VMCS_PROCBASED_CTLS, &procbased)) {
- printf("%s: can't read procbased ctls on exit\n",
- __func__);
- return (EINVAL);
- } else {
- procbased &= ~IA32_VMX_INTERRUPT_WINDOW_EXITING;
- if (vmwrite(VMCS_PROCBASED_CTLS, procbased)) {
- printf("%s: can't write procbased ctls "
- "on exit\n", __func__);
- return (EINVAL);
- }
- }
- }
-
- while (ret == 0) {
-#ifdef VMM_DEBUG
- paddr_t pa = 0ULL;
- vmptrst(&pa);
- KASSERT(pa == vcpu->vc_control_pa);
-#endif /* VMM_DEBUG */
-
- vmm_update_pvclock(vcpu);
-
- /* Inject event if present */
- if (vcpu->vc_event != 0) {
- eii = (vcpu->vc_event & 0xFF);
- eii |= (1ULL << 31); /* Valid */
-
- /* Set the "Send error code" flag for certain vectors */
- switch (vcpu->vc_event & 0xFF) {
- case VMM_EX_DF:
- case VMM_EX_TS:
- case VMM_EX_NP:
- case VMM_EX_SS:
- case VMM_EX_GP:
- case VMM_EX_PF:
- case VMM_EX_AC:
- eii |= (1ULL << 11);
- }
-
- eii |= (3ULL << 8); /* Hardware Exception */
- if (vmwrite(VMCS_ENTRY_INTERRUPTION_INFO, eii)) {
- printf("%s: can't vector event to guest\n",
- __func__);
- ret = EINVAL;
- break;
- }
-
- if (vmwrite(VMCS_ENTRY_EXCEPTION_ERROR_CODE, 0)) {
- printf("%s: can't write error code to guest\n",
- __func__);
- ret = EINVAL;
- break;
- }
-
- vcpu->vc_event = 0;
- }
-
- if (vcpu->vc_vmx_vpid_enabled) {
- /* Invalidate old TLB mappings */
- vid.vid_vpid = vcpu->vc_parent->vm_id;
- vid.vid_addr = 0;
- invvpid(IA32_VMX_INVVPID_SINGLE_CTX_GLB, &vid);
- }
-
- /* Start / resume the VCPU */
-
- /* Disable interrupts and save the current host FPU state. */
- s = intr_disable();
- if ((ret = vmm_fpurestore(vcpu))) {
- intr_restore(s);
- break;
- }
-
- sgdt(&gdtr);
- sidt(&idtr);
- sldt(&ldt_sel);
-
- TRACEPOINT(vmm, guest_enter, vcpu, vrp);
-
- /* Restore any guest PKRU state. */
- if (vmm_softc->pkru_enabled)
- wrpkru(vcpu->vc_pkru);
-
- ret = vmx_enter_guest(&vcpu->vc_control_pa,
- &vcpu->vc_gueststate,
- (vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED),
- ci->ci_vmm_cap.vcc_vmx.vmx_has_l1_flush_msr);
-
- /* Restore host PKRU state. */
- if (vmm_softc->pkru_enabled) {
- vcpu->vc_pkru = rdpkru(0);
- wrpkru(PGK_VALUE);
- }
-
- bare_lgdt(&gdtr);
- lidt(&idtr);
- lldt(ldt_sel);
-
- /*
- * On exit, interrupts are disabled, and we are running with
- * the guest FPU state still possibly on the CPU. Save the FPU
- * state before re-enabling interrupts.
- */
- vmm_fpusave(vcpu);
- intr_restore(s);
-
- atomic_swap_uint(&vcpu->vc_vmx_vmcs_state, VMCS_LAUNCHED);
- exit_reason = VM_EXIT_NONE;
-
- /* If we exited successfully ... */
- if (ret == 0) {
- exitinfo = vmx_get_exit_info(
- &vcpu->vc_gueststate.vg_rip, &exit_reason);
- if (!(exitinfo & VMX_EXIT_INFO_HAVE_RIP)) {
- printf("%s: cannot read guest rip\n", __func__);
- ret = EINVAL;
- break;
- }
- if (!(exitinfo & VMX_EXIT_INFO_HAVE_REASON)) {
- printf("%s: cant read exit reason\n", __func__);
- ret = EINVAL;
- break;
- }
- vcpu->vc_gueststate.vg_exit_reason = exit_reason;
- TRACEPOINT(vmm, guest_exit, vcpu, vrp, exit_reason);
-
- /* Update our state */
- if (vmread(VMCS_GUEST_IA32_RFLAGS,
- &vcpu->vc_gueststate.vg_rflags)) {
- printf("%s: can't read guest rflags during "
- "exit\n", __func__);
- ret = EINVAL;
- break;
- }
-
- /*
- * Handle the exit. This will alter "ret" to EAGAIN if
- * the exit handler determines help from vmd is needed.
- */
- ret = vmx_handle_exit(vcpu);
-
- if (vcpu->vc_gueststate.vg_rflags & PSL_I)
- vcpu->vc_irqready = 1;
- else
- vcpu->vc_irqready = 0;
-
- /*
- * If not ready for interrupts, but interrupts pending,
- * enable interrupt window exiting.
- */
- if (vcpu->vc_irqready == 0 && vcpu->vc_intr) {
- if (vmread(VMCS_PROCBASED_CTLS, &procbased)) {
- printf("%s: can't read procbased ctls "
- "on intwin exit\n", __func__);
- ret = EINVAL;
- break;
- }
-
- procbased |= IA32_VMX_INTERRUPT_WINDOW_EXITING;
- if (vmwrite(VMCS_PROCBASED_CTLS, procbased)) {
- printf("%s: can't write procbased ctls "
- "on intwin exit\n", __func__);
- ret = EINVAL;
- break;
- }
- }
-
- /*
- * Exit to vmd if we are terminating, failed to enter,
- * or need help (device I/O)
- */
- if (ret || vcpu_must_stop(vcpu))
- break;
-
- if (vcpu->vc_intr && vcpu->vc_irqready) {
- ret = EAGAIN;
- break;
- }
-
- /* Check if we should yield - don't hog the {p,v}pu */
- spc = &ci->ci_schedstate;
- if (spc->spc_schedflags & SPCF_SHOULDYIELD)
- break;
-
- } else {
- /*
- * We failed vmresume or vmlaunch for some reason,
- * typically due to invalid vmcs state or other
- * reasons documented in SDM Vol 3C 30.4.
- */
- switch (ret) {
- case VMX_FAIL_LAUNCH_INVALID_VMCS:
- printf("%s: failed %s with invalid vmcs\n",
- __func__,
- (vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED
- ? "vmresume" : "vmlaunch"));
- break;
- case VMX_FAIL_LAUNCH_VALID_VMCS:
- printf("%s: failed %s with valid vmcs\n",
- __func__,
- (vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED
- ? "vmresume" : "vmlaunch"));
- break;
- default:
- printf("%s: failed %s for unknown reason\n",
- __func__,
- (vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED
- ? "vmresume" : "vmlaunch"));
- }
-
- ret = EINVAL;
-
- /* Try to translate a vmfail error code, if possible. */
- if (vmread(VMCS_INSTRUCTION_ERROR, &insn_error)) {
- printf("%s: can't read insn error field\n",
- __func__);
- } else
- printf("%s: error code = %lld, %s\n", __func__,
- insn_error,
- vmx_instruction_error_decode(insn_error));
-#ifdef VMM_DEBUG
- vmx_vcpu_dump_regs(vcpu);
- dump_vcpu(vcpu);
-#endif /* VMM_DEBUG */
- }
- }
-
- vcpu->vc_last_pcpu = curcpu();
-
- /* Copy the VCPU register state to the exit structure */
- if (vcpu_readregs_vmx(vcpu, VM_RWREGS_ALL, 0, &vcpu->vc_exit.vrs))
- ret = EINVAL;
- vcpu->vc_exit.cpl = vmm_get_guest_cpu_cpl(vcpu);
-
- return (ret);
-}
-
-/*
- * vmx_handle_intr
- *
- * Handle host (external) interrupts. We read which interrupt fired by
- * extracting the vector from the VMCS and dispatch the interrupt directly
- * to the host using vmm_dispatch_intr.
- */
-void
-vmx_handle_intr(struct vcpu *vcpu)
-{
- uint8_t vec;
- uint64_t eii;
- struct gate_descriptor *idte;
- vaddr_t handler;
-
- if (vmread(VMCS_EXIT_INTERRUPTION_INFO, &eii)) {
- printf("%s: can't obtain intr info\n", __func__);
- return;
- }
-
- vec = eii & 0xFF;
-
- /* XXX check "error valid" code in eii, abort if 0 */
- idte=&idt[vec];
- handler = idte->gd_looffset + ((uint64_t)idte->gd_hioffset << 16);
- vmm_dispatch_intr(handler);
-}
-
-/*
- * svm_handle_hlt
- *
- * Handle HLT exits
- *
- * Parameters
- * vcpu: The VCPU that executed the HLT instruction
- *
- * Return Values:
- * EIO: The guest halted with interrupts disabled
- * EAGAIN: Normal return to vmd - vmd should halt scheduling this VCPU
- * until a virtual interrupt is ready to inject
- */
-int
-svm_handle_hlt(struct vcpu *vcpu)
-{
- struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
- uint64_t rflags = vmcb->v_rflags;
-
- /* All HLT insns are 1 byte */
- vcpu->vc_gueststate.vg_rip += 1;
-
- if (!(rflags & PSL_I)) {
- DPRINTF("%s: guest halted with interrupts disabled\n",
- __func__);
- return (EIO);
- }
-
- return (EAGAIN);
-}
-
-/*
- * vmx_handle_hlt
- *
- * Handle HLT exits. HLTing the CPU with interrupts disabled will terminate
- * the guest (no NMIs handled) by returning EIO to vmd.
- *
- * Parameters:
- * vcpu: The VCPU that executed the HLT instruction
- *
- * Return Values:
- * EINVAL: An error occurred extracting information from the VMCS, or an
- * invalid HLT instruction was encountered
- * EIO: The guest halted with interrupts disabled
- * EAGAIN: Normal return to vmd - vmd should halt scheduling this VCPU
- * until a virtual interrupt is ready to inject
- *
- */
-int
-vmx_handle_hlt(struct vcpu *vcpu)
-{
- uint64_t insn_length, rflags;
-
- if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
- printf("%s: can't obtain instruction length\n", __func__);
- return (EINVAL);
- }
-
- if (vmread(VMCS_GUEST_IA32_RFLAGS, &rflags)) {
- printf("%s: can't obtain guest rflags\n", __func__);
- return (EINVAL);
- }
-
- if (insn_length != 1) {
- DPRINTF("%s: HLT with instruction length %lld not supported\n",
- __func__, insn_length);
- return (EINVAL);
- }
-
- if (!(rflags & PSL_I)) {
- DPRINTF("%s: guest halted with interrupts disabled\n",
- __func__);
- return (EIO);
- }
-
- vcpu->vc_gueststate.vg_rip += insn_length;
- return (EAGAIN);
-}
-
-/*
- * vmx_get_exit_info
- *
- * Returns exit information containing the current guest RIP and exit reason
- * in rip and exit_reason. The return value is a bitmask indicating whether
- * reading the RIP and exit reason was successful.
- */
-int
-vmx_get_exit_info(uint64_t *rip, uint64_t *exit_reason)
-{
- int rv = 0;
-
- if (vmread(VMCS_GUEST_IA32_RIP, rip) == 0) {
- rv |= VMX_EXIT_INFO_HAVE_RIP;
- if (vmread(VMCS_EXIT_REASON, exit_reason) == 0)
- rv |= VMX_EXIT_INFO_HAVE_REASON;
- }
- return (rv);
-}
-
-/*
- * svm_handle_exit
- *
- * Handle exits from the VM by decoding the exit reason and calling various
- * subhandlers as needed.
- */
-int
-svm_handle_exit(struct vcpu *vcpu)
-{
- uint64_t exit_reason, rflags;
- int update_rip, ret = 0;
- struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
-
- update_rip = 0;
- exit_reason = vcpu->vc_gueststate.vg_exit_reason;
- rflags = vcpu->vc_gueststate.vg_rflags;
-
- switch (exit_reason) {
- case SVM_VMEXIT_VINTR:
- if (!(rflags & PSL_I)) {
- DPRINTF("%s: impossible interrupt window exit "
- "config\n", __func__);
- ret = EINVAL;
- break;
- }
-
- /*
- * Guest is now ready for interrupts, so disable interrupt
- * window exiting.
- */
- vmcb->v_irq = 0;
- vmcb->v_intr_vector = 0;
- vmcb->v_intercept1 &= ~SVM_INTERCEPT_VINTR;
- svm_set_dirty(vcpu, SVM_CLEANBITS_TPR | SVM_CLEANBITS_I);
-
- update_rip = 0;
- break;
- case SVM_VMEXIT_INTR:
- update_rip = 0;
- break;
- case SVM_VMEXIT_SHUTDOWN:
- update_rip = 0;
- ret = EAGAIN;
- break;
- case SVM_VMEXIT_NPF:
- ret = svm_handle_np_fault(vcpu);
- break;
- case SVM_VMEXIT_CPUID:
- ret = vmm_handle_cpuid(vcpu);
- update_rip = 1;
- break;
- case SVM_VMEXIT_MSR:
- ret = svm_handle_msr(vcpu);
- update_rip = 1;
- break;
- case SVM_VMEXIT_XSETBV:
- ret = svm_handle_xsetbv(vcpu);
- update_rip = 1;
- break;
- case SVM_VMEXIT_IOIO:
- if (svm_handle_inout(vcpu) == 0)
- ret = EAGAIN;
- update_rip = 1;
- break;
- case SVM_VMEXIT_HLT:
- ret = svm_handle_hlt(vcpu);
- update_rip = 1;
- break;
- case SVM_VMEXIT_MWAIT:
- case SVM_VMEXIT_MWAIT_CONDITIONAL:
- case SVM_VMEXIT_MONITOR:
- case SVM_VMEXIT_VMRUN:
- case SVM_VMEXIT_VMMCALL:
- case SVM_VMEXIT_VMLOAD:
- case SVM_VMEXIT_VMSAVE:
- case SVM_VMEXIT_STGI:
- case SVM_VMEXIT_CLGI:
- case SVM_VMEXIT_SKINIT:
- case SVM_VMEXIT_RDTSCP:
- case SVM_VMEXIT_ICEBP:
- case SVM_VMEXIT_INVLPGA:
- ret = vmm_inject_ud(vcpu);
- update_rip = 0;
- break;
- default:
- DPRINTF("%s: unhandled exit 0x%llx (pa=0x%llx)\n", __func__,
- exit_reason, (uint64_t)vcpu->vc_control_pa);
- return (EINVAL);
- }
-
- if (update_rip) {
- vmcb->v_rip = vcpu->vc_gueststate.vg_rip;
-
- if (rflags & PSL_T) {
- if (vmm_inject_db(vcpu)) {
- printf("%s: can't inject #DB exception to "
- "guest", __func__);
- return (EINVAL);
- }
- }
- }
-
- /* Enable SVME in EFER (must always be set) */
- vmcb->v_efer |= EFER_SVME;
- svm_set_dirty(vcpu, SVM_CLEANBITS_CR);
-
- return (ret);
-}
-
-/*
- * vmx_handle_exit
- *
- * Handle exits from the VM by decoding the exit reason and calling various
- * subhandlers as needed.
- */
-int
-vmx_handle_exit(struct vcpu *vcpu)
-{
- uint64_t exit_reason, rflags, istate;
- int update_rip, ret = 0;
-
- update_rip = 0;
- exit_reason = vcpu->vc_gueststate.vg_exit_reason;
- rflags = vcpu->vc_gueststate.vg_rflags;
-
- switch (exit_reason) {
- case VMX_EXIT_INT_WINDOW:
- if (!(rflags & PSL_I)) {
- DPRINTF("%s: impossible interrupt window exit "
- "config\n", __func__);
- ret = EINVAL;
- break;
- }
-
- ret = EAGAIN;
- update_rip = 0;
- break;
- case VMX_EXIT_EPT_VIOLATION:
- ret = vmx_handle_np_fault(vcpu);
- break;
- case VMX_EXIT_CPUID:
- ret = vmm_handle_cpuid(vcpu);
- update_rip = 1;
- break;
- case VMX_EXIT_IO:
- if (vmx_handle_inout(vcpu) == 0)
- ret = EAGAIN;
- update_rip = 1;
- break;
- case VMX_EXIT_EXTINT:
- vmx_handle_intr(vcpu);
- update_rip = 0;
- break;
- case VMX_EXIT_CR_ACCESS:
- ret = vmx_handle_cr(vcpu);
- update_rip = 1;
- break;
- case VMX_EXIT_HLT:
- ret = vmx_handle_hlt(vcpu);
- update_rip = 1;
- break;
- case VMX_EXIT_RDMSR:
- ret = vmx_handle_rdmsr(vcpu);
- update_rip = 1;
- break;
- case VMX_EXIT_WRMSR:
- ret = vmx_handle_wrmsr(vcpu);
- update_rip = 1;
- break;
- case VMX_EXIT_XSETBV:
- ret = vmx_handle_xsetbv(vcpu);
- update_rip = 1;
- break;
- case VMX_EXIT_MWAIT:
- case VMX_EXIT_MONITOR:
- case VMX_EXIT_VMXON:
- case VMX_EXIT_VMWRITE:
- case VMX_EXIT_VMREAD:
- case VMX_EXIT_VMLAUNCH:
- case VMX_EXIT_VMRESUME:
- case VMX_EXIT_VMPTRLD:
- case VMX_EXIT_VMPTRST:
- case VMX_EXIT_VMCLEAR:
- case VMX_EXIT_VMCALL:
- case VMX_EXIT_VMFUNC:
- case VMX_EXIT_VMXOFF:
- case VMX_EXIT_INVVPID:
- case VMX_EXIT_INVEPT:
- ret = vmm_inject_ud(vcpu);
- update_rip = 0;
- break;
- case VMX_EXIT_TRIPLE_FAULT:
-#ifdef VMM_DEBUG
- DPRINTF("%s: vm %d vcpu %d triple fault\n", __func__,
- vcpu->vc_parent->vm_id, vcpu->vc_id);
- vmx_vcpu_dump_regs(vcpu);
- dump_vcpu(vcpu);
- vmx_dump_vmcs(vcpu);
-#endif /* VMM_DEBUG */
- ret = EAGAIN;
- update_rip = 0;
- break;
- default:
-#ifdef VMM_DEBUG
- DPRINTF("%s: unhandled exit 0x%llx (%s)\n", __func__,
- exit_reason, vmx_exit_reason_decode(exit_reason));
-#endif /* VMM_DEBUG */
- return (EINVAL);
- }
-
- if (update_rip) {
- if (vmwrite(VMCS_GUEST_IA32_RIP,
- vcpu->vc_gueststate.vg_rip)) {
- printf("%s: can't advance rip\n", __func__);
- return (EINVAL);
- }
-
- if (vmread(VMCS_GUEST_INTERRUPTIBILITY_ST,
- &istate)) {
- printf("%s: can't read interruptibility state\n",
- __func__);
- return (EINVAL);
- }
-
- /* Interruptibility state 0x3 covers NMIs and STI */
- istate &= ~0x3;
-
- if (vmwrite(VMCS_GUEST_INTERRUPTIBILITY_ST,
- istate)) {
- printf("%s: can't write interruptibility state\n",
- __func__);
- return (EINVAL);
- }
-
- if (rflags & PSL_T) {
- if (vmm_inject_db(vcpu)) {
- printf("%s: can't inject #DB exception to "
- "guest", __func__);
- return (EINVAL);
- }
- }
- }
-
- return (ret);
-}
-
-/*
- * vmm_inject_gp
- *
- * Injects an #GP exception into the guest VCPU.
- *
- * Parameters:
- * vcpu: vcpu to inject into
- *
- * Return values:
- * Always 0
- */
-int
-vmm_inject_gp(struct vcpu *vcpu)
-{
- DPRINTF("%s: injecting #GP at guest %%rip 0x%llx\n", __func__,
- vcpu->vc_gueststate.vg_rip);
- vcpu->vc_event = VMM_EX_GP;
-
- return (0);
-}
-
-/*
- * vmm_inject_ud
- *
- * Injects an #UD exception into the guest VCPU.
- *
- * Parameters:
- * vcpu: vcpu to inject into
- *
- * Return values:
- * Always 0
- */
-int
-vmm_inject_ud(struct vcpu *vcpu)
-{
- DPRINTF("%s: injecting #UD at guest %%rip 0x%llx\n", __func__,
- vcpu->vc_gueststate.vg_rip);
- vcpu->vc_event = VMM_EX_UD;
-
- return (0);
-}
-
-/*
- * vmm_inject_db
- *
- * Injects a #DB exception into the guest VCPU.
- *
- * Parameters:
- * vcpu: vcpu to inject into
- *
- * Return values:
- * Always 0
- */
-int
-vmm_inject_db(struct vcpu *vcpu)
-{
- DPRINTF("%s: injecting #DB at guest %%rip 0x%llx\n", __func__,
- vcpu->vc_gueststate.vg_rip);
- vcpu->vc_event = VMM_EX_DB;
-
- return (0);
-}
-
-/*
- * vmm_get_guest_memtype
- *
- * Returns the type of memory 'gpa' refers to in the context of vm 'vm'
- */
-int
-vmm_get_guest_memtype(struct vm *vm, paddr_t gpa)
-{
- int i;
- struct vm_mem_range *vmr;
-
- /* XXX Use binary search? */
- for (i = 0; i < vm->vm_nmemranges; i++) {
- vmr = &vm->vm_memranges[i];
-
- /*
- * vm_memranges are ascending. gpa can no longer be in one of
- * the memranges
- */
- if (gpa < vmr->vmr_gpa)
- break;
-
- if (gpa < vmr->vmr_gpa + vmr->vmr_size) {
- if (vmr->vmr_type == VM_MEM_MMIO)
- return (VMM_MEM_TYPE_MMIO);
- return (VMM_MEM_TYPE_REGULAR);
- }
- }
-
- DPRINTF("guest memtype @ 0x%llx unknown\n", (uint64_t)gpa);
- return (VMM_MEM_TYPE_UNKNOWN);
-}
-
-/*
- * vmx_get_exit_qualification
- *
- * Return the current VMCS' exit qualification information
- */
-int
-vmx_get_exit_qualification(uint64_t *exit_qualification)
-{
- if (vmread(VMCS_GUEST_EXIT_QUALIFICATION, exit_qualification)) {
- printf("%s: can't extract exit qual\n", __func__);
- return (EINVAL);
- }
-
- return (0);
-}
-
-/*
- * vmx_get_guest_faulttype
- *
- * Determines the type (R/W/X) of the last fault on the VCPU last run on
- * this PCPU.
- */
-int
-vmx_get_guest_faulttype(void)
-{
- uint64_t exit_qual;
- uint64_t presentmask = IA32_VMX_EPT_FAULT_WAS_READABLE |
- IA32_VMX_EPT_FAULT_WAS_WRITABLE | IA32_VMX_EPT_FAULT_WAS_EXECABLE;
- vm_prot_t prot, was_prot;
-
- if (vmx_get_exit_qualification(&exit_qual))
- return (-1);
-
- if ((exit_qual & presentmask) == 0)
- return VM_FAULT_INVALID;
-
- was_prot = 0;
- if (exit_qual & IA32_VMX_EPT_FAULT_WAS_READABLE)
- was_prot |= PROT_READ;
- if (exit_qual & IA32_VMX_EPT_FAULT_WAS_WRITABLE)
- was_prot |= PROT_WRITE;
- if (exit_qual & IA32_VMX_EPT_FAULT_WAS_EXECABLE)
- was_prot |= PROT_EXEC;
-
- prot = 0;
- if (exit_qual & IA32_VMX_EPT_FAULT_READ)
- prot = PROT_READ;
- else if (exit_qual & IA32_VMX_EPT_FAULT_WRITE)
- prot = PROT_WRITE;
- else if (exit_qual & IA32_VMX_EPT_FAULT_EXEC)
- prot = PROT_EXEC;
-
- if ((was_prot & prot) == 0)
- return VM_FAULT_PROTECT;
-
- return (-1);
-}
-
-/*
- * svm_get_guest_faulttype
- *
- * Determines the type (R/W/X) of the last fault on the VCPU last run on
- * this PCPU.
- */
-int
-svm_get_guest_faulttype(struct vmcb *vmcb)
-{
- if (!(vmcb->v_exitinfo1 & 0x1))
- return VM_FAULT_INVALID;
- return VM_FAULT_PROTECT;
-}
-
-/*
- * svm_fault_page
- *
- * Request a new page to be faulted into the UVM map of the VM owning 'vcpu'
- * at address 'gpa'.
- */
-int
-svm_fault_page(struct vcpu *vcpu, paddr_t gpa)
-{
- int ret;
-
- ret = uvm_fault(vcpu->vc_parent->vm_map, gpa, VM_FAULT_WIRE,
- PROT_READ | PROT_WRITE | PROT_EXEC);
- if (ret)
- printf("%s: uvm_fault returns %d, GPA=0x%llx, rip=0x%llx\n",
- __func__, ret, (uint64_t)gpa, vcpu->vc_gueststate.vg_rip);
-
- return (ret);
-}
-
-/*
- * svm_handle_np_fault
- *
- * High level nested paging handler for SVM. Verifies that a fault is for a
- * valid memory region, then faults a page, or aborts otherwise.
- */
-int
-svm_handle_np_fault(struct vcpu *vcpu)
-{
- uint64_t gpa;
- int gpa_memtype, ret = 0;
- struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
- struct vm_exit_eptviolation *vee = &vcpu->vc_exit.vee;
- struct cpu_info *ci = curcpu();
-
- memset(vee, 0, sizeof(*vee));
-
- gpa = vmcb->v_exitinfo2;
-
- gpa_memtype = vmm_get_guest_memtype(vcpu->vc_parent, gpa);
- switch (gpa_memtype) {
- case VMM_MEM_TYPE_REGULAR:
- vee->vee_fault_type = VEE_FAULT_HANDLED;
- ret = svm_fault_page(vcpu, gpa);
- break;
- case VMM_MEM_TYPE_MMIO:
- vee->vee_fault_type = VEE_FAULT_MMIO_ASSIST;
- if (ci->ci_vmm_cap.vcc_svm.svm_decode_assist) {
- vee->vee_insn_len = vmcb->v_n_bytes_fetched;
- memcpy(&vee->vee_insn_bytes, vmcb->v_guest_ins_bytes,
- sizeof(vee->vee_insn_bytes));
- vee->vee_insn_info |= VEE_BYTES_VALID;
- }
- ret = EAGAIN;
- break;
- default:
- printf("unknown memory type %d for GPA 0x%llx\n",
- gpa_memtype, gpa);
- return (EINVAL);
- }
-
- return (ret);
-}
-
-/*
- * vmx_fault_page
- *
- * Request a new page to be faulted into the UVM map of the VM owning 'vcpu'
- * at address 'gpa'.
- *
- * Parameters:
- * vcpu: guest VCPU requiring the page to be faulted into the UVM map
- * gpa: guest physical address that triggered the fault
- *
- * Return Values:
- * 0: if successful
- * EINVAL: if fault type could not be determined or VMCS reload fails
- * EAGAIN: if a protection fault occurred, ie writing to a read-only page
- * errno: if uvm_fault(9) fails to wire in the page
- */
-int
-vmx_fault_page(struct vcpu *vcpu, paddr_t gpa)
-{
- int fault_type, ret;
-
- fault_type = vmx_get_guest_faulttype();
- switch (fault_type) {
- case -1:
- printf("%s: invalid fault type\n", __func__);
- return (EINVAL);
- case VM_FAULT_PROTECT:
- vcpu->vc_exit.vee.vee_fault_type = VEE_FAULT_PROTECT;
- return (EAGAIN);
- default:
- vcpu->vc_exit.vee.vee_fault_type = VEE_FAULT_HANDLED;
- break;
- }
-
- /* We may sleep during uvm_fault(9), so reload VMCS. */
- vcpu->vc_last_pcpu = curcpu();
- ret = uvm_fault(vcpu->vc_parent->vm_map, gpa, VM_FAULT_WIRE,
- PROT_READ | PROT_WRITE | PROT_EXEC);
- if (vcpu_reload_vmcs_vmx(vcpu)) {
- printf("%s: failed to reload vmcs\n", __func__);
- return (EINVAL);
- }
-
- if (ret)
- printf("%s: uvm_fault returns %d, GPA=0x%llx, rip=0x%llx\n",
- __func__, ret, (uint64_t)gpa, vcpu->vc_gueststate.vg_rip);
-
- return (ret);
-}
-
-/*
- * vmx_handle_np_fault
- *
- * High level nested paging handler for VMX. Verifies that a fault is for a
- * valid memory region, then faults a page, or aborts otherwise.
- */
-int
-vmx_handle_np_fault(struct vcpu *vcpu)
-{
- uint64_t insn_len = 0, gpa;
- int gpa_memtype, ret = 0;
- struct vm_exit_eptviolation *vee = &vcpu->vc_exit.vee;
-
- memset(vee, 0, sizeof(*vee));
-
- if (vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa)) {
- printf("%s: cannot extract faulting pa\n", __func__);
- return (EINVAL);
- }
-
- gpa_memtype = vmm_get_guest_memtype(vcpu->vc_parent, gpa);
- switch (gpa_memtype) {
- case VMM_MEM_TYPE_REGULAR:
- vee->vee_fault_type = VEE_FAULT_HANDLED;
- ret = vmx_fault_page(vcpu, gpa);
- break;
- case VMM_MEM_TYPE_MMIO:
- vee->vee_fault_type = VEE_FAULT_MMIO_ASSIST;
- if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_len) ||
- insn_len == 0 || insn_len > 15) {
- printf("%s: failed to extract instruction length\n",
- __func__);
- ret = EINVAL;
- } else {
- vee->vee_insn_len = (uint32_t)insn_len;
- vee->vee_insn_info |= VEE_LEN_VALID;
- ret = EAGAIN;
- }
- break;
- default:
- printf("unknown memory type %d for GPA 0x%llx\n",
- gpa_memtype, gpa);
- return (EINVAL);
- }
-
- return (ret);
-}
-
-/*
- * vmm_get_guest_cpu_cpl
- *
- * Determines current CPL of 'vcpu'. On VMX/Intel, this is gathered from the
- * VMCS field for the DPL of SS (this seems odd, but is documented that way
- * in the SDM). For SVM/AMD, this is gathered directly from the VMCB's 'cpl'
- * field, as per the APM.
- *
- * Parameters:
- * vcpu: guest VCPU for which CPL is to be checked
- *
- * Return Values:
- * -1: the CPL could not be determined
- * 0-3 indicating the current CPL. For real mode operation, 0 is returned.
- */
-int
-vmm_get_guest_cpu_cpl(struct vcpu *vcpu)
-{
- int mode;
- struct vmcb *vmcb;
- uint64_t ss_ar;
-
- mode = vmm_get_guest_cpu_mode(vcpu);
-
- if (mode == VMM_CPU_MODE_UNKNOWN)
- return (-1);
-
- if (mode == VMM_CPU_MODE_REAL)
- return (0);
-
- if (vmm_softc->mode == VMM_MODE_SVM ||
- vmm_softc->mode == VMM_MODE_RVI) {
- vmcb = (struct vmcb *)vcpu->vc_control_va;
- return (vmcb->v_cpl);
- } else if (vmm_softc->mode == VMM_MODE_VMX ||
- vmm_softc->mode == VMM_MODE_EPT) {
- if (vmread(VMCS_GUEST_IA32_SS_AR, &ss_ar))
- return (-1);
- return ((ss_ar & 0x60) >> 5);
- } else
- return (-1);
-}
-
-/*
- * vmm_get_guest_cpu_mode
- *
- * Determines current CPU mode of 'vcpu'.
- *
- * Parameters:
- * vcpu: guest VCPU for which mode is to be checked
- *
- * Return Values:
- * One of VMM_CPU_MODE_*, or VMM_CPU_MODE_UNKNOWN if the mode could not be
- * ascertained.
- */
-int
-vmm_get_guest_cpu_mode(struct vcpu *vcpu)
-{
- uint64_t cr0, efer, cs_ar;
- uint8_t l, dib;
- struct vmcb *vmcb;
- struct vmx_msr_store *msr_store;
-
- if (vmm_softc->mode == VMM_MODE_SVM ||
- vmm_softc->mode == VMM_MODE_RVI) {
- vmcb = (struct vmcb *)vcpu->vc_control_va;
- cr0 = vmcb->v_cr0;
- efer = vmcb->v_efer;
- cs_ar = vmcb->v_cs.vs_attr;
- cs_ar = (cs_ar & 0xff) | ((cs_ar << 4) & 0xf000);
- } else if (vmm_softc->mode == VMM_MODE_VMX ||
- vmm_softc->mode == VMM_MODE_EPT) {
- if (vmread(VMCS_GUEST_IA32_CR0, &cr0))
- return (VMM_CPU_MODE_UNKNOWN);
- if (vmread(VMCS_GUEST_IA32_CS_AR, &cs_ar))
- return (VMM_CPU_MODE_UNKNOWN);
- msr_store =
- (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
- efer = msr_store[VCPU_REGS_EFER].vms_data;
- } else
- return (VMM_CPU_MODE_UNKNOWN);
-
- l = (cs_ar & 0x2000) >> 13;
- dib = (cs_ar & 0x4000) >> 14;
-
- /* Check CR0.PE */
- if (!(cr0 & CR0_PE))
- return (VMM_CPU_MODE_REAL);
-
- /* Check EFER */
- if (efer & EFER_LMA) {
- /* Could be compat or long mode, check CS.L */
- if (l)
- return (VMM_CPU_MODE_LONG);
- else
- return (VMM_CPU_MODE_COMPAT);
- }
-
- /* Check prot vs prot32 */
- if (dib)
- return (VMM_CPU_MODE_PROT32);
- else
- return (VMM_CPU_MODE_PROT);
-}
-
-/*
- * svm_handle_inout
- *
- * Exit handler for IN/OUT instructions.
- *
- * Parameters:
- * vcpu: The VCPU where the IN/OUT instruction occurred
- *
- * Return values:
- * 0: if successful
- * EINVAL: an invalid IN/OUT instruction was encountered
- */
-int
-svm_handle_inout(struct vcpu *vcpu)
-{
- uint64_t insn_length, exit_qual;
- struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
-
- insn_length = vmcb->v_exitinfo2 - vmcb->v_rip;
- if (insn_length != 1 && insn_length != 2) {
- DPRINTF("%s: IN/OUT instruction with length %lld not "
- "supported\n", __func__, insn_length);
- return (EINVAL);
- }
-
- exit_qual = vmcb->v_exitinfo1;
-
- /* Bit 0 - direction */
- if (exit_qual & 0x1)
- vcpu->vc_exit.vei.vei_dir = VEI_DIR_IN;
- else
- vcpu->vc_exit.vei.vei_dir = VEI_DIR_OUT;
- /* Bit 2 - string instruction? */
- vcpu->vc_exit.vei.vei_string = (exit_qual & 0x4) >> 2;
- /* Bit 3 - REP prefix? */
- vcpu->vc_exit.vei.vei_rep = (exit_qual & 0x8) >> 3;
-
- /* Bits 4:6 - size of exit */
- if (exit_qual & 0x10)
- vcpu->vc_exit.vei.vei_size = 1;
- else if (exit_qual & 0x20)
- vcpu->vc_exit.vei.vei_size = 2;
- else if (exit_qual & 0x40)
- vcpu->vc_exit.vei.vei_size = 4;
-
- /* Bit 16:31 - port */
- vcpu->vc_exit.vei.vei_port = (exit_qual & 0xFFFF0000) >> 16;
- /* Data */
- vcpu->vc_exit.vei.vei_data = vmcb->v_rax;
-
- TRACEPOINT(vmm, inout, vcpu, vcpu->vc_exit.vei.vei_port,
- vcpu->vc_exit.vei.vei_dir, vcpu->vc_exit.vei.vei_data);
-
- vcpu->vc_gueststate.vg_rip += insn_length;
-
- return (0);
-}
-
-/*
- * vmx_handle_inout
- *
- * Exit handler for IN/OUT instructions.
- *
- * Parameters:
- * vcpu: The VCPU where the IN/OUT instruction occurred
- *
- * Return values:
- * 0: if successful
- * EINVAL: invalid IN/OUT instruction or vmread failures occurred
- */
-int
-vmx_handle_inout(struct vcpu *vcpu)
-{
- uint64_t insn_length, exit_qual;
-
- if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
- printf("%s: can't obtain instruction length\n", __func__);
- return (EINVAL);
- }
-
- if (insn_length != 1 && insn_length != 2) {
- DPRINTF("%s: IN/OUT instruction with length %lld not "
- "supported\n", __func__, insn_length);
- return (EINVAL);
- }
-
- if (vmx_get_exit_qualification(&exit_qual)) {
- printf("%s: can't get exit qual\n", __func__);
- return (EINVAL);
- }
-
- /* Bits 0:2 - size of exit */
- vcpu->vc_exit.vei.vei_size = (exit_qual & 0x7) + 1;
- /* Bit 3 - direction */
- if ((exit_qual & 0x8) >> 3)
- vcpu->vc_exit.vei.vei_dir = VEI_DIR_IN;
- else
- vcpu->vc_exit.vei.vei_dir = VEI_DIR_OUT;
- /* Bit 4 - string instruction? */
- vcpu->vc_exit.vei.vei_string = (exit_qual & 0x10) >> 4;
- /* Bit 5 - REP prefix? */
- vcpu->vc_exit.vei.vei_rep = (exit_qual & 0x20) >> 5;
- /* Bit 6 - Operand encoding */
- vcpu->vc_exit.vei.vei_encoding = (exit_qual & 0x40) >> 6;
- /* Bit 16:31 - port */
- vcpu->vc_exit.vei.vei_port = (exit_qual & 0xFFFF0000) >> 16;
- /* Data */
- vcpu->vc_exit.vei.vei_data = (uint32_t)vcpu->vc_gueststate.vg_rax;
-
- TRACEPOINT(vmm, inout, vcpu, vcpu->vc_exit.vei.vei_port,
- vcpu->vc_exit.vei.vei_dir, vcpu->vc_exit.vei.vei_data);
-
- vcpu->vc_gueststate.vg_rip += insn_length;
-
- return (0);
-}
-
-/*
- * vmx_load_pdptes
- *
- * Update the PDPTEs in the VMCS with the values currently indicated by the
- * guest CR3. This is used for 32-bit PAE guests when enabling paging.
- *
- * Parameters
- * vcpu: The vcpu whose PDPTEs should be loaded
- *
- * Return values:
- * 0: if successful
- * EINVAL: if the PDPTEs could not be loaded
- * ENOMEM: memory allocation failure
- */
-int
-vmx_load_pdptes(struct vcpu *vcpu)
-{
- uint64_t cr3, cr3_host_phys;
- vaddr_t cr3_host_virt;
- pd_entry_t *pdptes;
- int ret;
-
- if (vmread(VMCS_GUEST_IA32_CR3, &cr3)) {
- printf("%s: can't read guest cr3\n", __func__);
- return (EINVAL);
- }
-
- if (!pmap_extract(vcpu->vc_parent->vm_map->pmap, (vaddr_t)cr3,
- (paddr_t *)&cr3_host_phys)) {
- DPRINTF("%s: nonmapped guest CR3, setting PDPTEs to 0\n",
- __func__);
- if (vmwrite(VMCS_GUEST_PDPTE0, 0)) {
- printf("%s: can't write guest PDPTE0\n", __func__);
- return (EINVAL);
- }
-
- if (vmwrite(VMCS_GUEST_PDPTE1, 0)) {
- printf("%s: can't write guest PDPTE1\n", __func__);
- return (EINVAL);
- }
-
- if (vmwrite(VMCS_GUEST_PDPTE2, 0)) {
- printf("%s: can't write guest PDPTE2\n", __func__);
- return (EINVAL);
- }
-
- if (vmwrite(VMCS_GUEST_PDPTE3, 0)) {
- printf("%s: can't write guest PDPTE3\n", __func__);
- return (EINVAL);
- }
- return (0);
- }
-
- ret = 0;
-
- /* We may sleep during km_alloc(9), so reload VMCS. */
- vcpu->vc_last_pcpu = curcpu();
- cr3_host_virt = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none,
- &kd_waitok);
- if (vcpu_reload_vmcs_vmx(vcpu)) {
- printf("%s: failed to reload vmcs\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (!cr3_host_virt) {
- printf("%s: can't allocate address for guest CR3 mapping\n",
- __func__);
- return (ENOMEM);
- }
-
- pmap_kenter_pa(cr3_host_virt, cr3_host_phys, PROT_READ);
-
- pdptes = (pd_entry_t *)cr3_host_virt;
- if (vmwrite(VMCS_GUEST_PDPTE0, pdptes[0])) {
- printf("%s: can't write guest PDPTE0\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_GUEST_PDPTE1, pdptes[1])) {
- printf("%s: can't write guest PDPTE1\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_GUEST_PDPTE2, pdptes[2])) {
- printf("%s: can't write guest PDPTE2\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
- if (vmwrite(VMCS_GUEST_PDPTE3, pdptes[3])) {
- printf("%s: can't write guest PDPTE3\n", __func__);
- ret = EINVAL;
- goto exit;
- }
-
-exit:
- pmap_kremove(cr3_host_virt, PAGE_SIZE);
-
- /* km_free(9) might sleep, so we need to reload VMCS. */
- vcpu->vc_last_pcpu = curcpu();
- km_free((void *)cr3_host_virt, PAGE_SIZE, &kv_any, &kp_none);
- if (vcpu_reload_vmcs_vmx(vcpu)) {
- printf("%s: failed to reload vmcs after km_free\n", __func__);
- ret = EINVAL;
- }
-
- return (ret);
-}
-
-/*
- * vmx_handle_cr0_write
- *
- * Write handler for CR0. This function ensures valid values are written into
- * CR0 for the cpu/vmm mode in use (cr0 must-be-0 and must-be-1 bits, etc).
- *
- * Parameters
- * vcpu: The vcpu taking the cr0 write exit
- * r: The guest's desired (incoming) cr0 value
- *
- * Return values:
- * 0: if successful
- * EINVAL: if an error occurred
- */
-int
-vmx_handle_cr0_write(struct vcpu *vcpu, uint64_t r)
-{
- struct vmx_msr_store *msr_store;
- struct vmx_invvpid_descriptor vid;
- uint64_t ectls, oldcr0, cr4, mask;
- int ret;
-
- /* Check must-be-0 bits */
- mask = vcpu->vc_vmx_cr0_fixed1;
- if (~r & mask) {
- /* Inject #GP, let the guest handle it */
- DPRINTF("%s: guest set invalid bits in %%cr0. Zeros "
- "mask=0x%llx, data=0x%llx\n", __func__,
- vcpu->vc_vmx_cr0_fixed1, r);
- vmm_inject_gp(vcpu);
- return (0);
- }
-
- /* Check must-be-1 bits */
- mask = vcpu->vc_vmx_cr0_fixed0;
- if ((r & mask) != mask) {
- /* Inject #GP, let the guest handle it */
- DPRINTF("%s: guest set invalid bits in %%cr0. Ones "
- "mask=0x%llx, data=0x%llx\n", __func__,
- vcpu->vc_vmx_cr0_fixed0, r);
- vmm_inject_gp(vcpu);
- return (0);
- }
-
- if (r & 0xFFFFFFFF00000000ULL) {
- DPRINTF("%s: setting bits 63:32 of %%cr0 is invalid,"
- " inject #GP, cr0=0x%llx\n", __func__, r);
- vmm_inject_gp(vcpu);
- return (0);
- }
-
- if ((r & CR0_PG) && (r & CR0_PE) == 0) {
- DPRINTF("%s: PG flag set when the PE flag is clear,"
- " inject #GP, cr0=0x%llx\n", __func__, r);
- vmm_inject_gp(vcpu);
- return (0);
- }
-
- if ((r & CR0_NW) && (r & CR0_CD) == 0) {
- DPRINTF("%s: NW flag set when the CD flag is clear,"
- " inject #GP, cr0=0x%llx\n", __func__, r);
- vmm_inject_gp(vcpu);
- return (0);
- }
-
- if (vmread(VMCS_GUEST_IA32_CR0, &oldcr0)) {
- printf("%s: can't read guest cr0\n", __func__);
- return (EINVAL);
- }
-
- /* CR0 must always have NE set */
- r |= CR0_NE;
-
- if (vmwrite(VMCS_GUEST_IA32_CR0, r)) {
- printf("%s: can't write guest cr0\n", __func__);
- return (EINVAL);
- }
-
- /* If the guest hasn't enabled paging ... */
- if (!(r & CR0_PG) && (oldcr0 & CR0_PG)) {
- /* Paging was disabled (prev. enabled) - Flush TLB */
- if ((vmm_softc->mode == VMM_MODE_VMX ||
- vmm_softc->mode == VMM_MODE_EPT) &&
- vcpu->vc_vmx_vpid_enabled) {
- vid.vid_vpid = vcpu->vc_parent->vm_id;
- vid.vid_addr = 0;
- invvpid(IA32_VMX_INVVPID_SINGLE_CTX_GLB, &vid);
- }
- } else if (!(oldcr0 & CR0_PG) && (r & CR0_PG)) {
- /*
- * Since the guest has enabled paging, then the IA32_VMX_IA32E_MODE_GUEST
- * control must be set to the same as EFER_LME.
- */
- msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
-
- if (vmread(VMCS_ENTRY_CTLS, &ectls)) {
- printf("%s: can't read entry controls", __func__);
- return (EINVAL);
- }
-
- if (msr_store[VCPU_REGS_EFER].vms_data & EFER_LME)
- ectls |= IA32_VMX_IA32E_MODE_GUEST;
- else
- ectls &= ~IA32_VMX_IA32E_MODE_GUEST;
-
- if (vmwrite(VMCS_ENTRY_CTLS, ectls)) {
- printf("%s: can't write entry controls", __func__);
- return (EINVAL);
- }
-
- if (vmread(VMCS_GUEST_IA32_CR4, &cr4)) {
- printf("%s: can't read guest cr4\n", __func__);
- return (EINVAL);
- }
-
- /* Load PDPTEs if PAE guest enabling paging */
- if (cr4 & CR4_PAE) {
- ret = vmx_load_pdptes(vcpu);
-
- if (ret) {
- printf("%s: updating PDPTEs failed\n", __func__);
- return (ret);
- }
- }
- }
-
- return (0);
-}
-
-/*
- * vmx_handle_cr4_write
- *
- * Write handler for CR4. This function ensures valid values are written into
- * CR4 for the cpu/vmm mode in use (cr4 must-be-0 and must-be-1 bits, etc).
- *
- * Parameters
- * vcpu: The vcpu taking the cr4 write exit
- * r: The guest's desired (incoming) cr4 value
- *
- * Return values:
- * 0: if successful
- * EINVAL: if an error occurred
- */
-int
-vmx_handle_cr4_write(struct vcpu *vcpu, uint64_t r)
-{
- uint64_t mask;
-
- /* Check must-be-0 bits */
- mask = ~(curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1);
- if (r & mask) {
- /* Inject #GP, let the guest handle it */
- DPRINTF("%s: guest set invalid bits in %%cr4. Zeros "
- "mask=0x%llx, data=0x%llx\n", __func__,
- curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1,
- r);
- vmm_inject_gp(vcpu);
- return (0);
- }
-
- /* Check must-be-1 bits */
- mask = curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0;
- if ((r & mask) != mask) {
- /* Inject #GP, let the guest handle it */
- DPRINTF("%s: guest set invalid bits in %%cr4. Ones "
- "mask=0x%llx, data=0x%llx\n", __func__,
- curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0,
- r);
- vmm_inject_gp(vcpu);
- return (0);
- }
-
- /* CR4_VMXE must always be enabled */
- r |= CR4_VMXE;
-
- if (vmwrite(VMCS_GUEST_IA32_CR4, r)) {
- printf("%s: can't write guest cr4\n", __func__);
- return (EINVAL);
- }
-
- return (0);
-}
-
-/*
- * vmx_handle_cr
- *
- * Handle reads/writes to control registers (except CR3)
- */
-int
-vmx_handle_cr(struct vcpu *vcpu)
-{
- uint64_t insn_length, exit_qual, r;
- uint8_t crnum, dir, reg;
-
- if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
- printf("%s: can't obtain instruction length\n", __func__);
- return (EINVAL);
- }
-
- if (vmx_get_exit_qualification(&exit_qual)) {
- printf("%s: can't get exit qual\n", __func__);
- return (EINVAL);
- }
-
- /* Low 4 bits of exit_qual represent the CR number */
- crnum = exit_qual & 0xf;
-
- /*
- * Bits 5:4 indicate the direction of operation (or special CR-modifying
- * instruction)
- */
- dir = (exit_qual & 0x30) >> 4;
-
- /* Bits 11:8 encode the source/target register */
- reg = (exit_qual & 0xf00) >> 8;
-
- switch (dir) {
- case CR_WRITE:
- if (crnum == 0 || crnum == 4) {
- switch (reg) {
- case 0: r = vcpu->vc_gueststate.vg_rax; break;
- case 1: r = vcpu->vc_gueststate.vg_rcx; break;
- case 2: r = vcpu->vc_gueststate.vg_rdx; break;
- case 3: r = vcpu->vc_gueststate.vg_rbx; break;
- case 4: if (vmread(VMCS_GUEST_IA32_RSP, &r)) {
- printf("%s: unable to read guest "
- "RSP\n", __func__);
- return (EINVAL);
- }
- break;
- case 5: r = vcpu->vc_gueststate.vg_rbp; break;
- case 6: r = vcpu->vc_gueststate.vg_rsi; break;
- case 7: r = vcpu->vc_gueststate.vg_rdi; break;
- case 8: r = vcpu->vc_gueststate.vg_r8; break;
- case 9: r = vcpu->vc_gueststate.vg_r9; break;
- case 10: r = vcpu->vc_gueststate.vg_r10; break;
- case 11: r = vcpu->vc_gueststate.vg_r11; break;
- case 12: r = vcpu->vc_gueststate.vg_r12; break;
- case 13: r = vcpu->vc_gueststate.vg_r13; break;
- case 14: r = vcpu->vc_gueststate.vg_r14; break;
- case 15: r = vcpu->vc_gueststate.vg_r15; break;
- }
- DPRINTF("%s: mov to cr%d @ %llx, data=0x%llx\n",
- __func__, crnum, vcpu->vc_gueststate.vg_rip, r);
- }
-
- if (crnum == 0)
- vmx_handle_cr0_write(vcpu, r);
-
- if (crnum == 4)
- vmx_handle_cr4_write(vcpu, r);
-
- break;
- case CR_READ:
- DPRINTF("%s: mov from cr%d @ %llx\n", __func__, crnum,
- vcpu->vc_gueststate.vg_rip);
- break;
- case CR_CLTS:
- DPRINTF("%s: clts instruction @ %llx\n", __func__,
- vcpu->vc_gueststate.vg_rip);
- break;
- case CR_LMSW:
- DPRINTF("%s: lmsw instruction @ %llx\n", __func__,
- vcpu->vc_gueststate.vg_rip);
- break;
- default:
- DPRINTF("%s: unknown cr access @ %llx\n", __func__,
- vcpu->vc_gueststate.vg_rip);
- }
-
- vcpu->vc_gueststate.vg_rip += insn_length;
-
- return (0);
-}
-
-/*
- * vmx_handle_rdmsr
- *
- * Handler for rdmsr instructions. Bitmap MSRs are allowed implicit access
- * and won't end up here. This handler is primarily intended to catch otherwise
- * unknown MSR access for possible later inclusion in the bitmap list. For
- * each MSR access that ends up here, we log the access (when VMM_DEBUG is
- * enabled)
- *
- * Parameters:
- * vcpu: vcpu structure containing instruction info causing the exit
- *
- * Return value:
- * 0: The operation was successful
- * EINVAL: An error occurred
- */
-int
-vmx_handle_rdmsr(struct vcpu *vcpu)
-{
- uint64_t insn_length;
- uint64_t *rax, *rdx;
- uint64_t *rcx;
- int ret;
-
- if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
- printf("%s: can't obtain instruction length\n", __func__);
- return (EINVAL);
- }
-
- if (insn_length != 2) {
- DPRINTF("%s: RDMSR with instruction length %lld not "
- "supported\n", __func__, insn_length);
- return (EINVAL);
- }
-
- rax = &vcpu->vc_gueststate.vg_rax;
- rcx = &vcpu->vc_gueststate.vg_rcx;
- rdx = &vcpu->vc_gueststate.vg_rdx;
-
- switch (*rcx) {
- case MSR_BIOS_SIGN:
- case MSR_PLATFORM_ID:
- /* Ignored */
- *rax = 0;
- *rdx = 0;
- break;
- case MSR_CR_PAT:
- *rax = (vcpu->vc_shadow_pat & 0xFFFFFFFFULL);
- *rdx = (vcpu->vc_shadow_pat >> 32);
- break;
- default:
- /* Unsupported MSRs causes #GP exception, don't advance %rip */
- DPRINTF("%s: unsupported rdmsr (msr=0x%llx), injecting #GP\n",
- __func__, *rcx);
- ret = vmm_inject_gp(vcpu);
- return (ret);
- }
-
- vcpu->vc_gueststate.vg_rip += insn_length;
-
- return (0);
-}
-
-/*
- * vmx_handle_xsetbv
- *
- * VMX-specific part of the xsetbv instruction exit handler
- *
- * Parameters:
- * vcpu: vcpu structure containing instruction info causing the exit
- *
- * Return value:
- * 0: The operation was successful
- * EINVAL: An error occurred
- */
-int
-vmx_handle_xsetbv(struct vcpu *vcpu)
-{
- uint64_t insn_length, *rax;
- int ret;
-
- if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
- printf("%s: can't obtain instruction length\n", __func__);
- return (EINVAL);
- }
-
- /* All XSETBV instructions are 3 bytes */
- if (insn_length != 3) {
- DPRINTF("%s: XSETBV with instruction length %lld not "
- "supported\n", __func__, insn_length);
- return (EINVAL);
- }
-
- rax = &vcpu->vc_gueststate.vg_rax;
-
- ret = vmm_handle_xsetbv(vcpu, rax);
-
- vcpu->vc_gueststate.vg_rip += insn_length;
-
- return ret;
-}
-
-/*
- * svm_handle_xsetbv
- *
- * SVM-specific part of the xsetbv instruction exit handler
- *
- * Parameters:
- * vcpu: vcpu structure containing instruction info causing the exit
- *
- * Return value:
- * 0: The operation was successful
- * EINVAL: An error occurred
- */
-int
-svm_handle_xsetbv(struct vcpu *vcpu)
-{
- uint64_t insn_length, *rax;
- int ret;
- struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
-
- /* All XSETBV instructions are 3 bytes */
- insn_length = 3;
-
- rax = &vmcb->v_rax;
-
- ret = vmm_handle_xsetbv(vcpu, rax);
-
- vcpu->vc_gueststate.vg_rip += insn_length;
-
- return ret;
-}
-
-/*
- * vmm_handle_xsetbv
- *
- * Handler for xsetbv instructions. We allow the guest VM to set xcr0 values
- * limited to the xsave_mask in use in the host.
- *
- * Parameters:
- * vcpu: vcpu structure containing instruction info causing the exit
- * rax: pointer to guest %rax
- *
- * Return value:
- * 0: The operation was successful
- * EINVAL: An error occurred
- */
-int
-vmm_handle_xsetbv(struct vcpu *vcpu, uint64_t *rax)
-{
- uint64_t *rdx, *rcx, val;
-
- rcx = &vcpu->vc_gueststate.vg_rcx;
- rdx = &vcpu->vc_gueststate.vg_rdx;
-
- if (vmm_get_guest_cpu_cpl(vcpu) != 0) {
- DPRINTF("%s: guest cpl not zero\n", __func__);
- return (vmm_inject_gp(vcpu));
- }
-
- if (*rcx != 0) {
- DPRINTF("%s: guest specified invalid xcr register number "
- "%lld\n", __func__, *rcx);
- return (vmm_inject_gp(vcpu));
- }
-
- val = *rax + (*rdx << 32);
- if (val & ~xsave_mask) {
- DPRINTF("%s: guest specified xcr0 outside xsave_mask %lld\n",
- __func__, val);
- return (vmm_inject_gp(vcpu));
- }
-
- vcpu->vc_gueststate.vg_xcr0 = val;
-
- return (0);
-}
-
-/*
- * vmx_handle_misc_enable_msr
- *
- * Handler for writes to the MSR_MISC_ENABLE (0x1a0) MSR on Intel CPUs. We
- * limit what the guest can write to this MSR (certain hardware-related
- * settings like speedstep, etc).
- *
- * Parameters:
- * vcpu: vcpu structure containing information about the wrmsr causing this
- * exit
- */
-void
-vmx_handle_misc_enable_msr(struct vcpu *vcpu)
-{
- uint64_t *rax, *rdx;
- struct vmx_msr_store *msr_store;
-
- rax = &vcpu->vc_gueststate.vg_rax;
- rdx = &vcpu->vc_gueststate.vg_rdx;
- msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
-
- /* Filter out guest writes to TCC, EIST, and xTPR */
- *rax &= ~(MISC_ENABLE_TCC | MISC_ENABLE_EIST_ENABLED |
- MISC_ENABLE_xTPR_MESSAGE_DISABLE);
-
- msr_store[VCPU_REGS_MISC_ENABLE].vms_data = *rax | (*rdx << 32);
-}
-
-/*
- * vmx_handle_wrmsr
- *
- * Handler for wrmsr instructions. This handler logs the access, and discards
- * the written data (when VMM_DEBUG is enabled). Any valid wrmsr will not end
- * up here (it will be whitelisted in the MSR bitmap).
- *
- * Parameters:
- * vcpu: vcpu structure containing instruction info causing the exit
- *
- * Return value:
- * 0: The operation was successful
- * EINVAL: An error occurred
- */
-int
-vmx_handle_wrmsr(struct vcpu *vcpu)
-{
- uint64_t insn_length, val;
- uint64_t *rax, *rdx, *rcx;
- int ret;
-
- if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
- printf("%s: can't obtain instruction length\n", __func__);
- return (EINVAL);
- }
-
- if (insn_length != 2) {
- DPRINTF("%s: WRMSR with instruction length %lld not "
- "supported\n", __func__, insn_length);
- return (EINVAL);
- }
-
- rax = &vcpu->vc_gueststate.vg_rax;
- rcx = &vcpu->vc_gueststate.vg_rcx;
- rdx = &vcpu->vc_gueststate.vg_rdx;
- val = (*rdx << 32) | (*rax & 0xFFFFFFFFULL);
-
- switch (*rcx) {
- case MSR_CR_PAT:
- if (!vmm_pat_is_valid(val)) {
- ret = vmm_inject_gp(vcpu);
- return (ret);
- }
- vcpu->vc_shadow_pat = val;
- break;
- case MSR_MISC_ENABLE:
- vmx_handle_misc_enable_msr(vcpu);
- break;
- case MSR_SMM_MONITOR_CTL:
- /*
- * 34.15.5 - Enabling dual monitor treatment
- *
- * Unsupported, so inject #GP and return without
- * advancing %rip.
- */
- ret = vmm_inject_gp(vcpu);
- return (ret);
- case KVM_MSR_SYSTEM_TIME:
- vmm_init_pvclock(vcpu,
- (*rax & 0xFFFFFFFFULL) | (*rdx << 32));
- break;
-#ifdef VMM_DEBUG
- default:
- /*
- * Log the access, to be able to identify unknown MSRs
- */
- DPRINTF("%s: wrmsr exit, msr=0x%llx, discarding data "
- "written from guest=0x%llx:0x%llx\n", __func__,
- *rcx, *rdx, *rax);
-#endif /* VMM_DEBUG */
- }
-
- vcpu->vc_gueststate.vg_rip += insn_length;
-
- return (0);
-}
-
-/*
- * svm_handle_msr
- *
- * Handler for MSR instructions.
- *
- * Parameters:
- * vcpu: vcpu structure containing instruction info causing the exit
- *
- * Return value:
- * Always 0 (successful)
- */
-int
-svm_handle_msr(struct vcpu *vcpu)
-{
- uint64_t insn_length, val;
- uint64_t *rax, *rcx, *rdx;
- struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
- int ret;
-
- /* XXX: Validate RDMSR / WRMSR insn_length */
- insn_length = 2;
-
- rax = &vmcb->v_rax;
- rcx = &vcpu->vc_gueststate.vg_rcx;
- rdx = &vcpu->vc_gueststate.vg_rdx;
-
- if (vmcb->v_exitinfo1 == 1) {
- /* WRMSR */
- val = (*rdx << 32) | (*rax & 0xFFFFFFFFULL);
-
- switch (*rcx) {
- case MSR_CR_PAT:
- if (!vmm_pat_is_valid(val)) {
- ret = vmm_inject_gp(vcpu);
- return (ret);
- }
- vcpu->vc_shadow_pat = val;
- break;
- case MSR_EFER:
- vmcb->v_efer = *rax | EFER_SVME;
- break;
- case KVM_MSR_SYSTEM_TIME:
- vmm_init_pvclock(vcpu,
- (*rax & 0xFFFFFFFFULL) | (*rdx << 32));
- break;
- default:
- /* Log the access, to be able to identify unknown MSRs */
- DPRINTF("%s: wrmsr exit, msr=0x%llx, discarding data "
- "written from guest=0x%llx:0x%llx\n", __func__,
- *rcx, *rdx, *rax);
- }
- } else {
- /* RDMSR */
- switch (*rcx) {
- case MSR_BIOS_SIGN:
- case MSR_INT_PEN_MSG:
- case MSR_PLATFORM_ID:
- /* Ignored */
- *rax = 0;
- *rdx = 0;
- break;
- case MSR_CR_PAT:
- *rax = (vcpu->vc_shadow_pat & 0xFFFFFFFFULL);
- *rdx = (vcpu->vc_shadow_pat >> 32);
- break;
- case MSR_DE_CFG:
- /* LFENCE serializing bit is set by host */
- *rax = DE_CFG_SERIALIZE_LFENCE;
- *rdx = 0;
- break;
- default:
- /*
- * Unsupported MSRs causes #GP exception, don't advance
- * %rip
- */
- DPRINTF("%s: unsupported rdmsr (msr=0x%llx), "
- "injecting #GP\n", __func__, *rcx);
- ret = vmm_inject_gp(vcpu);
- return (ret);
- }
- }
-
- vcpu->vc_gueststate.vg_rip += insn_length;
-
- return (0);
-}
-
-/*
- * vmm_handle_cpuid
- *
- * Exit handler for CPUID instruction
- *
- * Parameters:
- * vcpu: vcpu causing the CPUID exit
- *
- * Return value:
- * 0: the exit was processed successfully
- * EINVAL: error occurred validating the CPUID instruction arguments
- */
-int
-vmm_handle_cpuid(struct vcpu *vcpu)
-{
- uint64_t insn_length, cr4;
- uint64_t *rax, *rbx, *rcx, *rdx;
- struct vmcb *vmcb;
- uint32_t leaf, subleaf, eax, ebx, ecx, edx;
- struct vmx_msr_store *msr_store;
- int vmm_cpuid_level;
-
- /* what's the cpuid level we support/advertise? */
- vmm_cpuid_level = cpuid_level;
- if (vmm_cpuid_level < 0x15 && tsc_is_invariant)
- vmm_cpuid_level = 0x15;
-
- if (vmm_softc->mode == VMM_MODE_VMX ||
- vmm_softc->mode == VMM_MODE_EPT) {
- if (vmread(VMCS_INSTRUCTION_LENGTH, &insn_length)) {
- DPRINTF("%s: can't obtain instruction length\n",
- __func__);
- return (EINVAL);
- }
-
- if (vmread(VMCS_GUEST_IA32_CR4, &cr4)) {
- DPRINTF("%s: can't obtain cr4\n", __func__);
- return (EINVAL);
- }
-
- rax = &vcpu->vc_gueststate.vg_rax;
-
- /*
- * "CPUID leaves above 02H and below 80000000H are only
- * visible when IA32_MISC_ENABLE MSR has bit 22 set to its
- * default value 0"
- */
- msr_store =
- (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
- if (msr_store[VCPU_REGS_MISC_ENABLE].vms_data &
- MISC_ENABLE_LIMIT_CPUID_MAXVAL)
- vmm_cpuid_level = 0x02;
- } else {
- /* XXX: validate insn_length 2 */
- insn_length = 2;
- vmcb = (struct vmcb *)vcpu->vc_control_va;
- rax = &vmcb->v_rax;
- cr4 = vmcb->v_cr4;
- }
-
- rbx = &vcpu->vc_gueststate.vg_rbx;
- rcx = &vcpu->vc_gueststate.vg_rcx;
- rdx = &vcpu->vc_gueststate.vg_rdx;
- vcpu->vc_gueststate.vg_rip += insn_length;
-
- leaf = *rax;
- subleaf = *rcx;
-
- /*
- * "If a value entered for CPUID.EAX is higher than the maximum input
- * value for basic or extended function for that processor then the
- * data for the highest basic information leaf is returned."
- *
- * "When CPUID returns the highest basic leaf information as a result
- * of an invalid input EAX value, any dependence on input ECX value
- * in the basic leaf is honored."
- *
- * This means if leaf is between vmm_cpuid_level and 0x40000000 (the start
- * of the hypervisor info leaves), clamp to vmm_cpuid_level, but without
- * altering subleaf. Also, if leaf is greater than the extended function
- * info, clamp also to vmm_cpuid_level.
- */
- if ((leaf > vmm_cpuid_level && leaf < 0x40000000) ||
- (leaf > curcpu()->ci_pnfeatset)) {
- DPRINTF("%s: invalid cpuid input leaf 0x%x, guest rip="
- "0x%llx - resetting to 0x%x\n", __func__, leaf,
- vcpu->vc_gueststate.vg_rip - insn_length,
- vmm_cpuid_level);
- leaf = vmm_cpuid_level;
- }
-
- /* we fake up values in the range (cpuid_level, vmm_cpuid_level] */
- if (leaf <= cpuid_level || leaf > 0x80000000)
- CPUID_LEAF(leaf, subleaf, eax, ebx, ecx, edx);
- else
- eax = ebx = ecx = edx = 0;
-
- switch (leaf) {
- case 0x00: /* Max level and vendor ID */
- *rax = vmm_cpuid_level;
- *rbx = *((uint32_t *)&cpu_vendor);
- *rdx = *((uint32_t *)&cpu_vendor + 1);
- *rcx = *((uint32_t *)&cpu_vendor + 2);
- break;
- case 0x01: /* Version, brand, feature info */
- *rax = cpu_id;
- /* mask off host's APIC ID, reset to vcpu id */
- *rbx = cpu_ebxfeature & 0x0000FFFF;
- *rbx |= (vcpu->vc_id & 0xFF) << 24;
- *rcx = (cpu_ecxfeature | CPUIDECX_HV) & VMM_CPUIDECX_MASK;
-
- /* Guest CR4.OSXSAVE determines presence of CPUIDECX_OSXSAVE */
- if (cr4 & CR4_OSXSAVE)
- *rcx |= CPUIDECX_OSXSAVE;
- else
- *rcx &= ~CPUIDECX_OSXSAVE;
-
- *rdx = curcpu()->ci_feature_flags & VMM_CPUIDEDX_MASK;
- break;
- case 0x02: /* Cache and TLB information */
- *rax = eax;
- *rbx = ebx;
- *rcx = ecx;
- *rdx = edx;
- break;
- case 0x03: /* Processor serial number (not supported) */
- DPRINTF("%s: function 0x03 (processor serial number) not "
- "supported\n", __func__);
- *rax = 0;
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- break;
- case 0x04: /* Deterministic cache info */
- *rax = eax & VMM_CPUID4_CACHE_TOPOLOGY_MASK;
- *rbx = ebx;
- *rcx = ecx;
- *rdx = edx;
- break;
- case 0x05: /* MONITOR/MWAIT (not supported) */
- DPRINTF("%s: function 0x05 (monitor/mwait) not supported\n",
- __func__);
- *rax = 0;
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- break;
- case 0x06: /* Thermal / Power management (not supported) */
- DPRINTF("%s: function 0x06 (thermal/power mgt) not supported\n",
- __func__);
- *rax = 0;
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- break;
- case 0x07: /* SEFF */
- if (subleaf == 0) {
- *rax = 0; /* Highest subleaf supported */
- *rbx = curcpu()->ci_feature_sefflags_ebx & VMM_SEFF0EBX_MASK;
- *rcx = curcpu()->ci_feature_sefflags_ecx & VMM_SEFF0ECX_MASK;
- *rdx = curcpu()->ci_feature_sefflags_edx & VMM_SEFF0EDX_MASK;
- /*
- * Only expose PKU support if we've detected it in use
- * on the host.
- */
- if (vmm_softc->pkru_enabled)
- *rcx |= SEFF0ECX_PKU;
- else
- *rcx &= ~SEFF0ECX_PKU;
-
- /* Expose IBT bit if we've enabled CET on the host. */
- if (rcr4() & CR4_CET)
- *rdx |= SEFF0EDX_IBT;
- else
- *rdx &= ~SEFF0EDX_IBT;
- } else {
- /* Unsupported subleaf */
- DPRINTF("%s: function 0x07 (SEFF) unsupported subleaf "
- "0x%x not supported\n", __func__, subleaf);
- *rax = 0;
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- }
- break;
- case 0x09: /* Direct Cache Access (not supported) */
- DPRINTF("%s: function 0x09 (direct cache access) not "
- "supported\n", __func__);
- *rax = 0;
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- break;
- case 0x0a: /* Architectural perf monitoring (not supported) */
- DPRINTF("%s: function 0x0a (arch. perf mon) not supported\n",
- __func__);
- *rax = 0;
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- break;
- case 0x0b: /* Extended topology enumeration (not supported) */
- DPRINTF("%s: function 0x0b (topology enumeration) not "
- "supported\n", __func__);
- *rax = 0;
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- break;
- case 0x0d: /* Processor ext. state information */
- if (subleaf == 0) {
- *rax = xsave_mask;
- *rbx = ebx;
- *rcx = ecx;
- *rdx = edx;
- } else if (subleaf == 1) {
- *rax = 0;
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- } else {
- *rax = eax;
- *rbx = ebx;
- *rcx = ecx;
- *rdx = edx;
- }
- break;
- case 0x0f: /* QoS info (not supported) */
- DPRINTF("%s: function 0x0f (QoS info) not supported\n",
- __func__);
- *rax = 0;
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- break;
- case 0x14: /* Processor Trace info (not supported) */
- DPRINTF("%s: function 0x14 (processor trace info) not "
- "supported\n", __func__);
- *rax = 0;
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- break;
- case 0x15:
- if (cpuid_level >= 0x15) {
- *rax = eax;
- *rbx = ebx;
- *rcx = ecx;
- *rdx = edx;
- } else {
- KASSERT(tsc_is_invariant);
- *rax = 1;
- *rbx = 100;
- *rcx = tsc_frequency / 100;
- *rdx = 0;
- }
- break;
- case 0x16: /* Processor frequency info */
- *rax = eax;
- *rbx = ebx;
- *rcx = ecx;
- *rdx = edx;
- break;
- case 0x40000000: /* Hypervisor information */
- *rax = 0;
- *rbx = *((uint32_t *)&vmm_hv_signature[0]);
- *rcx = *((uint32_t *)&vmm_hv_signature[4]);
- *rdx = *((uint32_t *)&vmm_hv_signature[8]);
- break;
- case 0x40000001: /* KVM hypervisor features */
- *rax = (1 << KVM_FEATURE_CLOCKSOURCE2) |
- (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- break;
- case 0x80000000: /* Extended function level */
- *rax = 0x80000008; /* curcpu()->ci_pnfeatset */
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- break;
- case 0x80000001: /* Extended function info */
- *rax = curcpu()->ci_efeature_eax;
- *rbx = 0; /* Reserved */
- *rcx = curcpu()->ci_efeature_ecx & VMM_ECPUIDECX_MASK;
- *rdx = curcpu()->ci_feature_eflags & VMM_FEAT_EFLAGS_MASK;
- break;
- case 0x80000002: /* Brand string */
- *rax = curcpu()->ci_brand[0];
- *rbx = curcpu()->ci_brand[1];
- *rcx = curcpu()->ci_brand[2];
- *rdx = curcpu()->ci_brand[3];
- break;
- case 0x80000003: /* Brand string */
- *rax = curcpu()->ci_brand[4];
- *rbx = curcpu()->ci_brand[5];
- *rcx = curcpu()->ci_brand[6];
- *rdx = curcpu()->ci_brand[7];
- break;
- case 0x80000004: /* Brand string */
- *rax = curcpu()->ci_brand[8];
- *rbx = curcpu()->ci_brand[9];
- *rcx = curcpu()->ci_brand[10];
- *rdx = curcpu()->ci_brand[11];
- break;
- case 0x80000005: /* Reserved (Intel), cacheinfo (AMD) */
- *rax = eax;
- *rbx = ebx;
- *rcx = ecx;
- *rdx = edx;
- break;
- case 0x80000006: /* ext. cache info */
- *rax = eax;
- *rbx = ebx;
- *rcx = ecx;
- *rdx = edx;
- break;
- case 0x80000007: /* apmi */
- *rax = eax;
- *rbx = ebx;
- *rcx = ecx;
- *rdx = edx;
- break;
- case 0x80000008: /* Phys bits info and topology (AMD) */
- *rax = eax;
- *rbx = ebx & VMM_AMDSPEC_EBX_MASK;
- /* Reset %rcx (topology) */
- *rcx = 0;
- *rdx = edx;
- break;
- case 0x8000001d: /* cache topology (AMD) */
- *rax = eax;
- *rbx = ebx;
- *rcx = ecx;
- *rdx = edx;
- break;
- default:
- DPRINTF("%s: unsupported rax=0x%llx\n", __func__, *rax);
- *rax = 0;
- *rbx = 0;
- *rcx = 0;
- *rdx = 0;
- }
-
-
- if (vmm_softc->mode == VMM_MODE_SVM ||
- vmm_softc->mode == VMM_MODE_RVI) {
- /*
- * update %rax. the rest of the registers get updated in
- * svm_enter_guest
- */
- vmcb->v_rax = *rax;
- }
-
- return (0);
-}
-
-/*
- * vcpu_run_svm
- *
- * SVM main loop used to run a VCPU.
- *
- * Parameters:
- * vcpu: The VCPU to run
- * vrp: run parameters
- *
- * Return values:
- * 0: The run loop exited and no help is needed from vmd
- * EAGAIN: The run loop exited and help from vmd is needed
- * EINVAL: an error occurred
- */
-int
-vcpu_run_svm(struct vcpu *vcpu, struct vm_run_params *vrp)
-{
- int ret = 0;
- struct region_descriptor gdt;
- struct cpu_info *ci = NULL;
- uint64_t exit_reason;
- struct schedstate_percpu *spc;
- uint16_t irq;
- struct vmcb *vmcb = (struct vmcb *)vcpu->vc_control_va;
-
- irq = vrp->vrp_irq;
-
- /*
- * If we are returning from userspace (vmd) because we exited
- * last time, fix up any needed vcpu state first. Which state
- * needs to be fixed up depends on what vmd populated in the
- * exit data structure.
- */
- if (vrp->vrp_continue) {
- switch (vcpu->vc_gueststate.vg_exit_reason) {
- case SVM_VMEXIT_IOIO:
- if (vcpu->vc_exit.vei.vei_dir == VEI_DIR_IN) {
- vcpu->vc_gueststate.vg_rax =
- vcpu->vc_exit.vei.vei_data;
- vmcb->v_rax = vcpu->vc_gueststate.vg_rax;
- }
- break;
- case SVM_VMEXIT_NPF:
- ret = vcpu_writeregs_svm(vcpu, VM_RWREGS_GPRS,
- &vcpu->vc_exit.vrs);
- if (ret) {
- printf("%s: vm %d vcpu %d failed to update "
- "registers\n", __func__,
- vcpu->vc_parent->vm_id, vcpu->vc_id);
- return (EINVAL);
- }
- break;
- }
- memset(&vcpu->vc_exit, 0, sizeof(vcpu->vc_exit));
- }
-
- while (ret == 0) {
- vmm_update_pvclock(vcpu);
- if (ci != curcpu()) {
- /*
- * We are launching for the first time, or we are
- * resuming from a different pcpu, so we need to
- * reset certain pcpu-specific values.
- */
- ci = curcpu();
- setregion(&gdt, ci->ci_gdt, GDT_SIZE - 1);
-
- if (ci != vcpu->vc_last_pcpu) {
- /*
- * Flush TLB by guest ASID if feature
- * available, flush entire TLB if not.
- */
- if (ci->ci_vmm_cap.vcc_svm.svm_flush_by_asid)
- vmcb->v_tlb_control =
- SVM_TLB_CONTROL_FLUSH_ASID;
- else
- vmcb->v_tlb_control =
- SVM_TLB_CONTROL_FLUSH_ALL;
-
- svm_set_dirty(vcpu, SVM_CLEANBITS_ALL);
- }
-
- vcpu->vc_last_pcpu = ci;
-
- if (gdt.rd_base == 0) {
- ret = EINVAL;
- break;
- }
- }
-
- /* Handle vmd(8) injected interrupts */
- /* Is there an interrupt pending injection? */
- if (irq != 0xFFFF && vcpu->vc_irqready) {
- vmcb->v_eventinj = (irq & 0xFF) | (1 << 31);
- irq = 0xFFFF;
- }
-
- /* Inject event if present */
- if (vcpu->vc_event != 0) {
- DPRINTF("%s: inject event %d\n", __func__,
- vcpu->vc_event);
- vmcb->v_eventinj = 0;
- /* Set the "Event Valid" flag for certain vectors */
- switch (vcpu->vc_event & 0xFF) {
- case VMM_EX_DF:
- case VMM_EX_TS:
- case VMM_EX_NP:
- case VMM_EX_SS:
- case VMM_EX_GP:
- case VMM_EX_PF:
- case VMM_EX_AC:
- vmcb->v_eventinj |= (1ULL << 11);
- }
- vmcb->v_eventinj |= (vcpu->vc_event) | (1 << 31);
- vmcb->v_eventinj |= (3ULL << 8); /* Exception */
- vcpu->vc_event = 0;
- }
-
- TRACEPOINT(vmm, guest_enter, vcpu, vrp);
-
- /* Start / resume the VCPU */
- /* Disable interrupts and save the current host FPU state. */
- clgi();
- if ((ret = vmm_fpurestore(vcpu))) {
- stgi();
- break;
- }
-
- /* Restore any guest PKRU state. */
- if (vmm_softc->pkru_enabled)
- wrpkru(vcpu->vc_pkru);
-
- KASSERT(vmcb->v_intercept1 & SVM_INTERCEPT_INTR);
- wrmsr(MSR_AMD_VM_HSAVE_PA, vcpu->vc_svm_hsa_pa);
-
- ret = svm_enter_guest(vcpu->vc_control_pa,
- &vcpu->vc_gueststate, &gdt);
-
- /* Restore host PKRU state. */
- if (vmm_softc->pkru_enabled) {
- vcpu->vc_pkru = rdpkru(0);
- wrpkru(PGK_VALUE);
- }
-
- /*
- * On exit, interrupts are disabled, and we are running with
- * the guest FPU state still possibly on the CPU. Save the FPU
- * state before re-enabling interrupts.
- */
- vmm_fpusave(vcpu);
-
- /*
- * Enable interrupts now. Note that if the exit was due to INTR
- * (external interrupt), the interrupt will be processed now.
- */
- stgi();
-
- vcpu->vc_gueststate.vg_rip = vmcb->v_rip;
- vmcb->v_tlb_control = SVM_TLB_CONTROL_FLUSH_NONE;
- svm_set_clean(vcpu, SVM_CLEANBITS_ALL);
-
- /* If we exited successfully ... */
- if (ret == 0) {
- exit_reason = vmcb->v_exitcode;
- vcpu->vc_gueststate.vg_exit_reason = exit_reason;
- TRACEPOINT(vmm, guest_exit, vcpu, vrp, exit_reason);
-
- vcpu->vc_gueststate.vg_rflags = vmcb->v_rflags;
-
- /*
- * Handle the exit. This will alter "ret" to EAGAIN if
- * the exit handler determines help from vmd is needed.
- */
- ret = svm_handle_exit(vcpu);
-
- if (vcpu->vc_gueststate.vg_rflags & PSL_I)
- vcpu->vc_irqready = 1;
- else
- vcpu->vc_irqready = 0;
-
- /*
- * If not ready for interrupts, but interrupts pending,
- * enable interrupt window exiting.
- */
- if (vcpu->vc_irqready == 0 && vcpu->vc_intr) {
- vmcb->v_intercept1 |= SVM_INTERCEPT_VINTR;
- vmcb->v_irq = 1;
- vmcb->v_intr_misc = SVM_INTR_MISC_V_IGN_TPR;
- vmcb->v_intr_vector = 0;
- svm_set_dirty(vcpu, SVM_CLEANBITS_TPR |
- SVM_CLEANBITS_I);
- }
-
- /*
- * Exit to vmd if we are terminating, failed to enter,
- * or need help (device I/O)
- */
- if (ret || vcpu_must_stop(vcpu))
- break;
-
- if (vcpu->vc_intr && vcpu->vc_irqready) {
- ret = EAGAIN;
- break;
- }
-
- /* Check if we should yield - don't hog the cpu */
- spc = &ci->ci_schedstate;
- if (spc->spc_schedflags & SPCF_SHOULDYIELD)
- break;
- }
- }
-
- /*
- * We are heading back to userspace (vmd), either because we need help
- * handling an exit, a guest interrupt is pending, or we failed in some
- * way to enter the guest. Copy the guest registers to the exit struct
- * and return to vmd.
- */
- if (vcpu_readregs_svm(vcpu, VM_RWREGS_ALL, &vcpu->vc_exit.vrs))
- ret = EINVAL;
-
- return (ret);
-}
-
-/*
- * vmm_alloc_vpid
- *
- * Sets the memory location pointed to by "vpid" to the next available VPID
- * or ASID.
- *
- * Parameters:
- * vpid: Pointer to location to receive the next VPID/ASID
- *
- * Return Values:
- * 0: The operation completed successfully
- * ENOMEM: No VPIDs/ASIDs were available. Content of 'vpid' is unchanged.
- */
-int
-vmm_alloc_vpid(uint16_t *vpid)
-{
- uint16_t i;
- uint8_t idx, bit;
- struct vmm_softc *sc = vmm_softc;
-
- rw_enter_write(&vmm_softc->vpid_lock);
- for (i = 1; i <= sc->max_vpid; i++) {
- idx = i / 8;
- bit = i - (idx * 8);
-
- if (!(sc->vpids[idx] & (1 << bit))) {
- sc->vpids[idx] |= (1 << bit);
- *vpid = i;
- DPRINTF("%s: allocated VPID/ASID %d\n", __func__,
- i);
- rw_exit_write(&vmm_softc->vpid_lock);
- return 0;
- }
- }
-
- printf("%s: no available %ss\n", __func__,
- (sc->mode == VMM_MODE_EPT || sc->mode == VMM_MODE_VMX) ? "VPID" :
- "ASID");
-
- rw_exit_write(&vmm_softc->vpid_lock);
- return ENOMEM;
-}
-
-/*
- * vmm_free_vpid
- *
- * Frees the VPID/ASID id supplied in "vpid".
- *
- * Parameters:
- * vpid: VPID/ASID to free.
- */
-void
-vmm_free_vpid(uint16_t vpid)
-{
- uint8_t idx, bit;
- struct vmm_softc *sc = vmm_softc;
-
- rw_enter_write(&vmm_softc->vpid_lock);
- idx = vpid / 8;
- bit = vpid - (idx * 8);
- sc->vpids[idx] &= ~(1 << bit);
-
- DPRINTF("%s: freed VPID/ASID %d\n", __func__, vpid);
- rw_exit_write(&vmm_softc->vpid_lock);
-}
-
-
-/* vmm_gpa_is_valid
- *
- * Check if the given gpa is within guest memory space.
- *
- * Parameters:
- * vcpu: The virtual cpu we are running on.
- * gpa: The address to check.
- * obj_size: The size of the object assigned to gpa
- *
- * Return values:
- * 1: gpa is within the memory ranges allocated for the vcpu
- * 0: otherwise
- */
-int
-vmm_gpa_is_valid(struct vcpu *vcpu, paddr_t gpa, size_t obj_size)
-{
- struct vm *vm = vcpu->vc_parent;
- struct vm_mem_range *vmr;
- size_t i;
-
- for (i = 0; i < vm->vm_nmemranges; ++i) {
- vmr = &vm->vm_memranges[i];
- if (vmr->vmr_size >= obj_size &&
- vmr->vmr_gpa <= gpa &&
- gpa < (vmr->vmr_gpa + vmr->vmr_size - obj_size)) {
- return 1;
- }
- }
- return 0;
-}
-
-void
-vmm_init_pvclock(struct vcpu *vcpu, paddr_t gpa)
-{
- paddr_t pvclock_gpa = gpa & 0xFFFFFFFFFFFFFFF0;
- if (!vmm_gpa_is_valid(vcpu, pvclock_gpa,
- sizeof(struct pvclock_time_info))) {
- /* XXX: Kill guest? */
- vmm_inject_gp(vcpu);
- return;
- }
-
- /* XXX: handle case when this struct goes over page boundaries */
- if ((pvclock_gpa & PAGE_MASK) + sizeof(struct pvclock_time_info) >
- PAGE_SIZE) {
- vmm_inject_gp(vcpu);
- return;
- }
-
- vcpu->vc_pvclock_system_gpa = gpa;
- if (tsc_frequency > 0)
- vcpu->vc_pvclock_system_tsc_mul =
- (int) ((1000000000L << 20) / tsc_frequency);
- else
- vcpu->vc_pvclock_system_tsc_mul = 0;
- vmm_update_pvclock(vcpu);
-}
-
-int
-vmm_update_pvclock(struct vcpu *vcpu)
-{
- struct pvclock_time_info *pvclock_ti;
- struct timespec tv;
- struct vm *vm = vcpu->vc_parent;
- paddr_t pvclock_hpa, pvclock_gpa;
-
- if (vcpu->vc_pvclock_system_gpa & PVCLOCK_SYSTEM_TIME_ENABLE) {
- pvclock_gpa = vcpu->vc_pvclock_system_gpa & 0xFFFFFFFFFFFFFFF0;
- if (!pmap_extract(vm->vm_map->pmap, pvclock_gpa, &pvclock_hpa))
- return (EINVAL);
- pvclock_ti = (void*) PMAP_DIRECT_MAP(pvclock_hpa);
-
- /* START next cycle (must be odd) */
- pvclock_ti->ti_version =
- (++vcpu->vc_pvclock_version << 1) | 0x1;
-
- pvclock_ti->ti_tsc_timestamp = rdtsc();
- nanotime(&tv);
- pvclock_ti->ti_system_time =
- tv.tv_sec * 1000000000L + tv.tv_nsec;
- pvclock_ti->ti_tsc_shift = 12;
- pvclock_ti->ti_tsc_to_system_mul =
- vcpu->vc_pvclock_system_tsc_mul;
- pvclock_ti->ti_flags = PVCLOCK_FLAG_TSC_STABLE;
-
- /* END (must be even) */
- pvclock_ti->ti_version &= ~0x1;
- }
- return (0);
-}
-
-int
-vmm_pat_is_valid(uint64_t pat)
-{
- int i;
- uint8_t *byte = (uint8_t *)&pat;
-
- /* Intel SDM Vol 3A, 11.12.2: 0x02, 0x03, and 0x08-0xFF result in #GP */
- for (i = 0; i < 8; i++) {
- if (byte[i] == 0x02 || byte[i] == 0x03 || byte[i] > 0x07) {
- DPRINTF("%s: invalid pat %llx\n", __func__, pat);
- return 0;
- }
- }
-
- return 1;
-}
-
-/*
- * vmx_exit_reason_decode
- *
- * Returns a human readable string describing exit type 'code'
- */
-const char *
-vmx_exit_reason_decode(uint32_t code)
-{
- switch (code) {
- case VMX_EXIT_NMI: return "NMI";
- case VMX_EXIT_EXTINT: return "External interrupt";
- case VMX_EXIT_TRIPLE_FAULT: return "Triple fault";
- case VMX_EXIT_INIT: return "INIT signal";
- case VMX_EXIT_SIPI: return "SIPI signal";
- case VMX_EXIT_IO_SMI: return "I/O SMI";
- case VMX_EXIT_OTHER_SMI: return "other SMI";
- case VMX_EXIT_INT_WINDOW: return "Interrupt window";
- case VMX_EXIT_NMI_WINDOW: return "NMI window";
- case VMX_EXIT_TASK_SWITCH: return "Task switch";
- case VMX_EXIT_CPUID: return "CPUID instruction";
- case VMX_EXIT_GETSEC: return "GETSEC instruction";
- case VMX_EXIT_HLT: return "HLT instruction";
- case VMX_EXIT_INVD: return "INVD instruction";
- case VMX_EXIT_INVLPG: return "INVLPG instruction";
- case VMX_EXIT_RDPMC: return "RDPMC instruction";
- case VMX_EXIT_RDTSC: return "RDTSC instruction";
- case VMX_EXIT_RSM: return "RSM instruction";
- case VMX_EXIT_VMCALL: return "VMCALL instruction";
- case VMX_EXIT_VMCLEAR: return "VMCLEAR instruction";
- case VMX_EXIT_VMLAUNCH: return "VMLAUNCH instruction";
- case VMX_EXIT_VMPTRLD: return "VMPTRLD instruction";
- case VMX_EXIT_VMPTRST: return "VMPTRST instruction";
- case VMX_EXIT_VMREAD: return "VMREAD instruction";
- case VMX_EXIT_VMRESUME: return "VMRESUME instruction";
- case VMX_EXIT_VMWRITE: return "VMWRITE instruction";
- case VMX_EXIT_VMXOFF: return "VMXOFF instruction";
- case VMX_EXIT_VMXON: return "VMXON instruction";
- case VMX_EXIT_CR_ACCESS: return "CR access";
- case VMX_EXIT_MOV_DR: return "MOV DR instruction";
- case VMX_EXIT_IO: return "I/O instruction";
- case VMX_EXIT_RDMSR: return "RDMSR instruction";
- case VMX_EXIT_WRMSR: return "WRMSR instruction";
- case VMX_EXIT_ENTRY_FAILED_GUEST_STATE: return "guest state invalid";
- case VMX_EXIT_ENTRY_FAILED_MSR_LOAD: return "MSR load failed";
- case VMX_EXIT_MWAIT: return "MWAIT instruction";
- case VMX_EXIT_MTF: return "monitor trap flag";
- case VMX_EXIT_MONITOR: return "MONITOR instruction";
- case VMX_EXIT_PAUSE: return "PAUSE instruction";
- case VMX_EXIT_ENTRY_FAILED_MCE: return "MCE during entry";
- case VMX_EXIT_TPR_BELOW_THRESHOLD: return "TPR below threshold";
- case VMX_EXIT_APIC_ACCESS: return "APIC access";
- case VMX_EXIT_VIRTUALIZED_EOI: return "virtualized EOI";
- case VMX_EXIT_GDTR_IDTR: return "GDTR/IDTR access";
- case VMX_EXIT_LDTR_TR: return "LDTR/TR access";
- case VMX_EXIT_EPT_VIOLATION: return "EPT violation";
- case VMX_EXIT_EPT_MISCONFIGURATION: return "EPT misconfiguration";
- case VMX_EXIT_INVEPT: return "INVEPT instruction";
- case VMX_EXIT_RDTSCP: return "RDTSCP instruction";
- case VMX_EXIT_VMX_PREEMPTION_TIMER_EXPIRED:
- return "preemption timer expired";
- case VMX_EXIT_INVVPID: return "INVVPID instruction";
- case VMX_EXIT_WBINVD: return "WBINVD instruction";
- case VMX_EXIT_XSETBV: return "XSETBV instruction";
- case VMX_EXIT_APIC_WRITE: return "APIC write";
- case VMX_EXIT_RDRAND: return "RDRAND instruction";
- case VMX_EXIT_INVPCID: return "INVPCID instruction";
- case VMX_EXIT_VMFUNC: return "VMFUNC instruction";
- case VMX_EXIT_RDSEED: return "RDSEED instruction";
- case VMX_EXIT_XSAVES: return "XSAVES instruction";
- case VMX_EXIT_XRSTORS: return "XRSTORS instruction";
- default: return "unknown";
- }
-}
-
-/*
- * svm_exit_reason_decode
- *
- * Returns a human readable string describing exit type 'code'
- */
-const char *
-svm_exit_reason_decode(uint32_t code)
-{
- switch (code) {
- case SVM_VMEXIT_CR0_READ: return "CR0 read"; /* 0x00 */
- case SVM_VMEXIT_CR1_READ: return "CR1 read"; /* 0x01 */
- case SVM_VMEXIT_CR2_READ: return "CR2 read"; /* 0x02 */
- case SVM_VMEXIT_CR3_READ: return "CR3 read"; /* 0x03 */
- case SVM_VMEXIT_CR4_READ: return "CR4 read"; /* 0x04 */
- case SVM_VMEXIT_CR5_READ: return "CR5 read"; /* 0x05 */
- case SVM_VMEXIT_CR6_READ: return "CR6 read"; /* 0x06 */
- case SVM_VMEXIT_CR7_READ: return "CR7 read"; /* 0x07 */
- case SVM_VMEXIT_CR8_READ: return "CR8 read"; /* 0x08 */
- case SVM_VMEXIT_CR9_READ: return "CR9 read"; /* 0x09 */
- case SVM_VMEXIT_CR10_READ: return "CR10 read"; /* 0x0A */
- case SVM_VMEXIT_CR11_READ: return "CR11 read"; /* 0x0B */
- case SVM_VMEXIT_CR12_READ: return "CR12 read"; /* 0x0C */
- case SVM_VMEXIT_CR13_READ: return "CR13 read"; /* 0x0D */
- case SVM_VMEXIT_CR14_READ: return "CR14 read"; /* 0x0E */
- case SVM_VMEXIT_CR15_READ: return "CR15 read"; /* 0x0F */
- case SVM_VMEXIT_CR0_WRITE: return "CR0 write"; /* 0x10 */
- case SVM_VMEXIT_CR1_WRITE: return "CR1 write"; /* 0x11 */
- case SVM_VMEXIT_CR2_WRITE: return "CR2 write"; /* 0x12 */
- case SVM_VMEXIT_CR3_WRITE: return "CR3 write"; /* 0x13 */
- case SVM_VMEXIT_CR4_WRITE: return "CR4 write"; /* 0x14 */
- case SVM_VMEXIT_CR5_WRITE: return "CR5 write"; /* 0x15 */
- case SVM_VMEXIT_CR6_WRITE: return "CR6 write"; /* 0x16 */
- case SVM_VMEXIT_CR7_WRITE: return "CR7 write"; /* 0x17 */
- case SVM_VMEXIT_CR8_WRITE: return "CR8 write"; /* 0x18 */
- case SVM_VMEXIT_CR9_WRITE: return "CR9 write"; /* 0x19 */
- case SVM_VMEXIT_CR10_WRITE: return "CR10 write"; /* 0x1A */
- case SVM_VMEXIT_CR11_WRITE: return "CR11 write"; /* 0x1B */
- case SVM_VMEXIT_CR12_WRITE: return "CR12 write"; /* 0x1C */
- case SVM_VMEXIT_CR13_WRITE: return "CR13 write"; /* 0x1D */
- case SVM_VMEXIT_CR14_WRITE: return "CR14 write"; /* 0x1E */
- case SVM_VMEXIT_CR15_WRITE: return "CR15 write"; /* 0x1F */
- case SVM_VMEXIT_DR0_READ: return "DR0 read"; /* 0x20 */
- case SVM_VMEXIT_DR1_READ: return "DR1 read"; /* 0x21 */
- case SVM_VMEXIT_DR2_READ: return "DR2 read"; /* 0x22 */
- case SVM_VMEXIT_DR3_READ: return "DR3 read"; /* 0x23 */
- case SVM_VMEXIT_DR4_READ: return "DR4 read"; /* 0x24 */
- case SVM_VMEXIT_DR5_READ: return "DR5 read"; /* 0x25 */
- case SVM_VMEXIT_DR6_READ: return "DR6 read"; /* 0x26 */
- case SVM_VMEXIT_DR7_READ: return "DR7 read"; /* 0x27 */
- case SVM_VMEXIT_DR8_READ: return "DR8 read"; /* 0x28 */
- case SVM_VMEXIT_DR9_READ: return "DR9 read"; /* 0x29 */
- case SVM_VMEXIT_DR10_READ: return "DR10 read"; /* 0x2A */
- case SVM_VMEXIT_DR11_READ: return "DR11 read"; /* 0x2B */
- case SVM_VMEXIT_DR12_READ: return "DR12 read"; /* 0x2C */
- case SVM_VMEXIT_DR13_READ: return "DR13 read"; /* 0x2D */
- case SVM_VMEXIT_DR14_READ: return "DR14 read"; /* 0x2E */
- case SVM_VMEXIT_DR15_READ: return "DR15 read"; /* 0x2F */
- case SVM_VMEXIT_DR0_WRITE: return "DR0 write"; /* 0x30 */
- case SVM_VMEXIT_DR1_WRITE: return "DR1 write"; /* 0x31 */
- case SVM_VMEXIT_DR2_WRITE: return "DR2 write"; /* 0x32 */
- case SVM_VMEXIT_DR3_WRITE: return "DR3 write"; /* 0x33 */
- case SVM_VMEXIT_DR4_WRITE: return "DR4 write"; /* 0x34 */
- case SVM_VMEXIT_DR5_WRITE: return "DR5 write"; /* 0x35 */
- case SVM_VMEXIT_DR6_WRITE: return "DR6 write"; /* 0x36 */
- case SVM_VMEXIT_DR7_WRITE: return "DR7 write"; /* 0x37 */
- case SVM_VMEXIT_DR8_WRITE: return "DR8 write"; /* 0x38 */
- case SVM_VMEXIT_DR9_WRITE: return "DR9 write"; /* 0x39 */
- case SVM_VMEXIT_DR10_WRITE: return "DR10 write"; /* 0x3A */
- case SVM_VMEXIT_DR11_WRITE: return "DR11 write"; /* 0x3B */
- case SVM_VMEXIT_DR12_WRITE: return "DR12 write"; /* 0x3C */
- case SVM_VMEXIT_DR13_WRITE: return "DR13 write"; /* 0x3D */
- case SVM_VMEXIT_DR14_WRITE: return "DR14 write"; /* 0x3E */
- case SVM_VMEXIT_DR15_WRITE: return "DR15 write"; /* 0x3F */
- case SVM_VMEXIT_EXCP0: return "Exception 0x00"; /* 0x40 */
- case SVM_VMEXIT_EXCP1: return "Exception 0x01"; /* 0x41 */
- case SVM_VMEXIT_EXCP2: return "Exception 0x02"; /* 0x42 */
- case SVM_VMEXIT_EXCP3: return "Exception 0x03"; /* 0x43 */
- case SVM_VMEXIT_EXCP4: return "Exception 0x04"; /* 0x44 */
- case SVM_VMEXIT_EXCP5: return "Exception 0x05"; /* 0x45 */
- case SVM_VMEXIT_EXCP6: return "Exception 0x06"; /* 0x46 */
- case SVM_VMEXIT_EXCP7: return "Exception 0x07"; /* 0x47 */
- case SVM_VMEXIT_EXCP8: return "Exception 0x08"; /* 0x48 */
- case SVM_VMEXIT_EXCP9: return "Exception 0x09"; /* 0x49 */
- case SVM_VMEXIT_EXCP10: return "Exception 0x0A"; /* 0x4A */
- case SVM_VMEXIT_EXCP11: return "Exception 0x0B"; /* 0x4B */
- case SVM_VMEXIT_EXCP12: return "Exception 0x0C"; /* 0x4C */
- case SVM_VMEXIT_EXCP13: return "Exception 0x0D"; /* 0x4D */
- case SVM_VMEXIT_EXCP14: return "Exception 0x0E"; /* 0x4E */
- case SVM_VMEXIT_EXCP15: return "Exception 0x0F"; /* 0x4F */
- case SVM_VMEXIT_EXCP16: return "Exception 0x10"; /* 0x50 */
- case SVM_VMEXIT_EXCP17: return "Exception 0x11"; /* 0x51 */
- case SVM_VMEXIT_EXCP18: return "Exception 0x12"; /* 0x52 */
- case SVM_VMEXIT_EXCP19: return "Exception 0x13"; /* 0x53 */
- case SVM_VMEXIT_EXCP20: return "Exception 0x14"; /* 0x54 */
- case SVM_VMEXIT_EXCP21: return "Exception 0x15"; /* 0x55 */
- case SVM_VMEXIT_EXCP22: return "Exception 0x16"; /* 0x56 */
- case SVM_VMEXIT_EXCP23: return "Exception 0x17"; /* 0x57 */
- case SVM_VMEXIT_EXCP24: return "Exception 0x18"; /* 0x58 */
- case SVM_VMEXIT_EXCP25: return "Exception 0x19"; /* 0x59 */
- case SVM_VMEXIT_EXCP26: return "Exception 0x1A"; /* 0x5A */
- case SVM_VMEXIT_EXCP27: return "Exception 0x1B"; /* 0x5B */
- case SVM_VMEXIT_EXCP28: return "Exception 0x1C"; /* 0x5C */
- case SVM_VMEXIT_EXCP29: return "Exception 0x1D"; /* 0x5D */
- case SVM_VMEXIT_EXCP30: return "Exception 0x1E"; /* 0x5E */
- case SVM_VMEXIT_EXCP31: return "Exception 0x1F"; /* 0x5F */
- case SVM_VMEXIT_INTR: return "External interrupt"; /* 0x60 */
- case SVM_VMEXIT_NMI: return "NMI"; /* 0x61 */
- case SVM_VMEXIT_SMI: return "SMI"; /* 0x62 */
- case SVM_VMEXIT_INIT: return "INIT"; /* 0x63 */
- case SVM_VMEXIT_VINTR: return "Interrupt window"; /* 0x64 */
- case SVM_VMEXIT_CR0_SEL_WRITE: return "Sel CR0 write"; /* 0x65 */
- case SVM_VMEXIT_IDTR_READ: return "IDTR read"; /* 0x66 */
- case SVM_VMEXIT_GDTR_READ: return "GDTR read"; /* 0x67 */
- case SVM_VMEXIT_LDTR_READ: return "LDTR read"; /* 0x68 */
- case SVM_VMEXIT_TR_READ: return "TR read"; /* 0x69 */
- case SVM_VMEXIT_IDTR_WRITE: return "IDTR write"; /* 0x6A */
- case SVM_VMEXIT_GDTR_WRITE: return "GDTR write"; /* 0x6B */
- case SVM_VMEXIT_LDTR_WRITE: return "LDTR write"; /* 0x6C */
- case SVM_VMEXIT_TR_WRITE: return "TR write"; /* 0x6D */
- case SVM_VMEXIT_RDTSC: return "RDTSC instruction"; /* 0x6E */
- case SVM_VMEXIT_RDPMC: return "RDPMC instruction"; /* 0x6F */
- case SVM_VMEXIT_PUSHF: return "PUSHF instruction"; /* 0x70 */
- case SVM_VMEXIT_POPF: return "POPF instruction"; /* 0x71 */
- case SVM_VMEXIT_CPUID: return "CPUID instruction"; /* 0x72 */
- case SVM_VMEXIT_RSM: return "RSM instruction"; /* 0x73 */
- case SVM_VMEXIT_IRET: return "IRET instruction"; /* 0x74 */
- case SVM_VMEXIT_SWINT: return "SWINT instruction"; /* 0x75 */
- case SVM_VMEXIT_INVD: return "INVD instruction"; /* 0x76 */
- case SVM_VMEXIT_PAUSE: return "PAUSE instruction"; /* 0x77 */
- case SVM_VMEXIT_HLT: return "HLT instruction"; /* 0x78 */
- case SVM_VMEXIT_INVLPG: return "INVLPG instruction"; /* 0x79 */
- case SVM_VMEXIT_INVLPGA: return "INVLPGA instruction"; /* 0x7A */
- case SVM_VMEXIT_IOIO: return "I/O instruction"; /* 0x7B */
- case SVM_VMEXIT_MSR: return "RDMSR/WRMSR instruction"; /* 0x7C */
- case SVM_VMEXIT_TASK_SWITCH: return "Task switch"; /* 0x7D */
- case SVM_VMEXIT_FERR_FREEZE: return "FERR_FREEZE"; /* 0x7E */
- case SVM_VMEXIT_SHUTDOWN: return "Triple fault"; /* 0x7F */
- case SVM_VMEXIT_VMRUN: return "VMRUN instruction"; /* 0x80 */
- case SVM_VMEXIT_VMMCALL: return "VMMCALL instruction"; /* 0x81 */
- case SVM_VMEXIT_VMLOAD: return "VMLOAD instruction"; /* 0x82 */
- case SVM_VMEXIT_VMSAVE: return "VMSAVE instruction"; /* 0x83 */
- case SVM_VMEXIT_STGI: return "STGI instruction"; /* 0x84 */
- case SVM_VMEXIT_CLGI: return "CLGI instruction"; /* 0x85 */
- case SVM_VMEXIT_SKINIT: return "SKINIT instruction"; /* 0x86 */
- case SVM_VMEXIT_RDTSCP: return "RDTSCP instruction"; /* 0x87 */
- case SVM_VMEXIT_ICEBP: return "ICEBP instruction"; /* 0x88 */
- case SVM_VMEXIT_WBINVD: return "WBINVD instruction"; /* 0x89 */
- case SVM_VMEXIT_MONITOR: return "MONITOR instruction"; /* 0x8A */
- case SVM_VMEXIT_MWAIT: return "MWAIT instruction"; /* 0x8B */
- case SVM_VMEXIT_MWAIT_CONDITIONAL: return "Cond MWAIT"; /* 0x8C */
- case SVM_VMEXIT_NPF: return "NPT violation"; /* 0x400 */
- default: return "unknown";
- }
-}
-
-/*
- * vmx_instruction_error_decode
- *
- * Returns a human readable string describing the instruction error in 'code'
- */
-const char *
-vmx_instruction_error_decode(uint32_t code)
-{
- switch (code) {
- case 1: return "VMCALL: unsupported in VMX root";
- case 2: return "VMCLEAR: invalid paddr";
- case 3: return "VMCLEAR: VMXON pointer";
- case 4: return "VMLAUNCH: non-clear VMCS";
- case 5: return "VMRESUME: non-launched VMCS";
- case 6: return "VMRESUME: executed after VMXOFF";
- case 7: return "VM entry: invalid control field(s)";
- case 8: return "VM entry: invalid host state field(s)";
- case 9: return "VMPTRLD: invalid paddr";
- case 10: return "VMPTRLD: VMXON pointer";
- case 11: return "VMPTRLD: incorrect VMCS revid";
- case 12: return "VMREAD/VMWRITE: unsupported VMCS field";
- case 13: return "VMWRITE: RO VMCS field";
- case 15: return "VMXON: unsupported in VMX root";
- case 20: return "VMCALL: invalid VM exit control fields";
- case 26: return "VM entry: blocked by MOV SS";
- case 28: return "Invalid operand to INVEPT/INVVPID";
- case 0x80000021: return "VM entry: invalid guest state";
- case 0x80000022: return "VM entry: failure due to MSR loading";
- case 0x80000029: return "VM entry: machine-check event";
- default: return "unknown";
- }
-}
-
-/*
- * vcpu_state_decode
- *
- * Returns a human readable string describing the vcpu state in 'state'.
- */
-const char *
-vcpu_state_decode(u_int state)
-{
- switch (state) {
- case VCPU_STATE_STOPPED: return "stopped";
- case VCPU_STATE_RUNNING: return "running";
- case VCPU_STATE_REQTERM: return "requesting termination";
- case VCPU_STATE_TERMINATED: return "terminated";
- case VCPU_STATE_UNKNOWN: return "unknown";
- default: return "invalid";
- }
-}
-
-#ifdef VMM_DEBUG
-/*
- * dump_vcpu
- *
- * Dumps the VMX capabilities of vcpu 'vcpu'
- */
-void
-dump_vcpu(struct vcpu *vcpu)
-{
- printf("vcpu @ %p\n", vcpu);
- printf(" parent vm @ %p\n", vcpu->vc_parent);
- printf(" mode: ");
- if (vcpu->vc_virt_mode == VMM_MODE_VMX ||
- vcpu->vc_virt_mode == VMM_MODE_EPT) {
- printf("VMX\n");
- printf(" pinbased ctls: 0x%llx\n",
- vcpu->vc_vmx_pinbased_ctls);
- printf(" true pinbased ctls: 0x%llx\n",
- vcpu->vc_vmx_true_pinbased_ctls);
- CTRL_DUMP(vcpu, PINBASED, EXTERNAL_INT_EXITING);
- CTRL_DUMP(vcpu, PINBASED, NMI_EXITING);
- CTRL_DUMP(vcpu, PINBASED, VIRTUAL_NMIS);
- CTRL_DUMP(vcpu, PINBASED, ACTIVATE_VMX_PREEMPTION_TIMER);
- CTRL_DUMP(vcpu, PINBASED, PROCESS_POSTED_INTERRUPTS);
- printf(" procbased ctls: 0x%llx\n",
- vcpu->vc_vmx_procbased_ctls);
- printf(" true procbased ctls: 0x%llx\n",
- vcpu->vc_vmx_true_procbased_ctls);
- CTRL_DUMP(vcpu, PROCBASED, INTERRUPT_WINDOW_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, USE_TSC_OFFSETTING);
- CTRL_DUMP(vcpu, PROCBASED, HLT_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, INVLPG_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, MWAIT_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, RDPMC_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, RDTSC_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, CR3_LOAD_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, CR3_STORE_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, CR8_LOAD_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, CR8_STORE_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, USE_TPR_SHADOW);
- CTRL_DUMP(vcpu, PROCBASED, NMI_WINDOW_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, MOV_DR_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, UNCONDITIONAL_IO_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, USE_IO_BITMAPS);
- CTRL_DUMP(vcpu, PROCBASED, MONITOR_TRAP_FLAG);
- CTRL_DUMP(vcpu, PROCBASED, USE_MSR_BITMAPS);
- CTRL_DUMP(vcpu, PROCBASED, MONITOR_EXITING);
- CTRL_DUMP(vcpu, PROCBASED, PAUSE_EXITING);
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
- IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1)) {
- printf(" procbased2 ctls: 0x%llx\n",
- vcpu->vc_vmx_procbased2_ctls);
- CTRL_DUMP(vcpu, PROCBASED2, VIRTUALIZE_APIC);
- CTRL_DUMP(vcpu, PROCBASED2, ENABLE_EPT);
- CTRL_DUMP(vcpu, PROCBASED2, DESCRIPTOR_TABLE_EXITING);
- CTRL_DUMP(vcpu, PROCBASED2, ENABLE_RDTSCP);
- CTRL_DUMP(vcpu, PROCBASED2, VIRTUALIZE_X2APIC_MODE);
- CTRL_DUMP(vcpu, PROCBASED2, ENABLE_VPID);
- CTRL_DUMP(vcpu, PROCBASED2, WBINVD_EXITING);
- CTRL_DUMP(vcpu, PROCBASED2, UNRESTRICTED_GUEST);
- CTRL_DUMP(vcpu, PROCBASED2,
- APIC_REGISTER_VIRTUALIZATION);
- CTRL_DUMP(vcpu, PROCBASED2,
- VIRTUAL_INTERRUPT_DELIVERY);
- CTRL_DUMP(vcpu, PROCBASED2, PAUSE_LOOP_EXITING);
- CTRL_DUMP(vcpu, PROCBASED2, RDRAND_EXITING);
- CTRL_DUMP(vcpu, PROCBASED2, ENABLE_INVPCID);
- CTRL_DUMP(vcpu, PROCBASED2, ENABLE_VM_FUNCTIONS);
- CTRL_DUMP(vcpu, PROCBASED2, VMCS_SHADOWING);
- CTRL_DUMP(vcpu, PROCBASED2, ENABLE_ENCLS_EXITING);
- CTRL_DUMP(vcpu, PROCBASED2, RDSEED_EXITING);
- CTRL_DUMP(vcpu, PROCBASED2, ENABLE_PML);
- CTRL_DUMP(vcpu, PROCBASED2, EPT_VIOLATION_VE);
- CTRL_DUMP(vcpu, PROCBASED2, CONCEAL_VMX_FROM_PT);
- CTRL_DUMP(vcpu, PROCBASED2, ENABLE_XSAVES_XRSTORS);
- CTRL_DUMP(vcpu, PROCBASED2, ENABLE_TSC_SCALING);
- }
- printf(" entry ctls: 0x%llx\n",
- vcpu->vc_vmx_entry_ctls);
- printf(" true entry ctls: 0x%llx\n",
- vcpu->vc_vmx_true_entry_ctls);
- CTRL_DUMP(vcpu, ENTRY, LOAD_DEBUG_CONTROLS);
- CTRL_DUMP(vcpu, ENTRY, IA32E_MODE_GUEST);
- CTRL_DUMP(vcpu, ENTRY, ENTRY_TO_SMM);
- CTRL_DUMP(vcpu, ENTRY, DEACTIVATE_DUAL_MONITOR_TREATMENT);
- CTRL_DUMP(vcpu, ENTRY, LOAD_IA32_PERF_GLOBAL_CTRL_ON_ENTRY);
- CTRL_DUMP(vcpu, ENTRY, LOAD_IA32_PAT_ON_ENTRY);
- CTRL_DUMP(vcpu, ENTRY, LOAD_IA32_EFER_ON_ENTRY);
- CTRL_DUMP(vcpu, ENTRY, LOAD_IA32_BNDCFGS_ON_ENTRY);
- CTRL_DUMP(vcpu, ENTRY, CONCEAL_VM_ENTRIES_FROM_PT);
- printf(" exit ctls: 0x%llx\n",
- vcpu->vc_vmx_exit_ctls);
- printf(" true exit ctls: 0x%llx\n",
- vcpu->vc_vmx_true_exit_ctls);
- CTRL_DUMP(vcpu, EXIT, SAVE_DEBUG_CONTROLS);
- CTRL_DUMP(vcpu, EXIT, HOST_SPACE_ADDRESS_SIZE);
- CTRL_DUMP(vcpu, EXIT, LOAD_IA32_PERF_GLOBAL_CTRL_ON_EXIT);
- CTRL_DUMP(vcpu, EXIT, ACKNOWLEDGE_INTERRUPT_ON_EXIT);
- CTRL_DUMP(vcpu, EXIT, SAVE_IA32_PAT_ON_EXIT);
- CTRL_DUMP(vcpu, EXIT, LOAD_IA32_PAT_ON_EXIT);
- CTRL_DUMP(vcpu, EXIT, SAVE_IA32_EFER_ON_EXIT);
- CTRL_DUMP(vcpu, EXIT, LOAD_IA32_EFER_ON_EXIT);
- CTRL_DUMP(vcpu, EXIT, SAVE_VMX_PREEMPTION_TIMER);
- CTRL_DUMP(vcpu, EXIT, CLEAR_IA32_BNDCFGS_ON_EXIT);
- CTRL_DUMP(vcpu, EXIT, CONCEAL_VM_EXITS_FROM_PT);
- }
-}
-
-/*
- * vmx_dump_vmcs_field
- *
- * Debug function to dump the contents of a single VMCS field
- *
- * Parameters:
- * fieldid: VMCS Field ID
- * msg: string to display
- */
-void
-vmx_dump_vmcs_field(uint16_t fieldid, const char *msg)
-{
- uint8_t width;
- uint64_t val;
-
-
- DPRINTF("%s (0x%04x): ", msg, fieldid);
- if (vmread(fieldid, &val))
- DPRINTF("???? ");
- else {
- /*
- * Field width encoding : bits 13:14
- *
- * 0: 16-bit
- * 1: 64-bit
- * 2: 32-bit
- * 3: natural width
- */
- width = (fieldid >> 13) & 0x3;
- switch (width) {
- case 0: DPRINTF("0x%04llx ", val); break;
- case 1:
- case 3: DPRINTF("0x%016llx ", val); break;
- case 2: DPRINTF("0x%08llx ", val);
- }
- }
-}
-
-/*
- * vmx_dump_vmcs
- *
- * Debug function to dump the contents of the current VMCS.
- */
-void
-vmx_dump_vmcs(struct vcpu *vcpu)
-{
- int has_sec, i;
- uint32_t cr3_tgt_ct;
-
- /* XXX save and load new vmcs, restore at end */
-
- DPRINTF("--CURRENT VMCS STATE--\n");
- printf("VMCS launched: %s\n",
- (vcpu->vc_vmx_vmcs_state == VMCS_LAUNCHED) ? "Yes" : "No");
- DPRINTF("VMXON revision : 0x%x\n",
- curcpu()->ci_vmm_cap.vcc_vmx.vmx_vmxon_revision);
- DPRINTF("CR0 fixed0: 0x%llx\n",
- curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed0);
- DPRINTF("CR0 fixed1: 0x%llx\n",
- curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr0_fixed1);
- DPRINTF("CR4 fixed0: 0x%llx\n",
- curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed0);
- DPRINTF("CR4 fixed1: 0x%llx\n",
- curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr4_fixed1);
- DPRINTF("MSR table size: 0x%x\n",
- 512 * (curcpu()->ci_vmm_cap.vcc_vmx.vmx_msr_table_size + 1));
-
- has_sec = vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
- IA32_VMX_ACTIVATE_SECONDARY_CONTROLS, 1);
-
- if (has_sec) {
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_VPID, 1)) {
- vmx_dump_vmcs_field(VMCS_GUEST_VPID, "VPID");
- }
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PINBASED_CTLS,
- IA32_VMX_PROCESS_POSTED_INTERRUPTS, 1)) {
- vmx_dump_vmcs_field(VMCS_POSTED_INT_NOTIF_VECTOR,
- "Posted Int Notif Vec");
- }
-
- if (has_sec) {
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_EPT_VIOLATION_VE, 1)) {
- vmx_dump_vmcs_field(VMCS_EPTP_INDEX, "EPTP idx");
- }
- }
-
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_ES_SEL, "G.ES");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_CS_SEL, "G.CS");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_SS_SEL, "G.SS");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_DS_SEL, "G.DS");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_FS_SEL, "G.FS");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_GS_SEL, "G.GS");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_LDTR_SEL, "LDTR");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_TR_SEL, "G.TR");
-
- if (has_sec) {
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_VIRTUAL_INTERRUPT_DELIVERY, 1)) {
- vmx_dump_vmcs_field(VMCS_GUEST_INTERRUPT_STATUS,
- "Int sts");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_PML, 1)) {
- vmx_dump_vmcs_field(VMCS_GUEST_PML_INDEX, "PML Idx");
- }
- }
-
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_ES_SEL, "H.ES");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_CS_SEL, "H.CS");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_SS_SEL, "H.SS");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_DS_SEL, "H.DS");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_FS_SEL, "H.FS");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_GS_SEL, "H.GS");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_IO_BITMAP_A, "I/O Bitmap A");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_IO_BITMAP_B, "I/O Bitmap B");
- DPRINTF("\n");
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
- IA32_VMX_USE_MSR_BITMAPS, 1)) {
- vmx_dump_vmcs_field(VMCS_MSR_BITMAP_ADDRESS, "MSR Bitmap");
- DPRINTF("\n");
- }
-
- vmx_dump_vmcs_field(VMCS_EXIT_STORE_MSR_ADDRESS, "Exit Store MSRs");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_EXIT_LOAD_MSR_ADDRESS, "Exit Load MSRs");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_ENTRY_LOAD_MSR_ADDRESS, "Entry Load MSRs");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_EXECUTIVE_VMCS_POINTER, "Exec VMCS Ptr");
- DPRINTF("\n");
-
- if (has_sec) {
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_PML, 1)) {
- vmx_dump_vmcs_field(VMCS_PML_ADDRESS, "PML Addr");
- DPRINTF("\n");
- }
- }
-
- vmx_dump_vmcs_field(VMCS_TSC_OFFSET, "TSC Offset");
- DPRINTF("\n");
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
- IA32_VMX_USE_TPR_SHADOW, 1)) {
- vmx_dump_vmcs_field(VMCS_VIRTUAL_APIC_ADDRESS,
- "Virtual APIC Addr");
- DPRINTF("\n");
- }
-
- if (has_sec) {
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_VIRTUALIZE_APIC, 1)) {
- vmx_dump_vmcs_field(VMCS_APIC_ACCESS_ADDRESS,
- "APIC Access Addr");
- DPRINTF("\n");
- }
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PINBASED_CTLS,
- IA32_VMX_PROCESS_POSTED_INTERRUPTS, 1)) {
- vmx_dump_vmcs_field(VMCS_POSTED_INTERRUPT_DESC,
- "Posted Int Desc Addr");
- DPRINTF("\n");
- }
-
- if (has_sec) {
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_VM_FUNCTIONS, 1)) {
- vmx_dump_vmcs_field(VMCS_VM_FUNCTION_CONTROLS,
- "VM Function Controls");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_EPT, 1)) {
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_EPTP,
- "EPT Pointer");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_VIRTUAL_INTERRUPT_DELIVERY, 1)) {
- vmx_dump_vmcs_field(VMCS_EOI_EXIT_BITMAP_0,
- "EOI Exit Bitmap 0");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_EOI_EXIT_BITMAP_1,
- "EOI Exit Bitmap 1");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_EOI_EXIT_BITMAP_2,
- "EOI Exit Bitmap 2");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_EOI_EXIT_BITMAP_3,
- "EOI Exit Bitmap 3");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_VM_FUNCTIONS, 1)) {
- /* We assume all CPUs have the same VMFUNC caps */
- if (curcpu()->ci_vmm_cap.vcc_vmx.vmx_vm_func & 0x1) {
- vmx_dump_vmcs_field(VMCS_EPTP_LIST_ADDRESS,
- "EPTP List Addr");
- DPRINTF("\n");
- }
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_VMCS_SHADOWING, 1)) {
- vmx_dump_vmcs_field(VMCS_VMREAD_BITMAP_ADDRESS,
- "VMREAD Bitmap Addr");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_VMWRITE_BITMAP_ADDRESS,
- "VMWRITE Bitmap Addr");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_EPT_VIOLATION_VE, 1)) {
- vmx_dump_vmcs_field(VMCS_VIRTUALIZATION_EXC_ADDRESS,
- "#VE Addr");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_XSAVES_XRSTORS, 1)) {
- vmx_dump_vmcs_field(VMCS_XSS_EXITING_BITMAP,
- "XSS exiting bitmap addr");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_ENCLS_EXITING, 1)) {
- vmx_dump_vmcs_field(VMCS_ENCLS_EXITING_BITMAP,
- "Encls exiting bitmap addr");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_TSC_SCALING, 1)) {
- vmx_dump_vmcs_field(VMCS_TSC_MULTIPLIER,
- "TSC scaling factor");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_EPT, 1)) {
- vmx_dump_vmcs_field(VMCS_GUEST_PHYSICAL_ADDRESS,
- "Guest PA");
- DPRINTF("\n");
- }
- }
-
- vmx_dump_vmcs_field(VMCS_LINK_POINTER, "VMCS Link Pointer");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_DEBUGCTL, "Guest DEBUGCTL");
- DPRINTF("\n");
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_ENTRY_CTLS,
- IA32_VMX_LOAD_IA32_PAT_ON_ENTRY, 1) ||
- vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
- IA32_VMX_SAVE_IA32_PAT_ON_EXIT, 1)) {
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_PAT,
- "Guest PAT");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_ENTRY_CTLS,
- IA32_VMX_LOAD_IA32_EFER_ON_ENTRY, 1) ||
- vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
- IA32_VMX_SAVE_IA32_EFER_ON_EXIT, 1)) {
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_EFER,
- "Guest EFER");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_ENTRY_CTLS,
- IA32_VMX_LOAD_IA32_PERF_GLOBAL_CTRL_ON_ENTRY, 1)) {
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_PERF_GBL_CTRL,
- "Guest Perf Global Ctrl");
- DPRINTF("\n");
- }
-
- if (has_sec) {
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_ENABLE_EPT, 1)) {
- vmx_dump_vmcs_field(VMCS_GUEST_PDPTE0, "Guest PDPTE0");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_PDPTE1, "Guest PDPTE1");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_PDPTE2, "Guest PDPTE2");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_PDPTE3, "Guest PDPTE3");
- DPRINTF("\n");
- }
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_ENTRY_CTLS,
- IA32_VMX_LOAD_IA32_BNDCFGS_ON_ENTRY, 1) ||
- vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
- IA32_VMX_CLEAR_IA32_BNDCFGS_ON_EXIT, 1)) {
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_BNDCFGS,
- "Guest BNDCFGS");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
- IA32_VMX_LOAD_IA32_PAT_ON_EXIT, 1)) {
- vmx_dump_vmcs_field(VMCS_HOST_IA32_PAT,
- "Host PAT");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
- IA32_VMX_LOAD_IA32_EFER_ON_EXIT, 1)) {
- vmx_dump_vmcs_field(VMCS_HOST_IA32_EFER,
- "Host EFER");
- DPRINTF("\n");
- }
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_EXIT_CTLS,
- IA32_VMX_LOAD_IA32_PERF_GLOBAL_CTRL_ON_EXIT, 1)) {
- vmx_dump_vmcs_field(VMCS_HOST_IA32_PERF_GBL_CTRL,
- "Host Perf Global Ctrl");
- DPRINTF("\n");
- }
-
- vmx_dump_vmcs_field(VMCS_PINBASED_CTLS, "Pinbased Ctrls");
- vmx_dump_vmcs_field(VMCS_PROCBASED_CTLS, "Procbased Ctrls");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_EXCEPTION_BITMAP, "Exception Bitmap");
- vmx_dump_vmcs_field(VMCS_PF_ERROR_CODE_MASK, "#PF Err Code Mask");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_PF_ERROR_CODE_MATCH, "#PF Err Code Match");
- vmx_dump_vmcs_field(VMCS_CR3_TARGET_COUNT, "CR3 Tgt Count");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_EXIT_CTLS, "Exit Ctrls");
- vmx_dump_vmcs_field(VMCS_EXIT_MSR_STORE_COUNT, "Exit MSR Store Ct");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_EXIT_MSR_LOAD_COUNT, "Exit MSR Load Ct");
- vmx_dump_vmcs_field(VMCS_ENTRY_CTLS, "Entry Ctrls");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_ENTRY_MSR_LOAD_COUNT, "Entry MSR Load Ct");
- vmx_dump_vmcs_field(VMCS_ENTRY_INTERRUPTION_INFO, "Entry Int. Info");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_ENTRY_EXCEPTION_ERROR_CODE,
- "Entry Ex. Err Code");
- vmx_dump_vmcs_field(VMCS_ENTRY_INSTRUCTION_LENGTH, "Entry Insn Len");
- DPRINTF("\n");
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED_CTLS,
- IA32_VMX_USE_TPR_SHADOW, 1)) {
- vmx_dump_vmcs_field(VMCS_TPR_THRESHOLD, "TPR Threshold");
- DPRINTF("\n");
- }
-
- if (has_sec) {
- vmx_dump_vmcs_field(VMCS_PROCBASED2_CTLS, "2ndary Ctrls");
- DPRINTF("\n");
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PROCBASED2_CTLS,
- IA32_VMX_PAUSE_LOOP_EXITING, 1)) {
- vmx_dump_vmcs_field(VMCS_PLE_GAP, "PLE Gap");
- vmx_dump_vmcs_field(VMCS_PLE_WINDOW, "PLE Window");
- }
- DPRINTF("\n");
- }
-
- vmx_dump_vmcs_field(VMCS_INSTRUCTION_ERROR, "Insn Error");
- vmx_dump_vmcs_field(VMCS_EXIT_REASON, "Exit Reason");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_EXIT_INTERRUPTION_INFO, "Exit Int. Info");
- vmx_dump_vmcs_field(VMCS_EXIT_INTERRUPTION_ERR_CODE,
- "Exit Int. Err Code");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_IDT_VECTORING_INFO, "IDT vect info");
- vmx_dump_vmcs_field(VMCS_IDT_VECTORING_ERROR_CODE,
- "IDT vect err code");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_INSTRUCTION_LENGTH, "Insn Len");
- vmx_dump_vmcs_field(VMCS_EXIT_INSTRUCTION_INFO, "Exit Insn Info");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_ES_LIMIT, "G. ES Lim");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_CS_LIMIT, "G. CS Lim");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_SS_LIMIT, "G. SS Lim");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_DS_LIMIT, "G. DS Lim");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_FS_LIMIT, "G. FS Lim");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_GS_LIMIT, "G. GS Lim");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_LDTR_LIMIT, "G. LDTR Lim");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_TR_LIMIT, "G. TR Lim");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_GDTR_LIMIT, "G. GDTR Lim");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_IDTR_LIMIT, "G. IDTR Lim");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_ES_AR, "G. ES AR");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_CS_AR, "G. CS AR");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_SS_AR, "G. SS AR");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_DS_AR, "G. DS AR");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_FS_AR, "G. FS AR");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_GS_AR, "G. GS AR");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_LDTR_AR, "G. LDTR AR");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_TR_AR, "G. TR AR");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_GUEST_INTERRUPTIBILITY_ST, "G. Int St.");
- vmx_dump_vmcs_field(VMCS_GUEST_ACTIVITY_STATE, "G. Act St.");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_GUEST_SMBASE, "G. SMBASE");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_SYSENTER_CS, "G. SYSENTER CS");
- DPRINTF("\n");
-
- if (vcpu_vmx_check_cap(vcpu, IA32_VMX_PINBASED_CTLS,
- IA32_VMX_ACTIVATE_VMX_PREEMPTION_TIMER, 1)) {
- vmx_dump_vmcs_field(VMCS_VMX_PREEMPTION_TIMER_VAL,
- "VMX Preempt Timer");
- DPRINTF("\n");
- }
-
- vmx_dump_vmcs_field(VMCS_HOST_IA32_SYSENTER_CS, "H. SYSENTER CS");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_CR0_MASK, "CR0 Mask");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_CR4_MASK, "CR4 Mask");
- DPRINTF("\n");
-
- vmx_dump_vmcs_field(VMCS_CR0_READ_SHADOW, "CR0 RD Shadow");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_CR4_READ_SHADOW, "CR4 RD Shadow");
- DPRINTF("\n");
-
- /* We assume all CPUs have the same max CR3 target ct */
- cr3_tgt_ct = curcpu()->ci_vmm_cap.vcc_vmx.vmx_cr3_tgt_count;
- DPRINTF("Max CR3 target count: 0x%x\n", cr3_tgt_ct);
- if (cr3_tgt_ct <= VMX_MAX_CR3_TARGETS) {
- for (i = 0 ; i < cr3_tgt_ct; i++) {
- vmx_dump_vmcs_field(VMCS_CR3_TARGET_0 + (2 * i),
- "CR3 Target");
- DPRINTF("\n");
- }
- } else {
- DPRINTF("(Bogus CR3 Target Count > %d", VMX_MAX_CR3_TARGETS);
- }
-
- vmx_dump_vmcs_field(VMCS_GUEST_EXIT_QUALIFICATION, "G. Exit Qual");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_IO_RCX, "I/O RCX");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_IO_RSI, "I/O RSI");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_IO_RDI, "I/O RDI");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_IO_RIP, "I/O RIP");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_LINEAR_ADDRESS, "G. Lin Addr");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_CR0, "G. CR0");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_CR3, "G. CR3");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_CR4, "G. CR4");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_ES_BASE, "G. ES Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_CS_BASE, "G. CS Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_SS_BASE, "G. SS Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_DS_BASE, "G. DS Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_FS_BASE, "G. FS Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_GS_BASE, "G. GS Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_LDTR_BASE, "G. LDTR Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_TR_BASE, "G. TR Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_GDTR_BASE, "G. GDTR Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_IDTR_BASE, "G. IDTR Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_DR7, "G. DR7");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_RSP, "G. RSP");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_RIP, "G. RIP");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_RFLAGS, "G. RFLAGS");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_PENDING_DBG_EXC, "G. Pend Dbg Exc");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_SYSENTER_ESP, "G. SYSENTER ESP");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_GUEST_IA32_SYSENTER_EIP, "G. SYSENTER EIP");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_CR0, "H. CR0");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_CR3, "H. CR3");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_CR4, "H. CR4");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_FS_BASE, "H. FS Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_GS_BASE, "H. GS Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_TR_BASE, "H. TR Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_GDTR_BASE, "H. GDTR Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_IDTR_BASE, "H. IDTR Base");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_SYSENTER_ESP, "H. SYSENTER ESP");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_SYSENTER_EIP, "H. SYSENTER EIP");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_RSP, "H. RSP");
- DPRINTF("\n");
- vmx_dump_vmcs_field(VMCS_HOST_IA32_RIP, "H. RIP");
- DPRINTF("\n");
-}
-
-/*
- * vmx_vcpu_dump_regs
- *
- * Debug function to print vcpu regs from the current vcpu
- * note - vmcs for 'vcpu' must be on this pcpu.
- *
- * Parameters:
- * vcpu - vcpu whose registers should be dumped
- */
-void
-vmx_vcpu_dump_regs(struct vcpu *vcpu)
-{
- uint64_t r;
- int i;
- struct vmx_msr_store *msr_store;
-
- /* XXX reformat this for 32 bit guest as needed */
- DPRINTF("vcpu @ %p in %s mode\n", vcpu, vmm_decode_cpu_mode(vcpu));
- i = vmm_get_guest_cpu_cpl(vcpu);
- if (i == -1)
- DPRINTF(" CPL=unknown\n");
- else
- DPRINTF(" CPL=%d\n", i);
- DPRINTF(" rax=0x%016llx rbx=0x%016llx rcx=0x%016llx\n",
- vcpu->vc_gueststate.vg_rax, vcpu->vc_gueststate.vg_rbx,
- vcpu->vc_gueststate.vg_rcx);
- DPRINTF(" rdx=0x%016llx rbp=0x%016llx rdi=0x%016llx\n",
- vcpu->vc_gueststate.vg_rdx, vcpu->vc_gueststate.vg_rbp,
- vcpu->vc_gueststate.vg_rdi);
- DPRINTF(" rsi=0x%016llx r8=0x%016llx r9=0x%016llx\n",
- vcpu->vc_gueststate.vg_rsi, vcpu->vc_gueststate.vg_r8,
- vcpu->vc_gueststate.vg_r9);
- DPRINTF(" r10=0x%016llx r11=0x%016llx r12=0x%016llx\n",
- vcpu->vc_gueststate.vg_r10, vcpu->vc_gueststate.vg_r11,
- vcpu->vc_gueststate.vg_r12);
- DPRINTF(" r13=0x%016llx r14=0x%016llx r15=0x%016llx\n",
- vcpu->vc_gueststate.vg_r13, vcpu->vc_gueststate.vg_r14,
- vcpu->vc_gueststate.vg_r15);
-
- DPRINTF(" rip=0x%016llx rsp=", vcpu->vc_gueststate.vg_rip);
- if (vmread(VMCS_GUEST_IA32_RSP, &r))
- DPRINTF("(error reading)\n");
- else
- DPRINTF("0x%016llx\n", r);
-
- DPRINTF(" rflags=");
- if (vmread(VMCS_GUEST_IA32_RFLAGS, &r))
- DPRINTF("(error reading)\n");
- else {
- DPRINTF("0x%016llx ", r);
- vmm_decode_rflags(r);
- }
-
- DPRINTF(" cr0=");
- if (vmread(VMCS_GUEST_IA32_CR0, &r))
- DPRINTF("(error reading)\n");
- else {
- DPRINTF("0x%016llx ", r);
- vmm_decode_cr0(r);
- }
-
- DPRINTF(" cr2=0x%016llx\n", vcpu->vc_gueststate.vg_cr2);
-
- DPRINTF(" cr3=");
- if (vmread(VMCS_GUEST_IA32_CR3, &r))
- DPRINTF("(error reading)\n");
- else {
- DPRINTF("0x%016llx ", r);
- vmm_decode_cr3(r);
- }
-
- DPRINTF(" cr4=");
- if (vmread(VMCS_GUEST_IA32_CR4, &r))
- DPRINTF("(error reading)\n");
- else {
- DPRINTF("0x%016llx ", r);
- vmm_decode_cr4(r);
- }
-
- DPRINTF(" --Guest Segment Info--\n");
-
- DPRINTF(" cs=");
- if (vmread(VMCS_GUEST_IA32_CS_SEL, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
-
- DPRINTF(" base=");
- if (vmread(VMCS_GUEST_IA32_CS_BASE, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" limit=");
- if (vmread(VMCS_GUEST_IA32_CS_LIMIT, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" a/r=");
- if (vmread(VMCS_GUEST_IA32_CS_AR, &r))
- DPRINTF("(error reading)\n");
- else {
- DPRINTF("0x%04llx\n ", r);
- vmm_segment_desc_decode(r);
- }
-
- DPRINTF(" ds=");
- if (vmread(VMCS_GUEST_IA32_DS_SEL, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
-
- DPRINTF(" base=");
- if (vmread(VMCS_GUEST_IA32_DS_BASE, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" limit=");
- if (vmread(VMCS_GUEST_IA32_DS_LIMIT, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" a/r=");
- if (vmread(VMCS_GUEST_IA32_DS_AR, &r))
- DPRINTF("(error reading)\n");
- else {
- DPRINTF("0x%04llx\n ", r);
- vmm_segment_desc_decode(r);
- }
-
- DPRINTF(" es=");
- if (vmread(VMCS_GUEST_IA32_ES_SEL, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
-
- DPRINTF(" base=");
- if (vmread(VMCS_GUEST_IA32_ES_BASE, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" limit=");
- if (vmread(VMCS_GUEST_IA32_ES_LIMIT, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" a/r=");
- if (vmread(VMCS_GUEST_IA32_ES_AR, &r))
- DPRINTF("(error reading)\n");
- else {
- DPRINTF("0x%04llx\n ", r);
- vmm_segment_desc_decode(r);
- }
-
- DPRINTF(" fs=");
- if (vmread(VMCS_GUEST_IA32_FS_SEL, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
-
- DPRINTF(" base=");
- if (vmread(VMCS_GUEST_IA32_FS_BASE, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" limit=");
- if (vmread(VMCS_GUEST_IA32_FS_LIMIT, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" a/r=");
- if (vmread(VMCS_GUEST_IA32_FS_AR, &r))
- DPRINTF("(error reading)\n");
- else {
- DPRINTF("0x%04llx\n ", r);
- vmm_segment_desc_decode(r);
- }
-
- DPRINTF(" gs=");
- if (vmread(VMCS_GUEST_IA32_GS_SEL, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
-
- DPRINTF(" base=");
- if (vmread(VMCS_GUEST_IA32_GS_BASE, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" limit=");
- if (vmread(VMCS_GUEST_IA32_GS_LIMIT, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" a/r=");
- if (vmread(VMCS_GUEST_IA32_GS_AR, &r))
- DPRINTF("(error reading)\n");
- else {
- DPRINTF("0x%04llx\n ", r);
- vmm_segment_desc_decode(r);
- }
-
- DPRINTF(" ss=");
- if (vmread(VMCS_GUEST_IA32_SS_SEL, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%04llx rpl=%lld", r, r & 0x3);
-
- DPRINTF(" base=");
- if (vmread(VMCS_GUEST_IA32_SS_BASE, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" limit=");
- if (vmread(VMCS_GUEST_IA32_SS_LIMIT, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" a/r=");
- if (vmread(VMCS_GUEST_IA32_SS_AR, &r))
- DPRINTF("(error reading)\n");
- else {
- DPRINTF("0x%04llx\n ", r);
- vmm_segment_desc_decode(r);
- }
-
- DPRINTF(" tr=");
- if (vmread(VMCS_GUEST_IA32_TR_SEL, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%04llx", r);
-
- DPRINTF(" base=");
- if (vmread(VMCS_GUEST_IA32_TR_BASE, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" limit=");
- if (vmread(VMCS_GUEST_IA32_TR_LIMIT, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" a/r=");
- if (vmread(VMCS_GUEST_IA32_TR_AR, &r))
- DPRINTF("(error reading)\n");
- else {
- DPRINTF("0x%04llx\n ", r);
- vmm_segment_desc_decode(r);
- }
-
- DPRINTF(" gdtr base=");
- if (vmread(VMCS_GUEST_IA32_GDTR_BASE, &r))
- DPRINTF("(error reading) ");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" limit=");
- if (vmread(VMCS_GUEST_IA32_GDTR_LIMIT, &r))
- DPRINTF("(error reading)\n");
- else
- DPRINTF("0x%016llx\n", r);
-
- DPRINTF(" idtr base=");
- if (vmread(VMCS_GUEST_IA32_IDTR_BASE, &r))
- DPRINTF("(error reading) ");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" limit=");
- if (vmread(VMCS_GUEST_IA32_IDTR_LIMIT, &r))
- DPRINTF("(error reading)\n");
- else
- DPRINTF("0x%016llx\n", r);
-
- DPRINTF(" ldtr=");
- if (vmread(VMCS_GUEST_IA32_LDTR_SEL, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%04llx", r);
-
- DPRINTF(" base=");
- if (vmread(VMCS_GUEST_IA32_LDTR_BASE, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" limit=");
- if (vmread(VMCS_GUEST_IA32_LDTR_LIMIT, &r))
- DPRINTF("(error reading)");
- else
- DPRINTF("0x%016llx", r);
-
- DPRINTF(" a/r=");
- if (vmread(VMCS_GUEST_IA32_LDTR_AR, &r))
- DPRINTF("(error reading)\n");
- else {
- DPRINTF("0x%04llx\n ", r);
- vmm_segment_desc_decode(r);
- }
-
- DPRINTF(" --Guest MSRs @ 0x%016llx (paddr: 0x%016llx)--\n",
- (uint64_t)vcpu->vc_vmx_msr_exit_save_va,
- (uint64_t)vcpu->vc_vmx_msr_exit_save_pa);
-
- msr_store = (struct vmx_msr_store *)vcpu->vc_vmx_msr_exit_save_va;
-
- for (i = 0; i < VMX_NUM_MSR_STORE; i++) {
- DPRINTF(" MSR %d @ %p : 0x%08llx (%s), "
- "value=0x%016llx ",
- i, &msr_store[i], msr_store[i].vms_index,
- msr_name_decode(msr_store[i].vms_index),
- msr_store[i].vms_data);
- vmm_decode_msr_value(msr_store[i].vms_index,
- msr_store[i].vms_data);
- }
-}
-
-/*
- * msr_name_decode
- *
- * Returns a human-readable name for the MSR supplied in 'msr'.
- *
- * Parameters:
- * msr - The MSR to decode
- *
- * Return value:
- * NULL-terminated character string containing the name of the MSR requested
- */
-const char *
-msr_name_decode(uint32_t msr)
-{
- /*
- * Add as needed. Also consider adding a decode function when
- * adding to this table.
- */
-
- switch (msr) {
- case MSR_TSC: return "TSC";
- case MSR_APICBASE: return "APIC base";
- case MSR_IA32_FEATURE_CONTROL: return "IA32 feature control";
- case MSR_PERFCTR0: return "perf counter 0";
- case MSR_PERFCTR1: return "perf counter 1";
- case MSR_TEMPERATURE_TARGET: return "temperature target";
- case MSR_MTRRcap: return "MTRR cap";
- case MSR_PERF_STATUS: return "perf status";
- case MSR_PERF_CTL: return "perf control";
- case MSR_MTRRvarBase: return "MTRR variable base";
- case MSR_MTRRfix64K_00000: return "MTRR fixed 64K";
- case MSR_MTRRfix16K_80000: return "MTRR fixed 16K";
- case MSR_MTRRfix4K_C0000: return "MTRR fixed 4K";
- case MSR_CR_PAT: return "PAT";
- case MSR_MTRRdefType: return "MTRR default type";
- case MSR_EFER: return "EFER";
- case MSR_STAR: return "STAR";
- case MSR_LSTAR: return "LSTAR";
- case MSR_CSTAR: return "CSTAR";
- case MSR_SFMASK: return "SFMASK";
- case MSR_FSBASE: return "FSBASE";
- case MSR_GSBASE: return "GSBASE";
- case MSR_KERNELGSBASE: return "KGSBASE";
- case MSR_MISC_ENABLE: return "Misc Enable";
- default: return "Unknown MSR";
- }
-}
-
-/*
- * vmm_segment_desc_decode
- *
- * Debug function to print segment information for supplied descriptor
- *
- * Parameters:
- * val - The A/R bytes for the segment descriptor to decode
- */
-void
-vmm_segment_desc_decode(uint64_t val)
-{
- uint16_t ar;
- uint8_t g, type, s, dpl, p, dib, l;
- uint32_t unusable;
-
- /* Exit early on unusable descriptors */
- unusable = val & 0x10000;
- if (unusable) {
- DPRINTF("(unusable)\n");
- return;
- }
-
- ar = (uint16_t)val;
-
- g = (ar & 0x8000) >> 15;
- dib = (ar & 0x4000) >> 14;
- l = (ar & 0x2000) >> 13;
- p = (ar & 0x80) >> 7;
- dpl = (ar & 0x60) >> 5;
- s = (ar & 0x10) >> 4;
- type = (ar & 0xf);
-
- DPRINTF("granularity=%d dib=%d l(64 bit)=%d present=%d sys=%d ",
- g, dib, l, p, s);
-
- DPRINTF("type=");
- if (!s) {
- switch (type) {
- case SDT_SYSLDT: DPRINTF("ldt\n"); break;
- case SDT_SYS386TSS: DPRINTF("tss (available)\n"); break;
- case SDT_SYS386BSY: DPRINTF("tss (busy)\n"); break;
- case SDT_SYS386CGT: DPRINTF("call gate\n"); break;
- case SDT_SYS386IGT: DPRINTF("interrupt gate\n"); break;
- case SDT_SYS386TGT: DPRINTF("trap gate\n"); break;
- /* XXX handle 32 bit segment types by inspecting mode */
- default: DPRINTF("unknown");
- }
- } else {
- switch (type + 16) {
- case SDT_MEMRO: DPRINTF("data, r/o\n"); break;
- case SDT_MEMROA: DPRINTF("data, r/o, accessed\n"); break;
- case SDT_MEMRW: DPRINTF("data, r/w\n"); break;
- case SDT_MEMRWA: DPRINTF("data, r/w, accessed\n"); break;
- case SDT_MEMROD: DPRINTF("data, r/o, expand down\n"); break;
- case SDT_MEMRODA: DPRINTF("data, r/o, expand down, "
- "accessed\n");
- break;
- case SDT_MEMRWD: DPRINTF("data, r/w, expand down\n"); break;
- case SDT_MEMRWDA: DPRINTF("data, r/w, expand down, "
- "accessed\n");
- break;
- case SDT_MEME: DPRINTF("code, x only\n"); break;
- case SDT_MEMEA: DPRINTF("code, x only, accessed\n");
- case SDT_MEMER: DPRINTF("code, r/x\n"); break;
- case SDT_MEMERA: DPRINTF("code, r/x, accessed\n"); break;
- case SDT_MEMEC: DPRINTF("code, x only, conforming\n"); break;
- case SDT_MEMEAC: DPRINTF("code, x only, conforming, "
- "accessed\n");
- break;
- case SDT_MEMERC: DPRINTF("code, r/x, conforming\n"); break;
- case SDT_MEMERAC: DPRINTF("code, r/x, conforming, accessed\n");
- break;
- }
- }
-}
-
-void
-vmm_decode_cr0(uint64_t cr0)
-{
- struct vmm_reg_debug_info cr0_info[11] = {
- { CR0_PG, "PG ", "pg " },
- { CR0_CD, "CD ", "cd " },
- { CR0_NW, "NW ", "nw " },
- { CR0_AM, "AM ", "am " },
- { CR0_WP, "WP ", "wp " },
- { CR0_NE, "NE ", "ne " },
- { CR0_ET, "ET ", "et " },
- { CR0_TS, "TS ", "ts " },
- { CR0_EM, "EM ", "em " },
- { CR0_MP, "MP ", "mp " },
- { CR0_PE, "PE", "pe" }
- };
-
- uint8_t i;
-
- DPRINTF("(");
- for (i = 0; i < nitems(cr0_info); i++)
- if (cr0 & cr0_info[i].vrdi_bit)
- DPRINTF("%s", cr0_info[i].vrdi_present);
- else
- DPRINTF("%s", cr0_info[i].vrdi_absent);
-
- DPRINTF(")\n");
-}
-
-void
-vmm_decode_cr3(uint64_t cr3)
-{
- struct vmm_reg_debug_info cr3_info[2] = {
- { CR3_PWT, "PWT ", "pwt "},
- { CR3_PCD, "PCD", "pcd"}
- };
-
- uint64_t cr4;
- uint8_t i;
-
- if (vmread(VMCS_GUEST_IA32_CR4, &cr4)) {
- DPRINTF("(error)\n");
- return;
- }
-
- /* If CR4.PCIDE = 0, interpret CR3.PWT and CR3.PCD */
- if ((cr4 & CR4_PCIDE) == 0) {
- DPRINTF("(");
- for (i = 0 ; i < nitems(cr3_info) ; i++)
- if (cr3 & cr3_info[i].vrdi_bit)
- DPRINTF("%s", cr3_info[i].vrdi_present);
- else
- DPRINTF("%s", cr3_info[i].vrdi_absent);
-
- DPRINTF(")\n");
- } else {
- DPRINTF("(pcid=0x%llx)\n", cr3 & 0xFFF);
- }
-}
-
-void
-vmm_decode_cr4(uint64_t cr4)
-{
- struct vmm_reg_debug_info cr4_info[19] = {
- { CR4_PKE, "PKE ", "pke "},
- { CR4_SMAP, "SMAP ", "smap "},
- { CR4_SMEP, "SMEP ", "smep "},
- { CR4_OSXSAVE, "OSXSAVE ", "osxsave "},
- { CR4_PCIDE, "PCIDE ", "pcide "},
- { CR4_FSGSBASE, "FSGSBASE ", "fsgsbase "},
- { CR4_SMXE, "SMXE ", "smxe "},
- { CR4_VMXE, "VMXE ", "vmxe "},
- { CR4_OSXMMEXCPT, "OSXMMEXCPT ", "osxmmexcpt "},
- { CR4_OSFXSR, "OSFXSR ", "osfxsr "},
- { CR4_PCE, "PCE ", "pce "},
- { CR4_PGE, "PGE ", "pge "},
- { CR4_MCE, "MCE ", "mce "},
- { CR4_PAE, "PAE ", "pae "},
- { CR4_PSE, "PSE ", "pse "},
- { CR4_DE, "DE ", "de "},
- { CR4_TSD, "TSD ", "tsd "},
- { CR4_PVI, "PVI ", "pvi "},
- { CR4_VME, "VME", "vme"}
- };
-
- uint8_t i;
-
- DPRINTF("(");
- for (i = 0; i < nitems(cr4_info); i++)
- if (cr4 & cr4_info[i].vrdi_bit)
- DPRINTF("%s", cr4_info[i].vrdi_present);
- else
- DPRINTF("%s", cr4_info[i].vrdi_absent);
-
- DPRINTF(")\n");
-}
-
-void
-vmm_decode_apicbase_msr_value(uint64_t apicbase)
-{
- struct vmm_reg_debug_info apicbase_info[3] = {
- { APICBASE_BSP, "BSP ", "bsp "},
- { APICBASE_ENABLE_X2APIC, "X2APIC ", "x2apic "},
- { APICBASE_GLOBAL_ENABLE, "GLB_EN", "glb_en"}
- };
-
- uint8_t i;
-
- DPRINTF("(");
- for (i = 0; i < nitems(apicbase_info); i++)
- if (apicbase & apicbase_info[i].vrdi_bit)
- DPRINTF("%s", apicbase_info[i].vrdi_present);
- else
- DPRINTF("%s", apicbase_info[i].vrdi_absent);
-
- DPRINTF(")\n");
-}
-
-void
-vmm_decode_ia32_fc_value(uint64_t fcr)
-{
- struct vmm_reg_debug_info fcr_info[4] = {
- { IA32_FEATURE_CONTROL_LOCK, "LOCK ", "lock "},
- { IA32_FEATURE_CONTROL_SMX_EN, "SMX ", "smx "},
- { IA32_FEATURE_CONTROL_VMX_EN, "VMX ", "vmx "},
- { IA32_FEATURE_CONTROL_SENTER_EN, "SENTER ", "senter "}
- };
-
- uint8_t i;
-
- DPRINTF("(");
- for (i = 0; i < nitems(fcr_info); i++)
- if (fcr & fcr_info[i].vrdi_bit)
- DPRINTF("%s", fcr_info[i].vrdi_present);
- else
- DPRINTF("%s", fcr_info[i].vrdi_absent);
-
- if (fcr & IA32_FEATURE_CONTROL_SENTER_EN)
- DPRINTF(" [SENTER param = 0x%llx]",
- (fcr & IA32_FEATURE_CONTROL_SENTER_PARAM_MASK) >> 8);
-
- DPRINTF(")\n");
-}
-
-void
-vmm_decode_mtrrcap_value(uint64_t val)
-{
- struct vmm_reg_debug_info mtrrcap_info[3] = {
- { MTRRcap_FIXED, "FIXED ", "fixed "},
- { MTRRcap_WC, "WC ", "wc "},
- { MTRRcap_SMRR, "SMRR ", "smrr "}
- };
-
- uint8_t i;
-
- DPRINTF("(");
- for (i = 0; i < nitems(mtrrcap_info); i++)
- if (val & mtrrcap_info[i].vrdi_bit)
- DPRINTF("%s", mtrrcap_info[i].vrdi_present);
- else
- DPRINTF("%s", mtrrcap_info[i].vrdi_absent);
-
- if (val & MTRRcap_FIXED)
- DPRINTF(" [nr fixed ranges = 0x%llx]",
- (val & 0xff));
-
- DPRINTF(")\n");
-}
-
-void
-vmm_decode_perf_status_value(uint64_t val)
-{
- DPRINTF("(pstate ratio = 0x%llx)\n", (val & 0xffff));
-}
-
-void vmm_decode_perf_ctl_value(uint64_t val)
-{
- DPRINTF("(%s ", (val & PERF_CTL_TURBO) ? "TURBO" : "turbo");
- DPRINTF("pstate req = 0x%llx)\n", (val & 0xfffF));
-}
-
-void
-vmm_decode_mtrrdeftype_value(uint64_t mtrrdeftype)
-{
- struct vmm_reg_debug_info mtrrdeftype_info[2] = {
- { MTRRdefType_FIXED_ENABLE, "FIXED ", "fixed "},
- { MTRRdefType_ENABLE, "ENABLED ", "enabled "},
- };
-
- uint8_t i;
- int type;
-
- DPRINTF("(");
- for (i = 0; i < nitems(mtrrdeftype_info); i++)
- if (mtrrdeftype & mtrrdeftype_info[i].vrdi_bit)
- DPRINTF("%s", mtrrdeftype_info[i].vrdi_present);
- else
- DPRINTF("%s", mtrrdeftype_info[i].vrdi_absent);
-
- DPRINTF("type = ");
- type = mtrr2mrt(mtrrdeftype & 0xff);
- switch (type) {
- case MDF_UNCACHEABLE: DPRINTF("UC"); break;
- case MDF_WRITECOMBINE: DPRINTF("WC"); break;
- case MDF_WRITETHROUGH: DPRINTF("WT"); break;
- case MDF_WRITEPROTECT: DPRINTF("RO"); break;
- case MDF_WRITEBACK: DPRINTF("WB"); break;
- case MDF_UNKNOWN:
- default:
- DPRINTF("??");
- break;
- }
-
- DPRINTF(")\n");
-}
-
-void
-vmm_decode_efer_value(uint64_t efer)
-{
- struct vmm_reg_debug_info efer_info[4] = {
- { EFER_SCE, "SCE ", "sce "},
- { EFER_LME, "LME ", "lme "},
- { EFER_LMA, "LMA ", "lma "},
- { EFER_NXE, "NXE", "nxe"},
- };
-
- uint8_t i;
-
- DPRINTF("(");
- for (i = 0; i < nitems(efer_info); i++)
- if (efer & efer_info[i].vrdi_bit)
- DPRINTF("%s", efer_info[i].vrdi_present);
- else
- DPRINTF("%s", efer_info[i].vrdi_absent);
-
- DPRINTF(")\n");
-}
-
-void
-vmm_decode_msr_value(uint64_t msr, uint64_t val)
-{
- switch (msr) {
- case MSR_APICBASE: vmm_decode_apicbase_msr_value(val); break;
- case MSR_IA32_FEATURE_CONTROL: vmm_decode_ia32_fc_value(val); break;
- case MSR_MTRRcap: vmm_decode_mtrrcap_value(val); break;
- case MSR_PERF_STATUS: vmm_decode_perf_status_value(val); break;
- case MSR_PERF_CTL: vmm_decode_perf_ctl_value(val); break;
- case MSR_MTRRdefType: vmm_decode_mtrrdeftype_value(val); break;
- case MSR_EFER: vmm_decode_efer_value(val); break;
- case MSR_MISC_ENABLE: vmm_decode_misc_enable_value(val); break;
- default: DPRINTF("\n");
- }
-}
-
-void
-vmm_decode_rflags(uint64_t rflags)
-{
- struct vmm_reg_debug_info rflags_info[16] = {
- { PSL_C, "CF ", "cf "},
- { PSL_PF, "PF ", "pf "},
- { PSL_AF, "AF ", "af "},
- { PSL_Z, "ZF ", "zf "},
- { PSL_N, "SF ", "sf "}, /* sign flag */
- { PSL_T, "TF ", "tf "},
- { PSL_I, "IF ", "if "},
- { PSL_D, "DF ", "df "},
- { PSL_V, "OF ", "of "}, /* overflow flag */
- { PSL_NT, "NT ", "nt "},
- { PSL_RF, "RF ", "rf "},
- { PSL_VM, "VM ", "vm "},
- { PSL_AC, "AC ", "ac "},
- { PSL_VIF, "VIF ", "vif "},
- { PSL_VIP, "VIP ", "vip "},
- { PSL_ID, "ID ", "id "},
- };
-
- uint8_t i, iopl;
-
- DPRINTF("(");
- for (i = 0; i < nitems(rflags_info); i++)
- if (rflags & rflags_info[i].vrdi_bit)
- DPRINTF("%s", rflags_info[i].vrdi_present);
- else
- DPRINTF("%s", rflags_info[i].vrdi_absent);
-
- iopl = (rflags & PSL_IOPL) >> 12;
- DPRINTF("IOPL=%d", iopl);
-
- DPRINTF(")\n");
-}
-
-void
-vmm_decode_misc_enable_value(uint64_t misc)
-{
- struct vmm_reg_debug_info misc_info[10] = {
- { MISC_ENABLE_FAST_STRINGS, "FSE ", "fse "},
- { MISC_ENABLE_TCC, "TCC ", "tcc "},
- { MISC_ENABLE_PERF_MON_AVAILABLE, "PERF ", "perf "},
- { MISC_ENABLE_BTS_UNAVAILABLE, "BTSU ", "btsu "},
- { MISC_ENABLE_PEBS_UNAVAILABLE, "PEBSU ", "pebsu "},
- { MISC_ENABLE_EIST_ENABLED, "EIST ", "eist "},
- { MISC_ENABLE_ENABLE_MONITOR_FSM, "MFSM ", "mfsm "},
- { MISC_ENABLE_LIMIT_CPUID_MAXVAL, "CMAX ", "cmax "},
- { MISC_ENABLE_xTPR_MESSAGE_DISABLE, "xTPRD ", "xtprd "},
- { MISC_ENABLE_XD_BIT_DISABLE, "NXD", "nxd"},
- };
-
- uint8_t i;
-
- DPRINTF("(");
- for (i = 0; i < nitems(misc_info); i++)
- if (misc & misc_info[i].vrdi_bit)
- DPRINTF("%s", misc_info[i].vrdi_present);
- else
- DPRINTF("%s", misc_info[i].vrdi_absent);
-
- DPRINTF(")\n");
-}
-
-const char *
-vmm_decode_cpu_mode(struct vcpu *vcpu)
-{
- int mode = vmm_get_guest_cpu_mode(vcpu);
-
- switch (mode) {
- case VMM_CPU_MODE_REAL: return "real";
- case VMM_CPU_MODE_PROT: return "16 bit protected";
- case VMM_CPU_MODE_PROT32: return "32 bit protected";
- case VMM_CPU_MODE_COMPAT: return "compatibility";
- case VMM_CPU_MODE_LONG: return "long";
- default: return "unknown";
- }
-}
-#endif /* VMM_DEBUG */